organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Di­bromo-1-(4-methyl­phen­yl)-3-(5-nitro­furan-2-yl)propan-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 25 November 2010; accepted 2 December 2010; online 11 December 2010)

In the title compound, C14H11Br2NO4, the whole mol­ecule is disordered over two positions with a refined occupancy ratio of 0.539 (9):0.461 (9). The 2-nitro­furan and toluene groups are approximately planar, with maximum deviations of 0.176 (11) and 0.121 (14) Å, respectively, in the major component and 0.208 (11) and 0.30 (17) Å in the minor component. The dihedral angles between the 2-nitro­furan and toluene groups are 8.7 (5) and 8.0 (9)° for the major and minor components, respectively. In the crystal, weak inter­molecular C—H⋯O inter­actions connect mol­ecules into a three-dimensional network, generating R21(6) ring motifs.

Related literature

For the biological activity of nitrofurans, see: Holla et al. (1986[Holla, B. S., Kalluraya, B. & Shridhar, K. R. (1986). Curr. Sci. 55, 73-76.], 1987[Holla, B. S., Kalluraya, B. & Shridhar, K. R. (1987). Curr. Sci. 56, 236-238.], 1992[Holla, B. S., Kalluraya, B. & Shridhar, K. R. (1992). Rev. Roum. Chim. 37, 1159-1164.]); Hegde et al. (2006[Hegde, J. C., Rai, G., Puranic, V. G. & Kalluraya, B. (2006). Synth. Commun. 36, 1285-1290.]); Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]). For a related structure, see: Fun et al. (2010[Fun, H.-K., Shahani, T., Nithinchandra, & Kalluraya, B. (2010). Acta Cryst. E66, o2818-o2819.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11Br2NO4

  • Mr = 417.06

  • Triclinic, [P \overline 1]

  • a = 8.7766 (3) Å

  • b = 9.0386 (3) Å

  • c = 10.4841 (3) Å

  • α = 87.601 (2)°

  • β = 75.505 (2)°

  • γ = 69.554 (2)°

  • V = 753.53 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.39 mm−1

  • T = 100 K

  • 0.47 × 0.21 × 0.13 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.184, Tmax = 0.550

  • 10357 measured reflections

  • 3465 independent reflections

  • 2729 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.103

  • S = 1.19

  • 3465 reflections

  • 274 parameters

  • 658 restraints

  • H-atom parameters constrained

  • Δρmax = 0.88 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2A—H2AA⋯O3Ai 0.93 2.53 3.210 (15) 131
C3A—H3AA⋯O2Aii 0.93 2.51 3.216 (12) 133
C6A—H6AA⋯O2Aii 0.98 2.33 3.217 (10) 151
C13A—H13A⋯O3Aiii 0.93 2.55 3.434 (13) 158
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Nitrofurans are a class of synthetic compounds characterized by the presence of 5-nitro-2-furyl group. The presence of nitro group in position-5 of the molecule conferred antibacterial activity (Holla et al.1986). A number of nitrofurans have attained commercial utility as antibacterial agents in humans and in veterinary medicine because of their broad spectrum of activities (Holla & Kalluraya et al., 1992; Holla et al., 1987). The incorporation of 5-nitrofuran or 5-nitrothiophene moiety into various heterocyclic systems has found to increase their biological activities. We have reported few heterocyclic systems carrying a 5-nitrofuran moiety as potent antimicrobial agents (Hegde et al., 2006). During the synthetic procedures, the dibromopropanones were obtained by the bromination of 1-aryl-3-(5-nitro-2-furyl)-2-propen-1-ones. Acid-catalysed condensation of acetophenones with nitrofural diacetate in acetic acid yielded the required 1-aryl-3-(5-nitro-2-furyl)-2-propen-1-ones (chalcones) (Rai et al., 2008).

In the title compound (Fig. 1), the whole molecule is disordered over two positions with a refined occupancy ratio of 0539 (9):0.461 (9) The molecule consists of a 2-nitrofuran (C1–C3/C5/N1/O1/O3/O4) group, a toluene group which (C9–C15) and one 2, 3-dibromopropanal (C6–C9/Br1/Br2/O2) moiety. Both ring groups are essentially planar (maximum deviation of 0.176 (11) and 0.121 (14) Å in the major component and 0.208 (11) and 0.30 (17) Å in the minor component for the 2-nitrofuran and toluene groups respectively). The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to a closely related structure (Fun et al., 2010).

In the crystal packing (Fig. 2), intermolecular C3A—H3A···O2Aii and C6A—H6A···O2Aii hydrogen bonds connect neighbouring molecules generating R21(6) ring motifs (Bernstein et al., 1995) (Table 1). These dimers are linked into a three-dimensional network by intermolecular C2A—H2AA···O3Ai and C13A—H13A···O3Aiii hydrogen bonds (Table 1).

Related literature top

For the biological activity of sydnones, see: Holla et al. (1986, 1987,1992); Hegde et al. (2006); Rai et al. (2008). For a related structure, see: Fun et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For standard bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

1-(4-Methylphenyl)-3-(5-nitro-2-furyl)-2-propen-1-one (0.01 mol) was dissolved in glacial acetic acid (25 ml) by gentle warming. A solution of bromine in glacial acetic acid (30%w/v) was added to it with constant stirring till the yellow color of the bromine persisted. The reaction mixture was kept aside at room temperature for overnight. Crystals of dibromopropanones which separated out were collected by filtration and washed with ethanol and dried and then recrystallized from glacial acetic acid. Crystals suitable for X-ray analysis were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.

Refinement top

All the H atoms were positioned geometrically [C–H = 0.93 to 0.98 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq (C). The whole molecule is disordered over two positions with a refined ratio of 0539 (9):0.461 (9) Initially rigid, similarity and simulation restraints were applied. After steady state has been reached, rigid restraints were removed for the final refinement.

Structure description top

Nitrofurans are a class of synthetic compounds characterized by the presence of 5-nitro-2-furyl group. The presence of nitro group in position-5 of the molecule conferred antibacterial activity (Holla et al.1986). A number of nitrofurans have attained commercial utility as antibacterial agents in humans and in veterinary medicine because of their broad spectrum of activities (Holla & Kalluraya et al., 1992; Holla et al., 1987). The incorporation of 5-nitrofuran or 5-nitrothiophene moiety into various heterocyclic systems has found to increase their biological activities. We have reported few heterocyclic systems carrying a 5-nitrofuran moiety as potent antimicrobial agents (Hegde et al., 2006). During the synthetic procedures, the dibromopropanones were obtained by the bromination of 1-aryl-3-(5-nitro-2-furyl)-2-propen-1-ones. Acid-catalysed condensation of acetophenones with nitrofural diacetate in acetic acid yielded the required 1-aryl-3-(5-nitro-2-furyl)-2-propen-1-ones (chalcones) (Rai et al., 2008).

In the title compound (Fig. 1), the whole molecule is disordered over two positions with a refined occupancy ratio of 0539 (9):0.461 (9) The molecule consists of a 2-nitrofuran (C1–C3/C5/N1/O1/O3/O4) group, a toluene group which (C9–C15) and one 2, 3-dibromopropanal (C6–C9/Br1/Br2/O2) moiety. Both ring groups are essentially planar (maximum deviation of 0.176 (11) and 0.121 (14) Å in the major component and 0.208 (11) and 0.30 (17) Å in the minor component for the 2-nitrofuran and toluene groups respectively). The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to a closely related structure (Fun et al., 2010).

In the crystal packing (Fig. 2), intermolecular C3A—H3A···O2Aii and C6A—H6A···O2Aii hydrogen bonds connect neighbouring molecules generating R21(6) ring motifs (Bernstein et al., 1995) (Table 1). These dimers are linked into a three-dimensional network by intermolecular C2A—H2AA···O3Ai and C13A—H13A···O3Aiii hydrogen bonds (Table 1).

For the biological activity of sydnones, see: Holla et al. (1986, 1987,1992); Hegde et al. (2006); Rai et al. (2008). For a related structure, see: Fun et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For standard bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The minor component of disorder is shown with open bonds.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along a axis. Only the major disordered component is shown. Hydrogen atoms not involved in hydrogen boding are omitted for clarity.
2,3-Dibromo-1-(4-methylphenyl)-3-(5-nitrofuran-2-yl)propan-1-one top
Crystal data top
C14H11Br2NO4Z = 2
Mr = 417.06F(000) = 408
Triclinic, P1Dx = 1.838 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7766 (3) ÅCell parameters from 4461 reflections
b = 9.0386 (3) Åθ = 2.8–29.8°
c = 10.4841 (3) ŵ = 5.39 mm1
α = 87.601 (2)°T = 100 K
β = 75.505 (2)°Block, colourless
γ = 69.554 (2)°0.47 × 0.21 × 0.13 mm
V = 753.53 (4) Å3
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3465 independent reflections
Radiation source: fine-focus sealed tube2729 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.184, Tmax = 0.550k = 1111
10357 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0366P)2 + 1.118P]
where P = (Fo2 + 2Fc2)/3
3465 reflections(Δ/σ)max < 0.001
274 parametersΔρmax = 0.88 e Å3
658 restraintsΔρmin = 0.40 e Å3
Crystal data top
C14H11Br2NO4γ = 69.554 (2)°
Mr = 417.06V = 753.53 (4) Å3
Triclinic, P1Z = 2
a = 8.7766 (3) ÅMo Kα radiation
b = 9.0386 (3) ŵ = 5.39 mm1
c = 10.4841 (3) ÅT = 100 K
α = 87.601 (2)°0.47 × 0.21 × 0.13 mm
β = 75.505 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3465 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2729 reflections with I > 2σ(I)
Tmin = 0.184, Tmax = 0.550Rint = 0.026
10357 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041658 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.19Δρmax = 0.88 e Å3
3465 reflectionsΔρmin = 0.40 e Å3
274 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A0.3252 (8)0.1907 (8)0.2855 (6)0.0247 (12)0.539 (9)
O2A0.7200 (11)0.4559 (10)0.3552 (8)0.0263 (15)0.539 (9)
O3A0.0607 (10)0.0275 (11)0.3127 (8)0.0353 (18)0.539 (9)
O4A0.2823 (12)0.0290 (13)0.1606 (10)0.029 (2)0.539 (9)
N1A0.188 (3)0.009 (3)0.2706 (15)0.025 (3)0.539 (9)
C1A0.1954 (16)0.1367 (19)0.3437 (13)0.024 (2)0.539 (9)
C2A0.0942 (13)0.2160 (16)0.4548 (12)0.024 (2)0.539 (9)
H2AA0.00590.20620.50330.029*0.539 (9)
C3A0.1735 (15)0.3187 (18)0.4824 (14)0.026 (3)0.539 (9)
H3AA0.14090.38410.55790.031*0.539 (9)
C5A0.3058 (10)0.3035 (9)0.3781 (8)0.0256 (15)0.539 (9)
C8A0.7314 (16)0.3690 (17)0.2649 (12)0.028 (2)0.539 (9)
C9A0.8760 (16)0.322 (2)0.1492 (12)0.024 (3)0.539 (9)
C10A1.009 (2)0.374 (4)0.148 (2)0.023 (3)0.539 (9)
H10A1.00270.43680.21930.028*0.539 (9)
C11A1.1495 (18)0.334 (2)0.0434 (16)0.027 (2)0.539 (9)
H11A1.23500.37200.04490.032*0.539 (9)
C12A1.1681 (14)0.2394 (19)0.0645 (13)0.027 (2)0.539 (9)
C13A1.0316 (14)0.1904 (19)0.0648 (12)0.028 (3)0.539 (9)
H13A1.03790.12930.13640.033*0.539 (9)
C14A0.8896 (14)0.2312 (18)0.0384 (11)0.031 (3)0.539 (9)
H14A0.80150.19820.03480.037*0.539 (9)
C15A1.3292 (18)0.177 (2)0.1713 (17)0.049 (4)0.539 (9)
H15A1.40310.23140.16290.073*0.539 (9)
H15B1.30480.19480.25610.073*0.539 (9)
H15C1.38230.06600.16290.073*0.539 (9)
Br1A0.6688 (5)0.1302 (5)0.4219 (5)0.0395 (7)0.539 (9)
Br2A0.3626 (5)0.5504 (4)0.2175 (5)0.0414 (6)0.539 (9)
C6A0.4234 (8)0.3896 (8)0.3487 (7)0.0309 (16)0.539 (9)
H6AA0.41890.44240.43010.037*0.539 (9)
C7A0.5995 (9)0.2863 (9)0.2889 (7)0.0312 (15)0.539 (9)
H7AA0.60660.23220.20740.037*0.539 (9)
O1B0.3468 (10)0.1563 (9)0.3082 (8)0.024 (2)*0.461 (9)
O2B0.6979 (14)0.4869 (11)0.3410 (10)0.022 (2)*0.461 (9)
O3B0.1011 (13)0.0594 (12)0.2947 (11)0.037 (3)*0.461 (9)
O4B0.3032 (19)0.0313 (19)0.1354 (13)0.037 (3)*0.461 (9)
N1B0.197 (4)0.012 (4)0.241 (2)0.025 (3)0.461 (9)
C1B0.206 (2)0.122 (2)0.3321 (16)0.025 (3)*0.461 (9)
C2B0.1002 (19)0.194 (2)0.4467 (16)0.030 (3)*0.461 (9)
H2BA0.00110.17900.49100.036*0.461 (9)
C3B0.171 (2)0.298 (2)0.4858 (17)0.031 (4)*0.461 (9)
H3BA0.12080.37340.55520.037*0.461 (9)
C5B0.3271 (12)0.2658 (10)0.4029 (9)0.021 (2)*0.461 (9)
C8B0.713 (2)0.393 (2)0.2559 (14)0.025 (3)*0.461 (9)
C9B0.860 (2)0.340 (3)0.1418 (16)0.025 (4)*0.461 (9)
C10B1.003 (3)0.374 (5)0.145 (3)0.030 (5)*0.461 (9)
H10B1.00020.43440.21560.036*0.461 (9)
C11B1.149 (2)0.320 (3)0.0433 (19)0.029 (3)*0.461 (9)
H11B1.24440.33930.04800.035*0.461 (9)
C12B1.1500 (17)0.235 (2)0.0665 (15)0.026 (3)*0.461 (9)
C13B1.0072 (18)0.203 (2)0.0705 (16)0.029 (4)*0.461 (9)
H13B1.00710.14930.14400.035*0.461 (9)
C14B0.8655 (18)0.252 (2)0.0331 (14)0.028 (3)*0.461 (9)
H14B0.77280.22540.03080.033*0.461 (9)
C15B1.306 (2)0.188 (2)0.1803 (17)0.028 (3)*0.461 (9)
H15D1.40290.13460.14770.043*0.461 (9)
H15E1.31720.28160.22250.043*0.461 (9)
H15F1.29620.11960.24280.043*0.461 (9)
Br1B0.6416 (5)0.1406 (5)0.4607 (4)0.0297 (5)0.461 (9)
Br2B0.4087 (6)0.5267 (6)0.1895 (6)0.0438 (8)0.461 (9)
C6B0.4744 (8)0.3165 (8)0.3932 (6)0.0174 (16)*0.461 (9)
H6BA0.43870.41170.45050.021*0.461 (9)
C7B0.5614 (9)0.3472 (9)0.2554 (7)0.0208 (17)*0.461 (9)
H7BA0.59630.25350.19650.025*0.461 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.025 (3)0.024 (3)0.035 (3)0.015 (2)0.015 (2)0.000 (2)
O2A0.030 (4)0.024 (3)0.033 (3)0.015 (3)0.014 (3)0.002 (3)
O3A0.028 (4)0.044 (4)0.044 (4)0.029 (4)0.000 (3)0.015 (3)
O4A0.025 (4)0.040 (4)0.024 (5)0.018 (3)0.000 (3)0.017 (3)
N1A0.035 (3)0.0307 (16)0.021 (7)0.0187 (17)0.020 (4)0.008 (5)
C1A0.021 (3)0.025 (4)0.038 (4)0.015 (3)0.017 (2)0.001 (2)
C2A0.021 (3)0.025 (4)0.038 (4)0.015 (3)0.017 (2)0.001 (2)
C3A0.024 (4)0.021 (5)0.041 (4)0.016 (3)0.013 (3)0.004 (3)
C5A0.030 (3)0.022 (3)0.033 (4)0.014 (3)0.014 (3)0.003 (3)
C8A0.024 (4)0.028 (5)0.043 (4)0.016 (4)0.016 (3)0.000 (4)
C9A0.025 (4)0.025 (5)0.029 (4)0.014 (4)0.014 (3)0.001 (3)
C10A0.030 (4)0.027 (4)0.026 (4)0.018 (3)0.018 (3)0.004 (2)
C11A0.025 (3)0.026 (3)0.037 (3)0.013 (2)0.015 (2)0.005 (2)
C12A0.025 (3)0.026 (3)0.037 (3)0.013 (2)0.015 (2)0.005 (2)
C13A0.027 (4)0.030 (5)0.030 (4)0.008 (4)0.016 (3)0.009 (3)
C14A0.025 (4)0.037 (6)0.044 (4)0.017 (4)0.021 (3)0.005 (4)
C15A0.033 (6)0.059 (7)0.044 (6)0.010 (5)0.001 (5)0.020 (5)
Br1A0.0302 (12)0.0365 (8)0.0632 (18)0.0172 (8)0.0264 (13)0.0195 (12)
Br2A0.0509 (16)0.0327 (8)0.0597 (17)0.0246 (10)0.0357 (13)0.0189 (8)
C6A0.033 (3)0.031 (3)0.037 (4)0.017 (3)0.017 (3)0.002 (3)
C7A0.031 (3)0.030 (3)0.039 (4)0.017 (3)0.012 (3)0.001 (3)
N1B0.035 (3)0.0307 (16)0.021 (7)0.0187 (17)0.020 (4)0.008 (5)
Br1B0.0228 (10)0.0363 (6)0.0371 (12)0.0145 (7)0.0151 (9)0.0096 (9)
Br2B0.0455 (16)0.0513 (16)0.0555 (18)0.0310 (13)0.0328 (14)0.0264 (12)
Geometric parameters (Å, º) top
O1A—C5A1.375 (7)O1B—C1B1.343 (10)
O1A—C1A1.387 (8)O1B—C5B1.368 (9)
O2A—C8A1.218 (8)O2B—C8B1.207 (11)
O3A—N1A1.243 (10)O3B—N1B1.251 (12)
O4A—N1A1.222 (9)O4B—N1B1.228 (11)
N1A—C1A1.439 (9)N1B—C1B1.436 (11)
C1A—C2A1.329 (9)C1B—C2B1.347 (10)
C2A—C3A1.416 (9)C2B—C3B1.413 (11)
C2A—H2AA0.9300C2B—H2BA0.9300
C3A—C5A1.352 (9)C3B—C5B1.364 (11)
C3A—H3AA0.9300C3B—H3BA0.9300
C5A—C6A1.465 (9)C5B—C6B1.496 (11)
C8A—C9A1.469 (9)C8B—C9B1.472 (10)
C8A—C7A1.550 (13)C8B—C7B1.527 (18)
C9A—C10A1.405 (9)C9B—C10B1.399 (11)
C9A—C14A1.406 (8)C9B—C14B1.401 (11)
C10A—C11A1.380 (9)C10B—C11B1.391 (11)
C10A—H10A0.9300C10B—H10B0.9300
C11A—C12A1.390 (9)C11B—C12B1.406 (10)
C11A—H11A0.9300C11B—H11B0.9300
C12A—C13A1.416 (10)C12B—C13B1.388 (11)
C12A—C15A1.508 (9)C12B—C15B1.515 (10)
C13A—C14A1.377 (9)C13B—C14B1.379 (11)
C13A—H13A0.9300C13B—H13B0.9300
C14A—H14A0.9300C14B—H14B0.9300
C15A—H15A0.9600C15B—H15D0.9600
C15A—H15B0.9600C15B—H15E0.9600
C15A—H15C0.9600C15B—H15F0.9600
Br1A—C7A1.992 (10)Br1B—C6B1.994 (8)
Br2A—C6A1.987 (8)Br2B—C7B1.938 (10)
C6A—C7A1.486 (10)C6B—C7B1.520 (10)
C6A—H6AA0.9800C6B—H6BA0.9800
C7A—H7AA0.9800C7B—H7BA0.9800
C5A—O1A—C1A101.7 (6)O3B—N1B—C1B111.7 (12)
O4A—N1A—O3A124.4 (10)O1B—C1B—C2B110.1 (8)
O4A—N1A—C1A118.0 (9)O1B—C1B—N1B117.5 (10)
O3A—N1A—C1A115.5 (10)C2B—C1B—N1B132.3 (10)
C2A—C1A—O1A114.5 (7)C1B—C2B—C3B105.8 (9)
C2A—C1A—N1A130.6 (8)C1B—C2B—H2BA127.1
O1A—C1A—N1A114.8 (8)C3B—C2B—H2BA127.1
C1A—C2A—C3A104.2 (7)C5B—C3B—C2B107.5 (10)
C1A—C2A—H2AA127.9C5B—C3B—H3BA126.3
C3A—C2A—H2AA127.9C2B—C3B—H3BA126.3
C5A—C3A—C2A106.9 (7)C3B—C5B—O1B107.6 (8)
C5A—C3A—H3AA126.5C3B—C5B—C6B136.7 (9)
C2A—C3A—H3AA126.5O1B—C5B—C6B115.8 (7)
C3A—C5A—O1A112.1 (6)O2B—C8B—C9B123.2 (13)
C3A—C5A—C6A130.6 (7)O2B—C8B—C7B118.0 (12)
O1A—C5A—C6A117.3 (6)C9B—C8B—C7B118.1 (10)
O2A—C8A—C9A122.9 (9)C10B—C9B—C14B118.6 (10)
O2A—C8A—C7A115.9 (9)C10B—C9B—C8B118.5 (11)
C9A—C8A—C7A120.4 (8)C14B—C9B—C8B122.9 (11)
C10A—C9A—C14A117.7 (8)C11B—C10B—C9B121.1 (12)
C10A—C9A—C8A117.3 (8)C11B—C10B—H10B119.5
C14A—C9A—C8A125.0 (9)C9B—C10B—H10B119.5
C11A—C10A—C9A120.5 (9)C10B—C11B—C12B119.3 (12)
C11A—C10A—H10A119.7C10B—C11B—H11B120.3
C9A—C10A—H10A119.7C12B—C11B—H11B120.3
C10A—C11A—C12A122.6 (9)C13B—C12B—C11B119.5 (10)
C10A—C11A—H11A118.7C13B—C12B—C15B122.3 (11)
C12A—C11A—H11A118.7C11B—C12B—C15B118.1 (10)
C11A—C12A—C13A116.6 (8)C14B—C13B—C12B120.8 (12)
C11A—C12A—C15A123.1 (10)C14B—C13B—H13B119.6
C13A—C12A—C15A120.1 (10)C12B—C13B—H13B119.6
C14A—C13A—C12A121.6 (8)C13B—C14B—C9B120.6 (12)
C14A—C13A—H13A119.2C13B—C14B—H14B119.7
C12A—C13A—H13A119.2C9B—C14B—H14B119.7
C13A—C14A—C9A120.9 (8)C12B—C15B—H15D109.5
C13A—C14A—H14A119.5C12B—C15B—H15E109.5
C9A—C14A—H14A119.5H15D—C15B—H15E109.5
C5A—C6A—C7A113.1 (6)C12B—C15B—H15F109.5
C5A—C6A—Br2A110.2 (5)H15D—C15B—H15F109.5
C7A—C6A—Br2A105.6 (6)H15E—C15B—H15F109.5
C5A—C6A—H6AA109.3C5B—C6B—C7B115.9 (6)
C7A—C6A—H6AA109.3C5B—C6B—Br1B106.1 (5)
Br2A—C6A—H6AA109.3C7B—C6B—Br1B107.6 (5)
C6A—C7A—C8A115.3 (7)C5B—C6B—H6BA109.0
C6A—C7A—Br1A106.7 (5)C7B—C6B—H6BA109.0
C8A—C7A—Br1A102.9 (7)Br1B—C6B—H6BA109.0
C6A—C7A—H7AA110.5C6B—C7B—C8B111.7 (8)
C8A—C7A—H7AA110.5C6B—C7B—Br2B109.3 (6)
Br1A—C7A—H7AA110.5C8B—C7B—Br2B105.6 (8)
C1B—O1B—C5B108.3 (8)C6B—C7B—H7BA110.0
O4B—N1B—O3B124.1 (14)C8B—C7B—H7BA110.0
O4B—N1B—C1B121.7 (12)Br2B—C7B—H7BA110.0
C5A—O1A—C1A—C2A5.5 (14)C5B—O1B—C1B—C2B5.7 (17)
C5A—O1A—C1A—N1A177.3 (19)C5B—O1B—C1B—N1B178 (2)
O4A—N1A—C1A—C2A169 (2)O4B—N1B—C1B—O1B10 (5)
O3A—N1A—C1A—C2A5 (4)O3B—N1B—C1B—O1B153 (2)
O4A—N1A—C1A—O1A7 (4)O4B—N1B—C1B—C2B175 (2)
O3A—N1A—C1A—O1A172 (2)O3B—N1B—C1B—C2B23 (5)
O1A—C1A—C2A—C3A7.5 (16)O1B—C1B—C2B—C3B8.7 (19)
N1A—C1A—C2A—C3A176 (3)N1B—C1B—C2B—C3B175 (3)
C1A—C2A—C3A—C5A6.3 (17)C1B—C2B—C3B—C5B8 (2)
C2A—C3A—C5A—O1A3.3 (17)C2B—C3B—C5B—O1B5 (2)
C2A—C3A—C5A—C6A174.7 (11)C2B—C3B—C5B—C6B173.2 (13)
C1A—O1A—C5A—C3A1.1 (14)C1B—O1B—C5B—C3B0.1 (17)
C1A—O1A—C5A—C6A179.3 (11)C1B—O1B—C5B—C6B178.9 (13)
O2A—C8A—C9A—C10A3 (3)O2B—C8B—C9B—C10B13 (4)
C7A—C8A—C9A—C10A166 (2)C7B—C8B—C9B—C10B176 (3)
O2A—C8A—C9A—C14A175.3 (16)O2B—C8B—C9B—C14B170 (2)
C7A—C8A—C9A—C14A15 (3)C7B—C8B—C9B—C14B1 (3)
C14A—C9A—C10A—C11A2 (4)C14B—C9B—C10B—C11B1 (5)
C8A—C9A—C10A—C11A180 (2)C8B—C9B—C10B—C11B176 (3)
C9A—C10A—C11A—C12A1 (4)C9B—C10B—C11B—C12B3 (5)
C10A—C11A—C12A—C13A3 (3)C10B—C11B—C12B—C13B1 (4)
C10A—C11A—C12A—C15A172 (3)C10B—C11B—C12B—C15B175 (3)
C11A—C12A—C13A—C14A2 (2)C11B—C12B—C13B—C14B1 (3)
C15A—C12A—C13A—C14A172.9 (17)C15B—C12B—C13B—C14B177.8 (19)
C12A—C13A—C14A—C9A1 (3)C12B—C13B—C14B—C9B3 (3)
C10A—C9A—C14A—C13A2 (3)C10B—C9B—C14B—C13B2 (4)
C8A—C9A—C14A—C13A178.9 (17)C8B—C9B—C14B—C13B179 (2)
C3A—C5A—C6A—C7A140.5 (14)C3B—C5B—C6B—C7B138.9 (18)
O1A—C5A—C6A—C7A41.6 (10)O1B—C5B—C6B—C7B42.8 (10)
C3A—C5A—C6A—Br2A101.6 (14)C3B—C5B—C6B—Br1B101.8 (18)
O1A—C5A—C6A—Br2A76.3 (8)O1B—C5B—C6B—Br1B76.5 (8)
C5A—C6A—C7A—C8A175.9 (8)C5B—C6B—C7B—C8B178.2 (9)
Br2A—C6A—C7A—C8A63.6 (8)Br1B—C6B—C7B—C8B59.7 (9)
C5A—C6A—C7A—Br1A62.3 (6)C5B—C6B—C7B—Br2B65.3 (7)
Br2A—C6A—C7A—Br1A177.1 (3)Br1B—C6B—C7B—Br2B176.3 (4)
O2A—C8A—C7A—C6A45.1 (16)O2B—C8B—C7B—C6B43.9 (18)
C9A—C8A—C7A—C6A144.9 (13)C9B—C8B—C7B—C6B145.4 (16)
O2A—C8A—C7A—Br1A70.7 (13)O2B—C8B—C7B—Br2B74.8 (16)
C9A—C8A—C7A—Br1A99.4 (14)C9B—C8B—C7B—Br2B95.9 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2A—H2AA···O3Ai0.932.533.210 (15)131
C3A—H3AA···O2Aii0.932.513.216 (12)133
C6A—H6AA···O2Aii0.982.333.217 (10)151
C13A—H13A···O3Aiii0.932.553.434 (13)158
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H11Br2NO4
Mr417.06
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.7766 (3), 9.0386 (3), 10.4841 (3)
α, β, γ (°)87.601 (2), 75.505 (2), 69.554 (2)
V3)753.53 (4)
Z2
Radiation typeMo Kα
µ (mm1)5.39
Crystal size (mm)0.47 × 0.21 × 0.13
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.184, 0.550
No. of measured, independent and
observed [I > 2σ(I)] reflections
10357, 3465, 2729
Rint0.026
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.103, 1.19
No. of reflections3465
No. of parameters274
No. of restraints658
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.88, 0.40

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2A—H2AA···O3Ai0.932.533.210 (15)131
C3A—H3AA···O2Aii0.932.513.216 (12)133
C6A—H6AA···O2Aii0.982.333.217 (10)151
C13A—H13A···O3Aiii0.932.553.434 (13)158
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSH thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSH also thanks USM for the award of a research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Shahani, T., Nithinchandra, & Kalluraya, B. (2010). Acta Cryst. E66, o2818–o2819.  Google Scholar
First citationHegde, J. C., Rai, G., Puranic, V. G. & Kalluraya, B. (2006). Synth. Commun. 36, 1285–1290.  Web of Science CrossRef CAS Google Scholar
First citationHolla, B. S., Kalluraya, B. & Shridhar, K. R. (1986). Curr. Sci. 55, 73–76.  CAS Google Scholar
First citationHolla, B. S., Kalluraya, B. & Shridhar, K. R. (1987). Curr. Sci. 56, 236–238.  CAS Google Scholar
First citationHolla, B. S., Kalluraya, B. & Shridhar, K. R. (1992). Rev. Roum. Chim. 37, 1159–1164.  CAS Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds