organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Imidazole–imidazolium picrate monohydrate

aDepartamento de Química - Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, bInstituto de Química,IFSC, Universidade de São Paulo, São Carlos, Brazil, and cUniversidad Menendez Pelayo, Casa de la Ciencia, Pabellón del Perú, Avda Maria Luisa, s/n 41013, Sevilla, Spain
*Correspondence e-mail: rodimo26@yahoo.es

(Received 22 November 2010; accepted 9 December 2010; online 15 December 2010)

The asymmetric unit of the title compound, C3H5N2+·C6H2N3O7·C3H4N2·H2O or H(C3H4N2)2+·C6H2N3O7·H2O, contains a diimidazolium cationic unit, one picrate anion and one mol­ecule of water. In the crystal, the components are connected by N—H⋯O, N—H⋯N and O—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (001). In addition, weak inter­molecular C—H⋯O hydrogen bonds lead to the formation of a three-dimensional network featuring R55(19) rings.

Related literature

For background to imidazolium salts see: Moreno-Fuquen et al. (2009a[Moreno-Fuquen, R., Ellena, J. & Theodoro, J. E. (2009a). Acta Cryst. E65, o2717.],b[Moreno-Fuquen, R., Kennedy, A. R., Gilmour, D., De Almeida Santos, R. H. & Viana, R. B. (2009b). Acta Cryst. E65, o3044-o3045.][Moreno-Fuquen, R., Ellena, J. & Theodoro, J. E. (2009a). Acta Cryst. E65, o2717.]). For imidazole as an anti­fungal agent, see: Miranda et al. (1998[Miranda, C. L., Henderson, M. C. & Buhler, D. R. (1998). Toxicol. Appl. Pharmacol. 148, 237-244.]); Rodriguez & Acosta (1997[Rodriguez, R. J. & Acosta, D. Jr (1997). Toxicology, 117, 123-131.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For hydrogen-bond geometries, see: Emsley (1984[Emsley, J. (1984). Complex Chemistry, Structure and Bonding. Vol. 57, pp. 147-191. Berlin: Springer-Verlag.]); Etter (1990[Etter, M. (1990). Acc. Chem. Res. 23, 120-126.]); Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

[Scheme 1]

Experimental

Crystal data
  • C3H5N2+·C6H2N3O7·C3H4N2·H2O

  • Mr = 383.29

  • Orthorhombic, P 21 21 21

  • a = 3.8180 (1) Å

  • b = 20.8160 (8) Å

  • c = 21.4420 (8) Å

  • V = 1704.11 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 291 K

  • 0.53 × 0.21 × 0.14 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • 12017 measured reflections

  • 2207 independent reflections

  • 1723 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.109

  • S = 1.06

  • 2207 reflections

  • 248 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯N6 0.86 1.81 2.666 (3) 180
N4—H401⋯O5 0.94 1.78 2.714 (3) 176
O5—H501⋯O1 0.91 1.90 2.801 (3) 179
O5—H502⋯O1i 0.99 1.82 2.782 (3) 163
N7—H701⋯O1ii 0.88 2.01 2.876 (2) 167
C10—H101⋯O6iii 0.93 2.51 3.352 (4) 151
C9—H91⋯O8iv 0.93 2.58 3.481 (3) 162
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iv) [-x+{\script{3\over 2}}, -y+2, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

This work is part of a series of studies, related to the imidazole system which, has been conducted by the crystallography group at the University del Valle (Moreno-Fuquen et al., 2009a,b). Imidazole, an aromatic heterocyclic, classified as an alkaloid, is present as an antifungal agent in commercial pharmaceutical products (Miranda et al., 1998; Rodriguez & Acosta, 1997). A displacement ellipsoid plot of the title molecule (I) with the atomic numbering scheme is shown in Figure 1. The asymmetric unit contains two imidazole molecules as cationic unit, one picrate ion and one molecule of water. In the crystal, molecules are connected by N—H···O, N—H···N and O—H···O hydrogen bonds. Interactions are of moderate character (Emsley, 1984) involving the following donor···acceptors: N5···N6, N4···O5, N7···O1 and O5···O1 and other weak C—H···O molecular interactions are also observed (Nardelli, 1995). In a substructure, the atom O5 in the molecule at (x, y, z) acts as donor and as an acceptor with atoms O1 and N4 in the molecule at (x, y, z). In addtion, atom N5 in the molecule at (x, y, z) acts as donor to the atom N6 in the molecule at (x, y, z). The atom N7 in the molecule at (x, y, z) acts as hydrogen bond donor to atom O1 in the molecule at (-x + 1, y - 1/2, -z + 3/2). These interactions form chains of molecules running along the b axis (see Fig. 2). In a second substructure, the atom O5 in the molecule at (x, y, z) acts as donor to atom O1 in the molecule at (x + 1, y, z), forming chains of water molecules running along a axis, where the atom O1 of the picrate ion, serves as a bridge in the chain (see Fig. 3). Finally, weak C10—H101···O6iii and C9—H91···O8iv interactions, together with the hydrogen bonds N4—H401···O5, O5—H501···O1 and N7—H701···O1ii, described above, form R55(19) rings (Etter, 1990) which run along the c axis (see Fig. 4). The combination of these interactions allow the formation of three-dimensional network of the structure.

Related literature top

For background to imidazolium salts see: Moreno-Fuquen et al. (2009a,b). For imidazole as an antifungal agent, see: Miranda et al. (1998); Rodriguez & Acosta (1997). For a description of the Cambridge Structural Database, see: Allen et al. (2002). For hydrogen-bond geometries, see: Emsley (1984); Etter (1990); Nardelli (1995).

Experimental top

Reagents and solvents for the synthesis were obtained from the Aldrich Chemical Co., and were used without additional purification. The synthesis of the title compound was carried out by slow evaporation of a solution of imidazole (1.360 g. 0.02 mol) and picric acid (2.29 g. 0.01 mol) in 100 ml of dry acetonitrile. After a week, yellow prisms of a good quality suitable for X-ray analysis were obtained. M. p. 494 (1) K

Refinement top

In the Absence of significant anomalous dispersion effects the Friedel pairs were merged. The H atoms were located in a difference map, but were repositioned geometrically. They were initially refined with soft restraints on bond lengths and angles to regularize their geometry (C—H = 0.93, N—H5 = 0.86Å) and Uiso(H) (1.2 times Ueq of the parent atom). After this, the positions were refined with riding constraints. Atoms H401, H501, H502 and H701 were found in a difference Fourier map and their coordinates were fixed with refined Uiso(H) values.

Structure description top

This work is part of a series of studies, related to the imidazole system which, has been conducted by the crystallography group at the University del Valle (Moreno-Fuquen et al., 2009a,b). Imidazole, an aromatic heterocyclic, classified as an alkaloid, is present as an antifungal agent in commercial pharmaceutical products (Miranda et al., 1998; Rodriguez & Acosta, 1997). A displacement ellipsoid plot of the title molecule (I) with the atomic numbering scheme is shown in Figure 1. The asymmetric unit contains two imidazole molecules as cationic unit, one picrate ion and one molecule of water. In the crystal, molecules are connected by N—H···O, N—H···N and O—H···O hydrogen bonds. Interactions are of moderate character (Emsley, 1984) involving the following donor···acceptors: N5···N6, N4···O5, N7···O1 and O5···O1 and other weak C—H···O molecular interactions are also observed (Nardelli, 1995). In a substructure, the atom O5 in the molecule at (x, y, z) acts as donor and as an acceptor with atoms O1 and N4 in the molecule at (x, y, z). In addtion, atom N5 in the molecule at (x, y, z) acts as donor to the atom N6 in the molecule at (x, y, z). The atom N7 in the molecule at (x, y, z) acts as hydrogen bond donor to atom O1 in the molecule at (-x + 1, y - 1/2, -z + 3/2). These interactions form chains of molecules running along the b axis (see Fig. 2). In a second substructure, the atom O5 in the molecule at (x, y, z) acts as donor to atom O1 in the molecule at (x + 1, y, z), forming chains of water molecules running along a axis, where the atom O1 of the picrate ion, serves as a bridge in the chain (see Fig. 3). Finally, weak C10—H101···O6iii and C9—H91···O8iv interactions, together with the hydrogen bonds N4—H401···O5, O5—H501···O1 and N7—H701···O1ii, described above, form R55(19) rings (Etter, 1990) which run along the c axis (see Fig. 4). The combination of these interactions allow the formation of three-dimensional network of the structure.

For background to imidazolium salts see: Moreno-Fuquen et al. (2009a,b). For imidazole as an antifungal agent, see: Miranda et al. (1998); Rodriguez & Acosta (1997). For a description of the Cambridge Structural Database, see: Allen et al. (2002). For hydrogen-bond geometries, see: Emsley (1984); Etter (1990); Nardelli (1995).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) plot of the title compound with the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of chains of molecules running along the b axis. Symmetry code: (ii) -x + 1, y - 1/2, -z + 3/2.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of chains of water molecules running along a axis. The O1 atom of the picrate ion, serves as a bridge in this chain. Symmetry code: (i) x + 1, y, z.
[Figure 4] Fig. 4. Part of the crystal structure of (I), showing the formation of R55(19) rings running along the c axis. Symmetry code: (iii) x - 1/2, -y + 3/2, -z + 1; (iv) -x + 3/2, -y + 2, z + 1/2; (v) i-x, y + 1/2, -z + 3/2.
Imidazolium picrate–midazole–water (1/1/1) top
Crystal data top
C3H5N2+·C6H2N3O7·C3H4N2·H2ODx = 1.494 Mg m3
Mr = 383.29Melting point: 494(1) K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6888 reflections
a = 3.8180 (1) Åθ = 2.9–27.1°
b = 20.8160 (8) ŵ = 0.13 mm1
c = 21.4420 (8) ÅT = 291 K
V = 1704.11 (10) Å3Prism, yellow
Z = 40.53 × 0.21 × 0.14 mm
F(000) = 792
Data collection top
Bruker–Nonius KappaCCD
diffractometer
1723 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.062
Horizonally mounted graphite crystal monochromatorθmax = 27.1°, θmin = 3.0°
Detector resolution: 9 pixels mm-1h = 43
CCD scansk = 2026
12017 measured reflectionsl = 2726
2207 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0567P)2 + 0.1542P]
where P = (Fo2 + 2Fc2)/3
2207 reflections(Δ/σ)max < 0.001
248 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C3H5N2+·C6H2N3O7·C3H4N2·H2OV = 1704.11 (10) Å3
Mr = 383.29Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 3.8180 (1) ŵ = 0.13 mm1
b = 20.8160 (8) ÅT = 291 K
c = 21.4420 (8) Å0.53 × 0.21 × 0.14 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
1723 reflections with I > 2σ(I)
12017 measured reflectionsRint = 0.062
2207 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.06Δρmax = 0.14 e Å3
2207 reflectionsΔρmin = 0.15 e Å3
248 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2191 (5)1.03522 (7)0.55396 (7)0.0571 (4)
O20.1566 (6)1.14493 (9)0.57670 (8)0.0731 (5)
O30.1895 (7)1.21912 (8)0.54543 (9)0.0788 (6)
O40.2390 (9)0.92426 (8)0.48892 (9)0.0914 (8)
O50.7228 (7)0.95183 (9)0.60361 (10)0.0802 (6)
O60.5569 (8)0.92982 (10)0.40721 (10)0.0965 (8)
O70.2812 (11)1.20386 (11)0.31429 (10)0.1096 (10)
O80.4859 (10)1.11533 (12)0.27852 (9)0.1128 (11)
N10.0590 (5)1.16612 (9)0.54037 (9)0.0515 (5)
N20.3639 (9)1.14743 (12)0.32037 (10)0.0774 (7)
N30.3776 (7)0.95481 (9)0.44756 (9)0.0622 (6)
N40.5815 (7)0.82430 (10)0.61111 (11)0.0659 (6)
N50.5551 (7)0.73058 (10)0.65339 (10)0.0660 (6)
H50.57420.69990.68000.079*
N60.6123 (7)0.63572 (11)0.73624 (9)0.0693 (6)
N70.7046 (8)0.58105 (11)0.82023 (9)0.0694 (7)
C10.2292 (6)1.05863 (10)0.50031 (9)0.0464 (5)
C20.1650 (6)1.12594 (10)0.48771 (9)0.0460 (5)
C30.2078 (7)1.15485 (10)0.43161 (10)0.0523 (6)
H310.16861.19870.42700.063*
C40.3112 (8)1.11772 (11)0.38114 (10)0.0540 (6)
C50.3698 (7)1.05261 (11)0.38734 (10)0.0530 (6)
H510.44051.02840.35320.064*
C60.3229 (7)1.02395 (10)0.44446 (10)0.0496 (5)
C70.4412 (8)0.78433 (12)0.56804 (12)0.0636 (7)
H710.37110.79520.52790.076*
C80.4228 (8)0.72631 (12)0.59449 (12)0.0648 (7)
H810.33480.68930.57590.078*
C90.6470 (9)0.79029 (14)0.66155 (12)0.0693 (7)
H910.74530.80660.69790.083*
C100.5174 (9)0.57373 (15)0.72587 (12)0.0726 (8)
H1010.42860.55770.68860.087*
C110.5717 (10)0.53967 (15)0.77749 (12)0.0766 (9)
H1110.52740.49610.78310.092*
C120.7269 (10)0.63802 (14)0.79433 (12)0.0729 (8)
H1210.81110.67470.81400.088*
H4010.64130.86800.60860.095 (10)*
H7010.75230.57180.85930.084 (9)*
H5010.56050.97920.58770.41 (7)*
H5020.92120.97400.58330.17 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0768 (12)0.0511 (8)0.0435 (7)0.0053 (9)0.0018 (8)0.0016 (6)
O20.0723 (12)0.0860 (13)0.0609 (10)0.0056 (12)0.0146 (11)0.0090 (10)
O30.0998 (15)0.0529 (9)0.0836 (12)0.0004 (11)0.0011 (13)0.0191 (9)
O40.152 (2)0.0493 (9)0.0731 (12)0.0071 (13)0.0180 (16)0.0000 (9)
O50.0931 (16)0.0565 (10)0.0909 (13)0.0093 (11)0.0083 (14)0.0037 (9)
O60.142 (2)0.0693 (11)0.0781 (12)0.0391 (14)0.0226 (16)0.0082 (10)
O70.183 (3)0.0739 (13)0.0718 (12)0.0005 (19)0.0005 (19)0.0242 (11)
O80.180 (3)0.1017 (16)0.0570 (10)0.005 (2)0.0428 (17)0.0030 (12)
N10.0532 (11)0.0501 (10)0.0514 (10)0.0066 (9)0.0063 (10)0.0048 (9)
N20.108 (2)0.0727 (14)0.0519 (12)0.0131 (16)0.0059 (14)0.0083 (11)
N30.0874 (16)0.0495 (10)0.0498 (10)0.0086 (12)0.0034 (12)0.0073 (9)
N40.0724 (15)0.0513 (11)0.0742 (13)0.0013 (11)0.0062 (12)0.0015 (10)
N50.0846 (16)0.0611 (12)0.0525 (11)0.0011 (12)0.0043 (12)0.0073 (10)
N60.0808 (16)0.0752 (14)0.0520 (11)0.0021 (14)0.0064 (12)0.0104 (10)
N70.0958 (18)0.0699 (13)0.0425 (10)0.0095 (14)0.0023 (12)0.0080 (10)
C10.0505 (13)0.0450 (10)0.0437 (11)0.0041 (10)0.0014 (10)0.0019 (9)
C20.0462 (12)0.0459 (10)0.0460 (10)0.0010 (10)0.0026 (10)0.0058 (9)
C30.0582 (14)0.0442 (11)0.0545 (12)0.0004 (11)0.0052 (12)0.0008 (10)
C40.0626 (15)0.0556 (12)0.0439 (11)0.0069 (12)0.0005 (11)0.0059 (10)
C50.0580 (14)0.0578 (12)0.0433 (11)0.0015 (12)0.0029 (11)0.0063 (10)
C60.0570 (14)0.0437 (11)0.0481 (11)0.0008 (11)0.0022 (11)0.0034 (9)
C70.0769 (19)0.0611 (14)0.0529 (13)0.0032 (14)0.0062 (13)0.0025 (11)
C80.0818 (19)0.0564 (13)0.0562 (13)0.0061 (14)0.0071 (14)0.0028 (11)
C90.0819 (19)0.0720 (16)0.0541 (14)0.0056 (16)0.0044 (15)0.0119 (13)
C100.084 (2)0.0856 (18)0.0482 (13)0.0080 (18)0.0031 (15)0.0003 (13)
C110.104 (3)0.0689 (15)0.0567 (14)0.0112 (18)0.0035 (16)0.0030 (13)
C120.098 (2)0.0665 (15)0.0542 (13)0.0016 (17)0.0076 (16)0.0045 (12)
Geometric parameters (Å, º) top
O1—C11.250 (2)N7—C121.312 (3)
O2—N11.216 (3)N7—C111.356 (4)
O3—N11.216 (3)N7—H7010.880
O4—N31.213 (3)C1—C61.443 (3)
O5—H5010.908C1—C21.448 (3)
O5—H5020.988C2—C31.355 (3)
O6—N31.220 (3)C3—C41.387 (3)
O7—N21.223 (3)C3—H310.9300
O8—N21.212 (3)C4—C51.380 (3)
N1—C21.462 (3)C5—C61.374 (3)
N2—C41.456 (3)C5—H510.9300
N3—C61.456 (3)C7—C81.336 (4)
N4—C91.317 (3)C7—H710.9300
N4—C71.354 (3)C8—H810.9300
N4—H4010.940C9—H910.9300
N5—C91.303 (3)C10—C111.331 (4)
N5—C81.363 (3)C10—H1010.9300
N5—H50.8600C11—H1110.9300
N6—C121.321 (3)C12—H1210.9300
N6—C101.359 (4)
H501—O5—H50293.71C4—C3—H31120.7
O3—N1—O2123.3 (2)C5—C4—C3121.2 (2)
O3—N1—C2118.3 (2)C5—C4—N2118.7 (2)
O2—N1—C2118.34 (19)C3—C4—N2120.0 (2)
O8—N2—O7123.4 (2)C6—C5—C4119.4 (2)
O8—N2—C4118.8 (2)C6—C5—H51120.3
O7—N2—C4117.9 (3)C4—C5—H51120.3
O4—N3—O6122.7 (2)C5—C6—C1123.69 (19)
O4—N3—C6119.3 (2)C5—C6—N3116.8 (2)
O6—N3—C6118.0 (2)C1—C6—N3119.48 (19)
C9—N4—C7107.8 (2)C8—C7—N4106.7 (2)
C9—N4—H401121.4C8—C7—H71126.7
C7—N4—H401130.8N4—C7—H71126.7
C9—N5—C8106.6 (2)C7—C8—N5108.4 (2)
C9—N5—H5126.7C7—C8—H81125.8
C8—N5—H5126.7N5—C8—H81125.8
C12—N6—C10106.1 (2)N5—C9—N4110.6 (2)
C12—N7—C11108.2 (2)N5—C9—H91124.7
C12—N7—H701126.0N4—C9—H91124.7
C11—N7—H701125.6C11—C10—N6109.2 (2)
O1—C1—C6125.19 (19)C11—C10—H101125.4
O1—C1—C2122.94 (19)N6—C10—H101125.4
C6—C1—C2111.79 (17)C10—C11—N7106.4 (3)
C3—C2—C1125.10 (19)C10—C11—H111126.8
C3—C2—N1117.70 (18)N7—C11—H111126.8
C1—C2—N1117.15 (17)N7—C12—N6110.2 (3)
C2—C3—C4118.6 (2)N7—C12—H121124.9
C2—C3—H31120.7N6—C12—H121124.9
O1—C1—C2—C3172.9 (3)C4—C5—C6—N3178.0 (3)
C6—C1—C2—C34.0 (4)O1—C1—C6—C5172.4 (3)
O1—C1—C2—N14.6 (4)C2—C1—C6—C54.4 (4)
C6—C1—C2—N1178.5 (2)O1—C1—C6—N36.7 (4)
O3—N1—C2—C340.4 (3)C2—C1—C6—N3176.5 (2)
O2—N1—C2—C3139.3 (2)O4—N3—C6—C5156.8 (3)
O3—N1—C2—C1137.3 (2)O6—N3—C6—C521.7 (4)
O2—N1—C2—C143.0 (3)O4—N3—C6—C124.0 (4)
C1—C2—C3—C42.0 (4)O6—N3—C6—C1157.5 (3)
N1—C2—C3—C4179.5 (2)C9—N4—C7—C80.6 (3)
C2—C3—C4—C50.1 (4)N4—C7—C8—N50.6 (3)
C2—C3—C4—N2179.2 (3)C9—N5—C8—C70.5 (4)
O8—N2—C4—C56.2 (5)C8—N5—C9—N40.1 (4)
O7—N2—C4—C5173.6 (3)C7—N4—C9—N50.3 (4)
O8—N2—C4—C3173.1 (3)C12—N6—C10—C110.6 (4)
O7—N2—C4—C37.1 (5)N6—C10—C11—N70.5 (4)
C3—C4—C5—C60.4 (4)C12—N7—C11—C100.1 (4)
N2—C4—C5—C6179.7 (3)C11—N7—C12—N60.2 (4)
C4—C5—C6—C12.9 (4)C10—N6—C12—N70.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···N60.861.812.666 (3)180
N4—H401···O50.941.782.714 (3)176
O5—H501···O10.911.902.801 (3)179
O5—H502···O1i0.991.822.782 (3)163
N7—H701···O1ii0.882.012.876 (2)167
C10—H101···O6iii0.932.513.352 (4)151
C9—H91···O8iv0.932.583.481 (3)162
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+3/2; (iii) x1/2, y+3/2, z+1; (iv) x+3/2, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC3H5N2+·C6H2N3O7·C3H4N2·H2O
Mr383.29
Crystal system, space groupOrthorhombic, P212121
Temperature (K)291
a, b, c (Å)3.8180 (1), 20.8160 (8), 21.4420 (8)
V3)1704.11 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.53 × 0.21 × 0.14
Data collection
DiffractometerBruker–Nonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12017, 2207, 1723
Rint0.062
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.109, 1.06
No. of reflections2207
No. of parameters248
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.15

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···N60.861.812.666 (3)180
N4—H401···O50.941.782.714 (3)176
O5—H501···O10.911.902.801 (3)179
O5—H502···O1i0.991.822.782 (3)163
N7—H701···O1ii0.882.012.876 (2)167
C10—H101···O6iii0.932.513.352 (4)151
C9—H91···O8iv0.932.583.481 (3)162
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+3/2; (iii) x1/2, y+3/2, z+1; (iv) x+3/2, y+2, z+1/2.
 

Acknowledgements

RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). RMF also thanks the Universidad del Valle, Colombia, and the Instituto de Química de São Carlos, USP, Brazil, for partial financial support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEmsley, J. (1984). Complex Chemistry, Structure and Bonding. Vol. 57, pp. 147–191. Berlin: Springer-Verlag.  Google Scholar
First citationEtter, M. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMiranda, C. L., Henderson, M. C. & Buhler, D. R. (1998). Toxicol. Appl. Pharmacol. 148, 237–244.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMoreno-Fuquen, R., Ellena, J. & Theodoro, J. E. (2009a). Acta Cryst. E65, o2717.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Kennedy, A. R., Gilmour, D., De Almeida Santos, R. H. & Viana, R. B. (2009b). Acta Cryst. E65, o3044–o3045.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRodriguez, R. J. & Acosta, D. Jr (1997). Toxicology, 117, 123–131.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds