organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4a-Hy­dr­oxy-9-(2-meth­­oxy­phen­yl)-4,4a,5,6,7,8,9,9a-octa­hydro-3H-xanthene-1,8(2H)-dione

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my

(Received 25 November 2010; accepted 1 December 2010; online 4 December 2010)

In the title compound, C20H22O5, an S(6) ring motif is formed by an intra­molecular C—H⋯O hydrogen bond, which contributes to the stabilization of the mol­ecule. In the xanthene system, the cyclo­hexane ring adopts a chair conformation, the cyclo­hexene ring adopts a half-boat conformation and the tetra­hydro­pyran ring adopts a half-chair conformation. The mean plane of the four essentially planar atoms of the tetra­hydro­pyran ring [r.m.s deviation = 0.092 (1) Å] forms a dihedral angle of 64.13 (6)° with the mean plane of the meth­oxy­phenyl group. In the crystal, inter­molecular O—H⋯O and weak C—H⋯O hydrogen bonds link mol­ecules into chains along the a axis, which are further stabilized by C—H⋯π inter­actions.

Related literature

For background to and the biological activity of xanthenes and their derivatives, see: Menchen et al. (2003[Menchen, S. M., Benson, S. C., Lam, J. Y. L., Zhen, W., Sun, D., Rosenblum, B. B., Khan, S. H. & Taing, M. (2003). US Patent 6 583 168.]); Saint-Ruf et al. (1972[Saint-Ruf, G., De, A. & Hieu, H. T. (1972). Bull. Chim. Ther. 7, 83-86.]); Ion et al. (1998[Ion, R. M., Frackowiak, D., Planner, A. & Wiktorowicz, K. (1998). Acta Biochim. Pol. 45, 833-845.]); Knight & Stephens (1989[Knight, C. G. & Stephens, T. (1989). Biochem. J. 258, 683-689.]); Jonathan et al. (1988[Jonathan, R. D., Srinivas, K. R. & Glen, E. B. (1988). Eur. J. Med. Chem. 23, 111-117.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a related structure, see: Reddy et al. (2009[Reddy, B. P., Vijayakumar, V., Narasimhamurthy, T., Suresh, J. & Lakshman, P. L. N. (2009). Acta Cryst. E65, o916.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22O5

  • Mr = 342.38

  • Triclinic, [P \overline 1]

  • a = 7.1060 (1) Å

  • b = 7.8897 (1) Å

  • c = 15.1001 (2) Å

  • α = 91.285 (1)°

  • β = 101.251 (1)°

  • γ = 101.129 (1)°

  • V = 813.10 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.44 × 0.23 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009)[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.957, Tmax = 0.990

  • 21213 measured reflections

  • 4715 independent reflections

  • 4132 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.110

  • S = 1.05

  • 4715 reflections

  • 231 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C14–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1O5⋯O3i 0.87 (2) 1.93 (2) 2.7877 (11) 166.3 (18)
C6—H6A⋯O4 0.98 2.32 2.9266 (12) 120
C16—H16A⋯O5ii 0.93 2.53 3.4172 (13) 160
C20—H20BCg1ii 0.96 2.67 3.5206 (13) 147
Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Xanthene derivatives are very important heterocyclic compounds and due to their useful spectroscopic properties, they have been widely used as dyes, fluorescent materials for visualization of bio-molecules and in laser technologies (Menchen et al., 2003; Saint-Ruf et al., 1972; Ion et al., 1998). They have been reported for their agricultural bactericide activity, photodynamic therapy, antiflammatory effect and antiviral activity (Knight & Stephens, 1989; Jonathan et al., 1988). Due to their wide range of applications, these compounds have received a great deal of attention in connection with their synthesis. In the synthesis of these compounds, intermediates play a key role, because these compounds can be easily converted into acridines and other biological active compounds.

In the title compound, an intramolecular C6—H6A···O4 hydrogen bond (Table 1) contributes to the stabilization of the molecule (Fig. 1), forming an S(6) ring motif (Bernstein et al., 1995). The xanthene ring system consists of three rings which adopt different conformations. The cyclohexane ring (C1–C6) adopts a chair conformation with the puckering parameters Q = 0.5427 (11) Å, Θ = 4.67 (12)°, φ = 169.6 (15)° (Cremer & Pople, 1975). The cyclohexene ring (C8–C13) and the tetrahydropyran ring (O1/C1/C6/C7/C8/C13) adopt half-boat and half-chair conformations, with the puckering parameters, Q = 0.4831 (11) Å, Θ = 61.06 (13)°, φ = 176.13 (15)° and Q = 0.4497 (10) Å, Θ = 47.24 (13)°, φ = 87.44 (17)° (Cremer & Pople, 1975), respectively. The mean plane of the essentially planar atoms of the tetrahydropyran ring (C7/C8/C13/O1) [r.m.s deviation = 0.092 (1) Å] forms a dihedral angle of 64.13 (6)° with the methoxyphenyl group (C14–C20/O4). The bond lengths (Allen et al., 1987) and angles are within the normal range and are comparable to the related structure (Reddy et al., 2009).

In the crystal packing (Fig. 2), intermolecular O5—H1O5···O3i and C16—H16A···O5ii hydrogen bonds (see Table 1 for symmetry codes) link molecules into chains along the a axis which are further stabilized by C—H···Cg1ii interactions (Table 1), involving C14–C19 ring.

Related literature top

For background to and the biological activity of xanthenes and their derivatives, see: Menchen et al. (2003); Saint-Ruf et al. (1972); Ion et al. (1998); Knight & Stephens (1989); Jonathan et al. (1988). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For standard bond-length data, see: Allen et al. (1987). For a related structure, see: Reddy et al. (2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 2-methoxybenzaldehyde (0.365 ml, 0.0025 mol) and 1,3-cyclohexanedione (0.56 g, 0.005 mol) was refluxed in acetonitrile for 3 h. The progress of the reaction was monitored by TLC. After completion of the reaction, it was kept for 2 days for solid formation. The pure product was obtained by recrystallization of the crude product from ethanol. M.p.: 493–495 K, yield: 72%.

Refinement top

Atom H1O5 was located from the difference Fourier map and was refined freely [O–H = 0.874 (18) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93 or 0.98 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl group.

Structure description top

Xanthene derivatives are very important heterocyclic compounds and due to their useful spectroscopic properties, they have been widely used as dyes, fluorescent materials for visualization of bio-molecules and in laser technologies (Menchen et al., 2003; Saint-Ruf et al., 1972; Ion et al., 1998). They have been reported for their agricultural bactericide activity, photodynamic therapy, antiflammatory effect and antiviral activity (Knight & Stephens, 1989; Jonathan et al., 1988). Due to their wide range of applications, these compounds have received a great deal of attention in connection with their synthesis. In the synthesis of these compounds, intermediates play a key role, because these compounds can be easily converted into acridines and other biological active compounds.

In the title compound, an intramolecular C6—H6A···O4 hydrogen bond (Table 1) contributes to the stabilization of the molecule (Fig. 1), forming an S(6) ring motif (Bernstein et al., 1995). The xanthene ring system consists of three rings which adopt different conformations. The cyclohexane ring (C1–C6) adopts a chair conformation with the puckering parameters Q = 0.5427 (11) Å, Θ = 4.67 (12)°, φ = 169.6 (15)° (Cremer & Pople, 1975). The cyclohexene ring (C8–C13) and the tetrahydropyran ring (O1/C1/C6/C7/C8/C13) adopt half-boat and half-chair conformations, with the puckering parameters, Q = 0.4831 (11) Å, Θ = 61.06 (13)°, φ = 176.13 (15)° and Q = 0.4497 (10) Å, Θ = 47.24 (13)°, φ = 87.44 (17)° (Cremer & Pople, 1975), respectively. The mean plane of the essentially planar atoms of the tetrahydropyran ring (C7/C8/C13/O1) [r.m.s deviation = 0.092 (1) Å] forms a dihedral angle of 64.13 (6)° with the methoxyphenyl group (C14–C20/O4). The bond lengths (Allen et al., 1987) and angles are within the normal range and are comparable to the related structure (Reddy et al., 2009).

In the crystal packing (Fig. 2), intermolecular O5—H1O5···O3i and C16—H16A···O5ii hydrogen bonds (see Table 1 for symmetry codes) link molecules into chains along the a axis which are further stabilized by C—H···Cg1ii interactions (Table 1), involving C14–C19 ring.

For background to and the biological activity of xanthenes and their derivatives, see: Menchen et al. (2003); Saint-Ruf et al. (1972); Ion et al. (1998); Knight & Stephens (1989); Jonathan et al. (1988). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For standard bond-length data, see: Allen et al. (1987). For a related structure, see: Reddy et al. (2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates the intramolecular hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis, showing a chain along the a axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
4a-Hydroxy-9-(2-methoxyphenyl)-4,4a,5,6,7,8,9,9a-octahydro-3H- xanthene-1,8(2H)-dione top
Crystal data top
C20H22O5Z = 2
Mr = 342.38F(000) = 364
Triclinic, P1Dx = 1.398 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1060 (1) ÅCell parameters from 9956 reflections
b = 7.8897 (1) Åθ = 2.6–37.2°
c = 15.1001 (2) ŵ = 0.10 mm1
α = 91.285 (1)°T = 100 K
β = 101.251 (1)°Block, colourless
γ = 101.129 (1)°0.44 × 0.23 × 0.10 mm
V = 813.10 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4715 independent reflections
Radiation source: fine-focus sealed tube4132 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 30.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.957, Tmax = 0.990k = 1111
21213 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.057P)2 + 0.3385P]
where P = (Fo2 + 2Fc2)/3
4715 reflections(Δ/σ)max < 0.001
231 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C20H22O5γ = 101.129 (1)°
Mr = 342.38V = 813.10 (2) Å3
Triclinic, P1Z = 2
a = 7.1060 (1) ÅMo Kα radiation
b = 7.8897 (1) ŵ = 0.10 mm1
c = 15.1001 (2) ÅT = 100 K
α = 91.285 (1)°0.44 × 0.23 × 0.10 mm
β = 101.251 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4715 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4132 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.990Rint = 0.025
21213 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.46 e Å3
4715 reflectionsΔρmin = 0.25 e Å3
231 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.99328 (11)0.05712 (9)0.14023 (5)0.01184 (15)
O20.70333 (12)0.35590 (10)0.19525 (6)0.01849 (17)
O30.34225 (11)0.15228 (10)0.17249 (5)0.01475 (16)
O40.74431 (12)0.15152 (9)0.43898 (5)0.01407 (16)
O51.11520 (11)0.03057 (9)0.28104 (5)0.01311 (15)
C11.06767 (15)0.11229 (12)0.23546 (6)0.01072 (18)
C21.24660 (15)0.25412 (13)0.23649 (7)0.01350 (19)
H2A1.33400.21040.20390.016*
H2B1.31580.28350.29860.016*
C31.19583 (16)0.41749 (13)0.19413 (7)0.0163 (2)
H3A1.14380.39270.12980.020*
H3B1.31370.50660.20150.020*
C41.04414 (17)0.48393 (13)0.23831 (8)0.0172 (2)
H4A1.10050.52080.30120.021*
H4B1.00640.58250.20750.021*
C50.86650 (16)0.34065 (13)0.23232 (7)0.01310 (19)
C60.90683 (15)0.17311 (12)0.27485 (6)0.01074 (18)
H6A0.95700.20010.33980.013*
C70.71877 (15)0.03250 (12)0.26338 (6)0.01037 (18)
H7A0.61120.09330.26440.012*
C80.67731 (15)0.05984 (12)0.17062 (6)0.01066 (18)
C90.47820 (15)0.15295 (12)0.13264 (6)0.01103 (18)
C100.43704 (15)0.24679 (13)0.04013 (7)0.01356 (19)
H10A0.38710.17250.00520.016*
H10B0.33630.34990.03830.016*
C110.61838 (16)0.29864 (13)0.01678 (7)0.01432 (19)
H11A0.65790.38630.05630.017*
H11B0.58820.34730.04510.017*
C120.78507 (16)0.14125 (13)0.02780 (7)0.01329 (19)
H12A0.90510.17810.02240.016*
H12B0.75610.06430.02000.016*
C130.81329 (15)0.04614 (12)0.11791 (6)0.01064 (18)
C140.71718 (14)0.09100 (12)0.33983 (6)0.01062 (18)
C150.72872 (15)0.02412 (12)0.42848 (7)0.01140 (18)
C160.72200 (16)0.13289 (13)0.49996 (7)0.01399 (19)
H16A0.73370.08690.55850.017*
C170.69757 (16)0.31127 (13)0.48290 (7)0.0150 (2)
H17A0.69030.38440.53010.018*
C180.68398 (16)0.38035 (13)0.39597 (7)0.0146 (2)
H18A0.66740.49920.38470.018*
C190.69553 (15)0.26938 (13)0.32551 (7)0.01285 (19)
H19A0.68860.31580.26750.015*
C200.79471 (17)0.22709 (13)0.52994 (7)0.0154 (2)
H20A0.82510.35090.52890.023*
H20B0.90660.18750.56250.023*
H20C0.68610.19340.55930.023*
H1O51.201 (3)0.067 (2)0.2552 (12)0.027 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0112 (3)0.0143 (3)0.0096 (3)0.0001 (3)0.0038 (3)0.0002 (2)
O20.0168 (4)0.0169 (4)0.0226 (4)0.0053 (3)0.0039 (3)0.0048 (3)
O30.0130 (4)0.0158 (3)0.0160 (3)0.0021 (3)0.0054 (3)0.0011 (3)
O40.0207 (4)0.0119 (3)0.0100 (3)0.0039 (3)0.0036 (3)0.0005 (2)
O50.0144 (4)0.0141 (3)0.0132 (3)0.0058 (3)0.0053 (3)0.0034 (3)
C10.0112 (4)0.0117 (4)0.0091 (4)0.0014 (3)0.0027 (3)0.0007 (3)
C20.0111 (4)0.0148 (4)0.0141 (4)0.0001 (4)0.0041 (3)0.0004 (3)
C30.0160 (5)0.0134 (4)0.0194 (5)0.0004 (4)0.0065 (4)0.0020 (3)
C40.0175 (5)0.0116 (4)0.0229 (5)0.0006 (4)0.0076 (4)0.0002 (4)
C50.0158 (5)0.0115 (4)0.0129 (4)0.0022 (4)0.0058 (4)0.0000 (3)
C60.0114 (4)0.0110 (4)0.0098 (4)0.0015 (3)0.0030 (3)0.0000 (3)
C70.0110 (4)0.0109 (4)0.0093 (4)0.0018 (3)0.0026 (3)0.0003 (3)
C80.0119 (4)0.0099 (4)0.0099 (4)0.0019 (3)0.0021 (3)0.0003 (3)
C90.0125 (4)0.0097 (4)0.0112 (4)0.0026 (3)0.0029 (3)0.0014 (3)
C100.0132 (5)0.0143 (4)0.0122 (4)0.0009 (4)0.0025 (4)0.0024 (3)
C110.0161 (5)0.0126 (4)0.0140 (4)0.0012 (4)0.0044 (4)0.0025 (3)
C120.0156 (5)0.0137 (4)0.0108 (4)0.0014 (4)0.0052 (4)0.0016 (3)
C130.0119 (4)0.0098 (4)0.0099 (4)0.0016 (3)0.0021 (3)0.0010 (3)
C140.0098 (4)0.0121 (4)0.0100 (4)0.0017 (3)0.0027 (3)0.0014 (3)
C150.0106 (4)0.0121 (4)0.0118 (4)0.0021 (3)0.0032 (3)0.0004 (3)
C160.0155 (5)0.0157 (4)0.0109 (4)0.0028 (4)0.0035 (4)0.0014 (3)
C170.0162 (5)0.0153 (4)0.0139 (4)0.0025 (4)0.0039 (4)0.0046 (3)
C180.0159 (5)0.0119 (4)0.0155 (4)0.0020 (4)0.0026 (4)0.0017 (3)
C190.0130 (5)0.0130 (4)0.0122 (4)0.0022 (4)0.0022 (3)0.0003 (3)
C200.0189 (5)0.0158 (4)0.0112 (4)0.0043 (4)0.0020 (4)0.0025 (3)
Geometric parameters (Å, º) top
O1—C131.3529 (12)C8—C131.3574 (14)
O1—C11.4570 (11)C8—C91.4607 (14)
O2—C51.2148 (13)C9—C101.5151 (13)
O3—C91.2345 (12)C10—C111.5253 (15)
O4—C151.3718 (12)C10—H10A0.9700
O4—C201.4350 (12)C10—H10B0.9700
O5—C11.3962 (11)C11—C121.5227 (14)
O5—H1O50.874 (18)C11—H11A0.9700
C1—C21.5203 (14)C11—H11B0.9700
C1—C61.5345 (14)C12—C131.4982 (13)
C2—C31.5255 (14)C12—H12A0.9700
C2—H2A0.9700C12—H12B0.9700
C2—H2B0.9700C14—C191.3931 (13)
C3—C41.5378 (16)C14—C151.4091 (13)
C3—H3A0.9700C15—C161.3964 (13)
C3—H3B0.9700C16—C171.3961 (14)
C4—C51.5098 (15)C16—H16A0.9300
C4—H4A0.9700C17—C181.3884 (14)
C4—H4B0.9700C17—H17A0.9300
C5—C61.5344 (13)C18—C191.3976 (14)
C6—C71.5412 (14)C18—H18A0.9300
C6—H6A0.9800C19—H19A0.9300
C7—C81.5133 (13)C20—H20A0.9600
C7—C141.5276 (13)C20—H20B0.9600
C7—H7A0.9800C20—H20C0.9600
C13—O1—C1117.22 (7)C8—C9—C10118.74 (9)
C15—O4—C20116.87 (8)C9—C10—C11112.70 (8)
C1—O5—H1O5106.7 (11)C9—C10—H10A109.1
O5—C1—O1107.99 (7)C11—C10—H10A109.1
O5—C1—C2112.32 (8)C9—C10—H10B109.1
O1—C1—C2104.81 (7)C11—C10—H10B109.1
O5—C1—C6108.38 (8)H10A—C10—H10B107.8
O1—C1—C6109.47 (8)C12—C11—C10110.02 (8)
C2—C1—C6113.68 (8)C12—C11—H11A109.7
C1—C2—C3113.12 (9)C10—C11—H11A109.7
C1—C2—H2A109.0C12—C11—H11B109.7
C3—C2—H2A109.0C10—C11—H11B109.7
C1—C2—H2B109.0H11A—C11—H11B108.2
C3—C2—H2B109.0C13—C12—C11110.92 (8)
H2A—C2—H2B107.8C13—C12—H12A109.5
C2—C3—C4111.06 (9)C11—C12—H12A109.5
C2—C3—H3A109.4C13—C12—H12B109.5
C4—C3—H3A109.4C11—C12—H12B109.5
C2—C3—H3B109.4H12A—C12—H12B108.0
C4—C3—H3B109.4O1—C13—C8123.96 (9)
H3A—C3—H3B108.0O1—C13—C12111.00 (8)
C5—C4—C3109.20 (8)C8—C13—C12125.03 (9)
C5—C4—H4A109.8C19—C14—C15117.89 (9)
C3—C4—H4A109.8C19—C14—C7122.94 (8)
C5—C4—H4B109.8C15—C14—C7119.10 (8)
C3—C4—H4B109.8O4—C15—C16123.04 (9)
H4A—C4—H4B108.3O4—C15—C14115.90 (8)
O2—C5—C4122.38 (9)C16—C15—C14121.05 (9)
O2—C5—C6122.26 (9)C17—C16—C15119.48 (9)
C4—C5—C6115.35 (9)C17—C16—H16A120.3
C5—C6—C1109.28 (8)C15—C16—H16A120.3
C5—C6—C7111.86 (8)C18—C17—C16120.50 (9)
C1—C6—C7112.48 (8)C18—C17—H17A119.8
C5—C6—H6A107.7C16—C17—H17A119.8
C1—C6—H6A107.7C17—C18—C19119.31 (9)
C7—C6—H6A107.7C17—C18—H18A120.3
C8—C7—C14113.17 (8)C19—C18—H18A120.3
C8—C7—C6109.55 (8)C14—C19—C18121.74 (9)
C14—C7—C6114.28 (8)C14—C19—H19A119.1
C8—C7—H7A106.4C18—C19—H19A119.1
C14—C7—H7A106.4O4—C20—H20A109.5
C6—C7—H7A106.4O4—C20—H20B109.5
C13—C8—C9118.53 (9)H20A—C20—H20B109.5
C13—C8—C7122.45 (9)O4—C20—H20C109.5
C9—C8—C7118.73 (8)H20A—C20—H20C109.5
O3—C9—C8121.80 (9)H20B—C20—H20C109.5
O3—C9—C10119.41 (9)
C13—O1—C1—O571.99 (10)C7—C8—C9—C10179.45 (8)
C13—O1—C1—C2168.09 (8)O3—C9—C10—C11156.92 (9)
C13—O1—C1—C645.81 (10)C8—C9—C10—C1125.45 (12)
O5—C1—C2—C3175.06 (8)C9—C10—C11—C1253.49 (11)
O1—C1—C2—C367.95 (10)C10—C11—C12—C1350.03 (11)
C6—C1—C2—C351.54 (11)C1—O1—C13—C820.22 (13)
C1—C2—C3—C454.04 (11)C1—O1—C13—C12160.09 (8)
C2—C3—C4—C555.21 (12)C9—C8—C13—O1169.98 (8)
C3—C4—C5—O2122.06 (11)C7—C8—C13—O13.74 (15)
C3—C4—C5—C656.91 (11)C9—C8—C13—C129.66 (14)
O2—C5—C6—C1125.76 (10)C7—C8—C13—C12176.62 (9)
C4—C5—C6—C153.20 (11)C11—C12—C13—O1160.59 (8)
O2—C5—C6—C70.54 (13)C11—C12—C13—C819.73 (13)
C4—C5—C6—C7178.43 (8)C8—C7—C14—C194.92 (14)
O5—C1—C6—C5174.47 (8)C6—C7—C14—C19121.40 (10)
O1—C1—C6—C567.98 (10)C8—C7—C14—C15171.98 (9)
C2—C1—C6—C548.83 (11)C6—C7—C14—C1561.70 (12)
O5—C1—C6—C760.66 (10)C20—O4—C15—C1612.66 (14)
O1—C1—C6—C756.89 (10)C20—O4—C15—C14168.10 (9)
C2—C1—C6—C7173.70 (8)C19—C14—C15—O4178.20 (9)
C5—C6—C7—C882.61 (9)C7—C14—C15—O41.14 (14)
C1—C6—C7—C840.82 (10)C19—C14—C15—C161.06 (15)
C5—C6—C7—C14149.21 (8)C7—C14—C15—C16178.12 (9)
C1—C6—C7—C1487.36 (10)O4—C15—C16—C17177.27 (10)
C14—C7—C8—C13114.03 (10)C14—C15—C16—C171.94 (16)
C6—C7—C8—C1314.77 (12)C15—C16—C17—C181.30 (16)
C14—C7—C8—C972.27 (11)C16—C17—C18—C190.17 (16)
C6—C7—C8—C9158.94 (8)C15—C14—C19—C180.46 (15)
C13—C8—C9—O3170.97 (9)C7—C14—C19—C18176.48 (9)
C7—C8—C9—O32.98 (14)C17—C18—C19—C141.07 (16)
C13—C8—C9—C106.60 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
O5—H1O5···O3i0.87 (2)1.93 (2)2.7877 (11)166.3 (18)
C6—H6A···O40.982.322.9266 (12)120
C16—H16A···O5ii0.932.533.4172 (13)160
C20—H20B···Cg1ii0.962.673.5206 (13)147
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC20H22O5
Mr342.38
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.1060 (1), 7.8897 (1), 15.1001 (2)
α, β, γ (°)91.285 (1), 101.251 (1), 101.129 (1)
V3)813.10 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.44 × 0.23 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.957, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
21213, 4715, 4132
Rint0.025
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.110, 1.05
No. of reflections4715
No. of parameters231
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.25

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
O5—H1O5···O3i0.87 (2)1.93 (2)2.7877 (11)166.3 (18)
C6—H6A···O40.982.322.9266 (12)120
C16—H16A···O5ii0.932.533.4172 (13)160
C20—H20B···Cg1ii0.962.673.5206 (13)147
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: C-7581-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a Research Fellowship. VV is grateful to the DST–India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationIon, R. M., Frackowiak, D., Planner, A. & Wiktorowicz, K. (1998). Acta Biochim. Pol. 45, 833–845.  Web of Science CAS PubMed Google Scholar
First citationJonathan, R. D., Srinivas, K. R. & Glen, E. B. (1988). Eur. J. Med. Chem. 23, 111–117.  Google Scholar
First citationKnight, C. G. & Stephens, T. (1989). Biochem. J. 258, 683–689.  CAS PubMed Web of Science Google Scholar
First citationMenchen, S. M., Benson, S. C., Lam, J. Y. L., Zhen, W., Sun, D., Rosenblum, B. B., Khan, S. H. & Taing, M. (2003). US Patent 6 583 168.  Google Scholar
First citationReddy, B. P., Vijayakumar, V., Narasimhamurthy, T., Suresh, J. & Lakshman, P. L. N. (2009). Acta Cryst. E65, o916.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaint-Ruf, G., De, A. & Hieu, H. T. (1972). Bull. Chim. Ther. 7, 83–86.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds