organic compounds
Imidazole–imidazolium picrate monohydrate
aDepartamento de Química - Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, bInstituto de Química,IFSC, Universidade de São Paulo, São Carlos, Brazil, and cUniversidad Menendez Pelayo, Casa de la Ciencia, Pabellón del Perú, Avda Maria Luisa, s/n 41013, Sevilla, Spain
*Correspondence e-mail: rodimo26@yahoo.es
The 3H5N2+·C6H2N3O7−·C3H4N2·H2O or H(C3H4N2)2+·C6H2N3O7−·H2O, contains a diimidazolium cationic unit, one picrate anion and one molecule of water. In the crystal, the components are connected by N—H⋯O, N—H⋯N and O—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (001). In addition, weak intermolecular C—H⋯O hydrogen bonds lead to the formation of a three-dimensional network featuring R55(19) rings.
of the title compound, CRelated literature
For background to imidazolium salts see: Moreno-Fuquen et al. (2009a,b). For imidazole as an antifungal agent, see: Miranda et al. (1998); Rodriguez & Acosta (1997). For a description of the Cambridge Structural Database, see: Allen (2002). For hydrogen-bond geometries, see: Emsley (1984); Etter (1990); Nardelli (1995).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: COLLECT (Nonius, 2000); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S160053681005169X/lh5175sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053681005169X/lh5175Isup2.hkl
Reagents and solvents for the synthesis were obtained from the Aldrich Chemical Co., and were used without additional purification. The synthesis of the title compound was carried out by slow evaporation of a solution of imidazole (1.360 g. 0.02 mol) and picric acid (2.29 g. 0.01 mol) in 100 ml of dry acetonitrile. After a week, yellow prisms of a good quality suitable for X-ray analysis were obtained. M. p. 494 (1) K
In the Absence of significant
effects the Friedel pairs were merged. The H atoms were located in a difference map, but were repositioned geometrically. They were initially refined with soft restraints on bond lengths and angles to regularize their geometry (C—H = 0.93, N—H5 = 0.86Å) and Uiso(H) (1.2 times Ueq of the parent atom). After this, the positions were refined with riding constraints. Atoms H401, H501, H502 and H701 were found in a difference Fourier map and their coordinates were fixed with refined Uiso(H) values.This work is part of a series of studies, related to the imidazole system which, has been conducted by the crystallography group at the University del Valle (Moreno-Fuquen et al., 2009a,b). Imidazole, an aromatic heterocyclic, classified as an alkaloid, is present as an antifungal agent in commercial pharmaceutical products (Miranda et al., 1998; Rodriguez & Acosta, 1997). A displacement ellipsoid plot of the title molecule (I) with the atomic numbering scheme is shown in Figure 1. The
contains two imidazole molecules as cationic unit, one picrate ion and one molecule of water. In the crystal, molecules are connected by N—H···O, N—H···N and O—H···O hydrogen bonds. Interactions are of moderate character (Emsley, 1984) involving the following donor···acceptors: N5···N6, N4···O5, N7···O1 and O5···O1 and other weak C—H···O molecular interactions are also observed (Nardelli, 1995). In a the atom O5 in the molecule at (x, y, z) acts as donor and as an acceptor with atoms O1 and N4 in the molecule at (x, y, z). In addtion, atom N5 in the molecule at (x, y, z) acts as donor to the atom N6 in the molecule at (x, y, z). The atom N7 in the molecule at (x, y, z) acts as hydrogen bond donor to atom O1 in the molecule at (-x + 1, y - 1/2, -z + 3/2). These interactions form chains of molecules running along the b axis (see Fig. 2). In a second the atom O5 in the molecule at (x, y, z) acts as donor to atom O1 in the molecule at (x + 1, y, z), forming chains of water molecules running along a axis, where the atom O1 of the picrate ion, serves as a bridge in the chain (see Fig. 3). Finally, weak C10—H101···O6iii and C9—H91···O8iv interactions, together with the hydrogen bonds N4—H401···O5, O5—H501···O1 and N7—H701···O1ii, described above, form R55(19) rings (Etter, 1990) which run along the c axis (see Fig. 4). The combination of these interactions allow the formation of three-dimensional network of the structure.For background to imidazolium salts see: Moreno-Fuquen et al. (2009a,b). For imidazole as an antifungal agent, see: Miranda et al. (1998); Rodriguez & Acosta (1997). For a description of the Cambridge Structural Database, see: Allen et al. (2002). For hydrogen-bond geometries, see: Emsley (1984); Etter (1990); Nardelli (1995).
Data collection: COLLECT (Nonius, 2000); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. An ORTEP-3 (Farrugia, 1997) plot of the title compound with the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius. | |
Fig. 2. Part of the crystal structure of (I), showing the formation of chains of molecules running along the b axis. Symmetry code: (ii) -x + 1, y - 1/2, -z + 3/2. | |
Fig. 3. Part of the crystal structure of (I), showing the formation of chains of water molecules running along a axis. The O1 atom of the picrate ion, serves as a bridge in this chain. Symmetry code: (i) x + 1, y, z. | |
Fig. 4. Part of the crystal structure of (I), showing the formation of R55(19) rings running along the c axis. Symmetry code: (iii) x - 1/2, -y + 3/2, -z + 1; (iv) -x + 3/2, -y + 2, z + 1/2; (v) i-x, y + 1/2, -z + 3/2. |
C3H5N2+·C6H2N3O7−·C3H4N2·H2O | Dx = 1.494 Mg m−3 |
Mr = 383.29 | Melting point: 494(1) K |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 6888 reflections |
a = 3.8180 (1) Å | θ = 2.9–27.1° |
b = 20.8160 (8) Å | µ = 0.13 mm−1 |
c = 21.4420 (8) Å | T = 291 K |
V = 1704.11 (10) Å3 | Prism, yellow |
Z = 4 | 0.53 × 0.21 × 0.14 mm |
F(000) = 792 |
Bruker–Nonius KappaCCD diffractometer | 1723 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.062 |
Horizonally mounted graphite crystal monochromator | θmax = 27.1°, θmin = 3.0° |
Detector resolution: 9 pixels mm-1 | h = −4→3 |
CCD scans | k = −20→26 |
12017 measured reflections | l = −27→26 |
2207 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0567P)2 + 0.1542P] where P = (Fo2 + 2Fc2)/3 |
2207 reflections | (Δ/σ)max < 0.001 |
248 parameters | Δρmax = 0.14 e Å−3 |
0 restraints | Δρmin = −0.15 e Å−3 |
C3H5N2+·C6H2N3O7−·C3H4N2·H2O | V = 1704.11 (10) Å3 |
Mr = 383.29 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 3.8180 (1) Å | µ = 0.13 mm−1 |
b = 20.8160 (8) Å | T = 291 K |
c = 21.4420 (8) Å | 0.53 × 0.21 × 0.14 mm |
Bruker–Nonius KappaCCD diffractometer | 1723 reflections with I > 2σ(I) |
12017 measured reflections | Rint = 0.062 |
2207 independent reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.14 e Å−3 |
2207 reflections | Δρmin = −0.15 e Å−3 |
248 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.2191 (5) | 1.03522 (7) | 0.55396 (7) | 0.0571 (4) | |
O2 | −0.1566 (6) | 1.14493 (9) | 0.57670 (8) | 0.0731 (5) | |
O3 | 0.1895 (7) | 1.21912 (8) | 0.54543 (9) | 0.0788 (6) | |
O4 | 0.2390 (9) | 0.92426 (8) | 0.48892 (9) | 0.0914 (8) | |
O5 | 0.7228 (7) | 0.95183 (9) | 0.60361 (10) | 0.0802 (6) | |
O6 | 0.5569 (8) | 0.92982 (10) | 0.40721 (10) | 0.0965 (8) | |
O7 | 0.2812 (11) | 1.20386 (11) | 0.31429 (10) | 0.1096 (10) | |
O8 | 0.4859 (10) | 1.11533 (12) | 0.27852 (9) | 0.1128 (11) | |
N1 | 0.0590 (5) | 1.16612 (9) | 0.54037 (9) | 0.0515 (5) | |
N2 | 0.3639 (9) | 1.14743 (12) | 0.32037 (10) | 0.0774 (7) | |
N3 | 0.3776 (7) | 0.95481 (9) | 0.44756 (9) | 0.0622 (6) | |
N4 | 0.5815 (7) | 0.82430 (10) | 0.61111 (11) | 0.0659 (6) | |
N5 | 0.5551 (7) | 0.73058 (10) | 0.65339 (10) | 0.0660 (6) | |
H5 | 0.5742 | 0.6999 | 0.6800 | 0.079* | |
N6 | 0.6123 (7) | 0.63572 (11) | 0.73624 (9) | 0.0693 (6) | |
N7 | 0.7046 (8) | 0.58105 (11) | 0.82023 (9) | 0.0694 (7) | |
C1 | 0.2292 (6) | 1.05863 (10) | 0.50031 (9) | 0.0464 (5) | |
C2 | 0.1650 (6) | 1.12594 (10) | 0.48771 (9) | 0.0460 (5) | |
C3 | 0.2078 (7) | 1.15485 (10) | 0.43161 (10) | 0.0523 (6) | |
H31 | 0.1686 | 1.1987 | 0.4270 | 0.063* | |
C4 | 0.3112 (8) | 1.11772 (11) | 0.38114 (10) | 0.0540 (6) | |
C5 | 0.3698 (7) | 1.05261 (11) | 0.38734 (10) | 0.0530 (6) | |
H51 | 0.4405 | 1.0284 | 0.3532 | 0.064* | |
C6 | 0.3229 (7) | 1.02395 (10) | 0.44446 (10) | 0.0496 (5) | |
C7 | 0.4412 (8) | 0.78433 (12) | 0.56804 (12) | 0.0636 (7) | |
H71 | 0.3711 | 0.7952 | 0.5279 | 0.076* | |
C8 | 0.4228 (8) | 0.72631 (12) | 0.59449 (12) | 0.0648 (7) | |
H81 | 0.3348 | 0.6893 | 0.5759 | 0.078* | |
C9 | 0.6470 (9) | 0.79029 (14) | 0.66155 (12) | 0.0693 (7) | |
H91 | 0.7453 | 0.8066 | 0.6979 | 0.083* | |
C10 | 0.5174 (9) | 0.57373 (15) | 0.72587 (12) | 0.0726 (8) | |
H101 | 0.4286 | 0.5577 | 0.6886 | 0.087* | |
C11 | 0.5717 (10) | 0.53967 (15) | 0.77749 (12) | 0.0766 (9) | |
H111 | 0.5274 | 0.4961 | 0.7831 | 0.092* | |
C12 | 0.7269 (10) | 0.63802 (14) | 0.79433 (12) | 0.0729 (8) | |
H121 | 0.8111 | 0.6747 | 0.8140 | 0.088* | |
H401 | 0.6413 | 0.8680 | 0.6086 | 0.095 (10)* | |
H701 | 0.7523 | 0.5718 | 0.8593 | 0.084 (9)* | |
H501 | 0.5605 | 0.9792 | 0.5877 | 0.41 (7)* | |
H502 | 0.9212 | 0.9740 | 0.5833 | 0.17 (2)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0768 (12) | 0.0511 (8) | 0.0435 (7) | −0.0053 (9) | 0.0018 (8) | 0.0016 (6) |
O2 | 0.0723 (12) | 0.0860 (13) | 0.0609 (10) | 0.0056 (12) | 0.0146 (11) | −0.0090 (10) |
O3 | 0.0998 (15) | 0.0529 (9) | 0.0836 (12) | 0.0004 (11) | −0.0011 (13) | −0.0191 (9) |
O4 | 0.152 (2) | 0.0493 (9) | 0.0731 (12) | −0.0071 (13) | 0.0180 (16) | 0.0000 (9) |
O5 | 0.0931 (16) | 0.0565 (10) | 0.0909 (13) | −0.0093 (11) | 0.0083 (14) | 0.0037 (9) |
O6 | 0.142 (2) | 0.0693 (11) | 0.0781 (12) | 0.0391 (14) | 0.0226 (16) | −0.0082 (10) |
O7 | 0.183 (3) | 0.0739 (13) | 0.0718 (12) | 0.0005 (19) | 0.0005 (19) | 0.0242 (11) |
O8 | 0.180 (3) | 0.1017 (16) | 0.0570 (10) | −0.005 (2) | 0.0428 (17) | 0.0030 (12) |
N1 | 0.0532 (11) | 0.0501 (10) | 0.0514 (10) | 0.0066 (9) | −0.0063 (10) | −0.0048 (9) |
N2 | 0.108 (2) | 0.0727 (14) | 0.0519 (12) | −0.0131 (16) | 0.0059 (14) | 0.0083 (11) |
N3 | 0.0874 (16) | 0.0495 (10) | 0.0498 (10) | 0.0086 (12) | −0.0034 (12) | −0.0073 (9) |
N4 | 0.0724 (15) | 0.0513 (11) | 0.0742 (13) | −0.0013 (11) | 0.0062 (12) | −0.0015 (10) |
N5 | 0.0846 (16) | 0.0611 (12) | 0.0525 (11) | −0.0011 (12) | −0.0043 (12) | 0.0073 (10) |
N6 | 0.0808 (16) | 0.0752 (14) | 0.0520 (11) | 0.0021 (14) | −0.0064 (12) | 0.0104 (10) |
N7 | 0.0958 (18) | 0.0699 (13) | 0.0425 (10) | 0.0095 (14) | −0.0023 (12) | 0.0080 (10) |
C1 | 0.0505 (13) | 0.0450 (10) | 0.0437 (11) | −0.0041 (10) | −0.0014 (10) | −0.0019 (9) |
C2 | 0.0462 (12) | 0.0459 (10) | 0.0460 (10) | 0.0010 (10) | −0.0026 (10) | −0.0058 (9) |
C3 | 0.0582 (14) | 0.0442 (11) | 0.0545 (12) | 0.0004 (11) | −0.0052 (12) | 0.0008 (10) |
C4 | 0.0626 (15) | 0.0556 (12) | 0.0439 (11) | −0.0069 (12) | −0.0005 (11) | 0.0059 (10) |
C5 | 0.0580 (14) | 0.0578 (12) | 0.0433 (11) | 0.0015 (12) | 0.0029 (11) | −0.0063 (10) |
C6 | 0.0570 (14) | 0.0437 (11) | 0.0481 (11) | 0.0008 (11) | −0.0022 (11) | −0.0034 (9) |
C7 | 0.0769 (19) | 0.0611 (14) | 0.0529 (13) | 0.0032 (14) | −0.0062 (13) | 0.0025 (11) |
C8 | 0.0818 (19) | 0.0564 (13) | 0.0562 (13) | −0.0061 (14) | −0.0071 (14) | −0.0028 (11) |
C9 | 0.0819 (19) | 0.0720 (16) | 0.0541 (14) | −0.0056 (16) | −0.0044 (15) | −0.0119 (13) |
C10 | 0.084 (2) | 0.0856 (18) | 0.0482 (13) | −0.0080 (18) | −0.0031 (15) | −0.0003 (13) |
C11 | 0.104 (3) | 0.0689 (15) | 0.0567 (14) | −0.0112 (18) | 0.0035 (16) | 0.0030 (13) |
C12 | 0.098 (2) | 0.0665 (15) | 0.0542 (13) | 0.0016 (17) | −0.0076 (16) | 0.0045 (12) |
O1—C1 | 1.250 (2) | N7—C12 | 1.312 (3) |
O2—N1 | 1.216 (3) | N7—C11 | 1.356 (4) |
O3—N1 | 1.216 (3) | N7—H701 | 0.880 |
O4—N3 | 1.213 (3) | C1—C6 | 1.443 (3) |
O5—H501 | 0.908 | C1—C2 | 1.448 (3) |
O5—H502 | 0.988 | C2—C3 | 1.355 (3) |
O6—N3 | 1.220 (3) | C3—C4 | 1.387 (3) |
O7—N2 | 1.223 (3) | C3—H31 | 0.9300 |
O8—N2 | 1.212 (3) | C4—C5 | 1.380 (3) |
N1—C2 | 1.462 (3) | C5—C6 | 1.374 (3) |
N2—C4 | 1.456 (3) | C5—H51 | 0.9300 |
N3—C6 | 1.456 (3) | C7—C8 | 1.336 (4) |
N4—C9 | 1.317 (3) | C7—H71 | 0.9300 |
N4—C7 | 1.354 (3) | C8—H81 | 0.9300 |
N4—H401 | 0.940 | C9—H91 | 0.9300 |
N5—C9 | 1.303 (3) | C10—C11 | 1.331 (4) |
N5—C8 | 1.363 (3) | C10—H101 | 0.9300 |
N5—H5 | 0.8600 | C11—H111 | 0.9300 |
N6—C12 | 1.321 (3) | C12—H121 | 0.9300 |
N6—C10 | 1.359 (4) | ||
H501—O5—H502 | 93.71 | C4—C3—H31 | 120.7 |
O3—N1—O2 | 123.3 (2) | C5—C4—C3 | 121.2 (2) |
O3—N1—C2 | 118.3 (2) | C5—C4—N2 | 118.7 (2) |
O2—N1—C2 | 118.34 (19) | C3—C4—N2 | 120.0 (2) |
O8—N2—O7 | 123.4 (2) | C6—C5—C4 | 119.4 (2) |
O8—N2—C4 | 118.8 (2) | C6—C5—H51 | 120.3 |
O7—N2—C4 | 117.9 (3) | C4—C5—H51 | 120.3 |
O4—N3—O6 | 122.7 (2) | C5—C6—C1 | 123.69 (19) |
O4—N3—C6 | 119.3 (2) | C5—C6—N3 | 116.8 (2) |
O6—N3—C6 | 118.0 (2) | C1—C6—N3 | 119.48 (19) |
C9—N4—C7 | 107.8 (2) | C8—C7—N4 | 106.7 (2) |
C9—N4—H401 | 121.4 | C8—C7—H71 | 126.7 |
C7—N4—H401 | 130.8 | N4—C7—H71 | 126.7 |
C9—N5—C8 | 106.6 (2) | C7—C8—N5 | 108.4 (2) |
C9—N5—H5 | 126.7 | C7—C8—H81 | 125.8 |
C8—N5—H5 | 126.7 | N5—C8—H81 | 125.8 |
C12—N6—C10 | 106.1 (2) | N5—C9—N4 | 110.6 (2) |
C12—N7—C11 | 108.2 (2) | N5—C9—H91 | 124.7 |
C12—N7—H701 | 126.0 | N4—C9—H91 | 124.7 |
C11—N7—H701 | 125.6 | C11—C10—N6 | 109.2 (2) |
O1—C1—C6 | 125.19 (19) | C11—C10—H101 | 125.4 |
O1—C1—C2 | 122.94 (19) | N6—C10—H101 | 125.4 |
C6—C1—C2 | 111.79 (17) | C10—C11—N7 | 106.4 (3) |
C3—C2—C1 | 125.10 (19) | C10—C11—H111 | 126.8 |
C3—C2—N1 | 117.70 (18) | N7—C11—H111 | 126.8 |
C1—C2—N1 | 117.15 (17) | N7—C12—N6 | 110.2 (3) |
C2—C3—C4 | 118.6 (2) | N7—C12—H121 | 124.9 |
C2—C3—H31 | 120.7 | N6—C12—H121 | 124.9 |
O1—C1—C2—C3 | 172.9 (3) | C4—C5—C6—N3 | 178.0 (3) |
C6—C1—C2—C3 | −4.0 (4) | O1—C1—C6—C5 | −172.4 (3) |
O1—C1—C2—N1 | −4.6 (4) | C2—C1—C6—C5 | 4.4 (4) |
C6—C1—C2—N1 | 178.5 (2) | O1—C1—C6—N3 | 6.7 (4) |
O3—N1—C2—C3 | −40.4 (3) | C2—C1—C6—N3 | −176.5 (2) |
O2—N1—C2—C3 | 139.3 (2) | O4—N3—C6—C5 | −156.8 (3) |
O3—N1—C2—C1 | 137.3 (2) | O6—N3—C6—C5 | 21.7 (4) |
O2—N1—C2—C1 | −43.0 (3) | O4—N3—C6—C1 | 24.0 (4) |
C1—C2—C3—C4 | 2.0 (4) | O6—N3—C6—C1 | −157.5 (3) |
N1—C2—C3—C4 | 179.5 (2) | C9—N4—C7—C8 | 0.6 (3) |
C2—C3—C4—C5 | 0.1 (4) | N4—C7—C8—N5 | −0.6 (3) |
C2—C3—C4—N2 | −179.2 (3) | C9—N5—C8—C7 | 0.5 (4) |
O8—N2—C4—C5 | −6.2 (5) | C8—N5—C9—N4 | −0.1 (4) |
O7—N2—C4—C5 | 173.6 (3) | C7—N4—C9—N5 | −0.3 (4) |
O8—N2—C4—C3 | 173.1 (3) | C12—N6—C10—C11 | 0.6 (4) |
O7—N2—C4—C3 | −7.1 (5) | N6—C10—C11—N7 | −0.5 (4) |
C3—C4—C5—C6 | 0.4 (4) | C12—N7—C11—C10 | 0.1 (4) |
N2—C4—C5—C6 | 179.7 (3) | C11—N7—C12—N6 | 0.2 (4) |
C4—C5—C6—C1 | −2.9 (4) | C10—N6—C12—N7 | −0.5 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5···N6 | 0.86 | 1.81 | 2.666 (3) | 180 |
N4—H401···O5 | 0.94 | 1.78 | 2.714 (3) | 176 |
O5—H501···O1 | 0.91 | 1.90 | 2.801 (3) | 179 |
O5—H502···O1i | 0.99 | 1.82 | 2.782 (3) | 163 |
N7—H701···O1ii | 0.88 | 2.01 | 2.876 (2) | 167 |
C10—H101···O6iii | 0.93 | 2.51 | 3.352 (4) | 151 |
C9—H91···O8iv | 0.93 | 2.58 | 3.481 (3) | 162 |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, y−1/2, −z+3/2; (iii) x−1/2, −y+3/2, −z+1; (iv) −x+3/2, −y+2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C3H5N2+·C6H2N3O7−·C3H4N2·H2O |
Mr | 383.29 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 291 |
a, b, c (Å) | 3.8180 (1), 20.8160 (8), 21.4420 (8) |
V (Å3) | 1704.11 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.53 × 0.21 × 0.14 |
Data collection | |
Diffractometer | Bruker–Nonius KappaCCD |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12017, 2207, 1723 |
Rint | 0.062 |
(sin θ/λ)max (Å−1) | 0.640 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.109, 1.06 |
No. of reflections | 2207 |
No. of parameters | 248 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.14, −0.15 |
Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5···N6 | 0.86 | 1.81 | 2.666 (3) | 180 |
N4—H401···O5 | 0.94 | 1.78 | 2.714 (3) | 176 |
O5—H501···O1 | 0.91 | 1.90 | 2.801 (3) | 179 |
O5—H502···O1i | 0.99 | 1.82 | 2.782 (3) | 163 |
N7—H701···O1ii | 0.88 | 2.01 | 2.876 (2) | 167 |
C10—H101···O6iii | 0.93 | 2.51 | 3.352 (4) | 151 |
C9—H91···O8iv | 0.93 | 2.58 | 3.481 (3) | 162 |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, y−1/2, −z+3/2; (iii) x−1/2, −y+3/2, −z+1; (iv) −x+3/2, −y+2, z+1/2. |
Acknowledgements
RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database (Allen, 2002). RMF also thanks the Universidad del Valle, Colombia, and the Instituto de Química de São Carlos, USP, Brazil, for partial financial support.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Emsley, J. (1984). Complex Chemistry, Structure and Bonding. Vol. 57, pp. 147–191. Berlin: Springer-Verlag. Google Scholar
Etter, M. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Miranda, C. L., Henderson, M. C. & Buhler, D. R. (1998). Toxicol. Appl. Pharmacol. 148, 237–244. Web of Science CrossRef CAS PubMed Google Scholar
Moreno-Fuquen, R., Ellena, J. & Theodoro, J. E. (2009a). Acta Cryst. E65, o2717. Web of Science CSD CrossRef IUCr Journals Google Scholar
Moreno-Fuquen, R., Kennedy, A. R., Gilmour, D., De Almeida Santos, R. H. & Viana, R. B. (2009b). Acta Cryst. E65, o3044–o3045. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Rodriguez, R. J. & Acosta, D. Jr (1997). Toxicology, 117, 123–131. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
This work is part of a series of studies, related to the imidazole system which, has been conducted by the crystallography group at the University del Valle (Moreno-Fuquen et al., 2009a,b). Imidazole, an aromatic heterocyclic, classified as an alkaloid, is present as an antifungal agent in commercial pharmaceutical products (Miranda et al., 1998; Rodriguez & Acosta, 1997). A displacement ellipsoid plot of the title molecule (I) with the atomic numbering scheme is shown in Figure 1. The asymmetric unit contains two imidazole molecules as cationic unit, one picrate ion and one molecule of water. In the crystal, molecules are connected by N—H···O, N—H···N and O—H···O hydrogen bonds. Interactions are of moderate character (Emsley, 1984) involving the following donor···acceptors: N5···N6, N4···O5, N7···O1 and O5···O1 and other weak C—H···O molecular interactions are also observed (Nardelli, 1995). In a substructure, the atom O5 in the molecule at (x, y, z) acts as donor and as an acceptor with atoms O1 and N4 in the molecule at (x, y, z). In addtion, atom N5 in the molecule at (x, y, z) acts as donor to the atom N6 in the molecule at (x, y, z). The atom N7 in the molecule at (x, y, z) acts as hydrogen bond donor to atom O1 in the molecule at (-x + 1, y - 1/2, -z + 3/2). These interactions form chains of molecules running along the b axis (see Fig. 2). In a second substructure, the atom O5 in the molecule at (x, y, z) acts as donor to atom O1 in the molecule at (x + 1, y, z), forming chains of water molecules running along a axis, where the atom O1 of the picrate ion, serves as a bridge in the chain (see Fig. 3). Finally, weak C10—H101···O6iii and C9—H91···O8iv interactions, together with the hydrogen bonds N4—H401···O5, O5—H501···O1 and N7—H701···O1ii, described above, form R55(19) rings (Etter, 1990) which run along the c axis (see Fig. 4). The combination of these interactions allow the formation of three-dimensional network of the structure.