organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-(1,3-dioxo-2,3-di­hydro-1H-benzo[de]isoquinolin-2-yl)benzoate

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 25 November 2010; accepted 2 December 2010; online 11 December 2010)

The title compound, C21H15NO4, was synthesized by reducing the Schiff base obtained from acenaphthenequinone and ethyl-4-aminobenzoate. The dihedral angle between the essentially planar 1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinoline ring system [maximum deviation = 0.061 (2) Å] and the benzene ring is 75.08 (10)°. In the crystal, mol­ecules are connected via weak inter­molecular C—H⋯O hydrogen bonds, forming a two-dimensional network. The ethyl group is disordered over two sets of sites with a refined occupancy ratio of 0.502 (12):0.498 (12).

Related literature

For details and applications of acenaphthenquinone-based Schiff bases, see: Maldanis et al. (2002[Maldanis, R. J., Wood, J. S., Chandrasekaran, A., Rausch, M. D. & Chien, J. C. W. (2002). J. Organomet. Chem. 645, 158-167.]); Son et al. (2006[Son, G. W., Bijal, K. B., Park, D. W., Ha, C. S. & Kim, I. I. (2006). Catal. Today, 111, 412-416.]); Mhaidat et al. (2009[Mhaidat, I., Mergos, J. A., Hamilakis, S., Kollia, C., Loizos, Z., Tsolomitis, A. & Dervos, C. T. (2009). Mater. Lett. 63, 2587-2590.]); Rodriguez-Argüelles et al. (1997[Rodriguez-Argüelles, M. C., Ferrari, M. B., Fava, G. G., Pelizzi, C., Pelosi, G., Albertini, R., Botani, A., DallÁnglio, P. P., Lunghi, P. & Pinelli, S. (1997). J. Inorg. Biochem. 66, 7-17.]); McDavid et al. (1951[McDavid, J. E. & Daniels, T. C. (1951). J. Am. Pharm. Assoc. 40: 325, 8594.]); Salhin et al. (2007[Salhin, A., Tameem, A. A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o2880.], 2008[Salhin, A., Abdul Razak, N. & Rahman, I. A. (2008). Acta Cryst. E64, o2353.], 2009[Salhin, A., Abdul Razak, N. & Rahman, I. A. (2009). Acta Cryst. E65, o1221-o1222.]); Tameem et al. (2006[Tameem, A. A., Salhin, A., Saad, B., Rahman, I. A., Saleh, M. I., Ng, S.-L. & Fun, H.-K. (2006). Acta Cryst. E62, o5686-o5688.], 2007[Tameem, A. A., Salhin, A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o2502.], 2008[Tameem, A. A., Saad, B., Salhin, A., Jebas, S. R. & Fun, H. K. (2008). Acta Cryst. E64, o679-o680.]); Shalash et al. (2010[Shalash, M., Salhin, A., Adnan, R., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o3126-o3127.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C21H15NO4

  • Mr = 345.34

  • Monoclinic, C c

  • a = 5.2025 (7) Å

  • b = 18.066 (3) Å

  • c = 17.560 (2) Å

  • β = 98.365 (2)°

  • V = 1632.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.49 × 0.21 × 0.08 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.953, Tmax = 0.992

  • 15726 measured reflections

  • 2393 independent reflections

  • 2157 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.171

  • S = 1.07

  • 2393 reflections

  • 256 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O3i 0.93 2.60 3.249 (4) 127
C14—H14A⋯O1ii 0.93 2.41 3.312 (3) 165
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Acenaphthenequinone-based Schiff bases have been widely synthesized due to their significant applications in chemistry (Maldanis et al., 2002; Son et al., 2006), physics (Mhaidat et al., 2009) and pharmacology (Rodriguez-Argüelles et al., 1997; McDavid et al., 1951). As a continuation of the interest of our research group on the synthesis of Schiff base derivatives (Salhin et al., 2007, 2008, 2009; Tameem et al., 2006, 2007, 2008; Shalash et al., 2010), the title compound was prepared through the reduction of the Schiff base which was obtained from the condensation reaction of acenaphthenequinone and ethyl-4-aminobenzoate.

The molecular structure of the title compound is shown in Fig. 1. The 1,3-dioxo-1H-benzo[de]isoquinoline (O1–O2/N1/C1–C12) ring is approximately planar with maximum deviation of 0.061 (2) Å for atom N1. The ethyl group is disordered over two sites with a refined occupancy ratio of 0.502 (12):0.498 (12). The dihedral angle between the 1,3-dioxo-1H-benzo[de]isoquinoline (O1–O2/N1/C1–C12) ring and the benzene (C13–C18) ring is 75.08 (10)°.

In the crystal structure (Fig. 2), adjacent molecules are connected via intermolecular C7—H7A···O3i and C14—H14A···O1ii (Table 1) hydrogen bonds to form a two-dimensional network.

Related literature top

For details and applications of acenaphthenquinone Schiff bases, see: Maldanis et al. (2002); Son et al. (2006); Mhaidat et al. (2009); Rodriguez-Argüelles et al. (1997); McDavid et al. (1951); Salhin et al. (2007, 2008, 2009); Tameem et al. (2006, 2007, 2008); Shalash et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of acenaphthenequinone (0.182 g, 1 mmol), ethyl-4-aminobenzoate (0.165 g, 1 mmol) and methanol (30 mL) was allowed to reflux for overnight. The synthesized Schiff base was then reduced using NaBH4 in ethanol with stirring at room temperature. Crystal of (I) suitable for X-ray crystallography was obtained by recrystallization from ethanol.

Refinement top

All H atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). The ethyl group disordered over two sites with a refined occupancy ratio of 0.502 (12):0.498 (12). Since there is no significant anomalous dispersion, 2242 Friedel pairs were merged before the final refinement. The larger than normal displacement parameter of O4 was noticed but it did not improve the precision of the structure to include this atom as a split atom in a disorder model.

Structure description top

Acenaphthenequinone-based Schiff bases have been widely synthesized due to their significant applications in chemistry (Maldanis et al., 2002; Son et al., 2006), physics (Mhaidat et al., 2009) and pharmacology (Rodriguez-Argüelles et al., 1997; McDavid et al., 1951). As a continuation of the interest of our research group on the synthesis of Schiff base derivatives (Salhin et al., 2007, 2008, 2009; Tameem et al., 2006, 2007, 2008; Shalash et al., 2010), the title compound was prepared through the reduction of the Schiff base which was obtained from the condensation reaction of acenaphthenequinone and ethyl-4-aminobenzoate.

The molecular structure of the title compound is shown in Fig. 1. The 1,3-dioxo-1H-benzo[de]isoquinoline (O1–O2/N1/C1–C12) ring is approximately planar with maximum deviation of 0.061 (2) Å for atom N1. The ethyl group is disordered over two sites with a refined occupancy ratio of 0.502 (12):0.498 (12). The dihedral angle between the 1,3-dioxo-1H-benzo[de]isoquinoline (O1–O2/N1/C1–C12) ring and the benzene (C13–C18) ring is 75.08 (10)°.

In the crystal structure (Fig. 2), adjacent molecules are connected via intermolecular C7—H7A···O3i and C14—H14A···O1ii (Table 1) hydrogen bonds to form a two-dimensional network.

For details and applications of acenaphthenquinone Schiff bases, see: Maldanis et al. (2002); Son et al. (2006); Mhaidat et al. (2009); Rodriguez-Argüelles et al. (1997); McDavid et al. (1951); Salhin et al. (2007, 2008, 2009); Tameem et al. (2006, 2007, 2008); Shalash et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Dotted lines represents the disorder component.
[Figure 2] Fig. 2. The crystal packing of the title compound with hydrogen bonds shown as dashed lines.
Ethyl 4-(1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-2-yl)benzoate top
Crystal data top
C21H15NO4F(000) = 720
Mr = 345.34Dx = 1.405 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 5950 reflections
a = 5.2025 (7) Åθ = 2.5–30.0°
b = 18.066 (3) ŵ = 0.10 mm1
c = 17.560 (2) ÅT = 100 K
β = 98.365 (2)°Needle, colourless
V = 1632.8 (4) Å30.49 × 0.21 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
2393 independent reflections
Radiation source: fine-focus sealed tube2157 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
φ and ω scansθmax = 30.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 77
Tmin = 0.953, Tmax = 0.992k = 2525
15726 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0659P)2 + 3.4903P]
where P = (Fo2 + 2Fc2)/3
2393 reflections(Δ/σ)max < 0.001
256 parametersΔρmax = 0.56 e Å3
4 restraintsΔρmin = 0.38 e Å3
Crystal data top
C21H15NO4V = 1632.8 (4) Å3
Mr = 345.34Z = 4
Monoclinic, CcMo Kα radiation
a = 5.2025 (7) ŵ = 0.10 mm1
b = 18.066 (3) ÅT = 100 K
c = 17.560 (2) Å0.49 × 0.21 × 0.08 mm
β = 98.365 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
2393 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2157 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.992Rint = 0.040
15726 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0654 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.07Δρmax = 0.56 e Å3
2393 reflectionsΔρmin = 0.38 e Å3
256 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.6572 (6)0.08698 (16)0.20848 (18)0.0348 (6)
O21.3670 (6)0.02019 (16)0.3453 (2)0.0378 (7)
O30.9558 (11)0.3058 (3)0.5083 (2)0.0746 (15)
O41.2949 (12)0.3339 (3)0.4533 (4)0.105 (2)
C10.7860 (7)0.0310 (2)0.2216 (2)0.0259 (7)
C20.7297 (7)0.0388 (2)0.1797 (2)0.0271 (7)
C30.5174 (8)0.0424 (2)0.1229 (2)0.0336 (8)
H3A0.41500.00070.11060.040*
C40.4555 (9)0.1099 (3)0.0835 (3)0.0386 (9)
H4A0.31170.11250.04530.046*
C50.6070 (8)0.1716 (2)0.1013 (2)0.0334 (8)
H5A0.56390.21580.07530.040*
C60.8256 (7)0.1689 (2)0.1583 (2)0.0293 (8)
C70.9882 (8)0.2308 (2)0.1776 (2)0.0332 (8)
H7A0.94770.27560.15270.040*
C81.2041 (9)0.2262 (2)0.2323 (3)0.0338 (8)
H8A1.30930.26740.24400.041*
C91.2662 (8)0.1586 (2)0.2707 (2)0.0293 (7)
H9A1.41410.15540.30730.035*
C101.1111 (7)0.09719 (19)0.2547 (2)0.0254 (7)
C110.8898 (7)0.1011 (2)0.1980 (2)0.0245 (7)
C121.1773 (7)0.0277 (2)0.2972 (2)0.0267 (7)
N11.0028 (6)0.03130 (17)0.27965 (19)0.0254 (6)
C131.0402 (7)0.0969 (2)0.3273 (2)0.0262 (7)
C141.2342 (7)0.1468 (2)0.3184 (2)0.0290 (7)
H14A1.34540.13820.28240.035*
C151.2614 (8)0.2100 (2)0.3639 (3)0.0345 (9)
H15A1.39170.24400.35870.041*
C161.0928 (9)0.2223 (2)0.4175 (2)0.0358 (9)
C170.9001 (8)0.1711 (3)0.4258 (2)0.0363 (9)
H17A0.78910.17930.46190.044*
C180.8716 (8)0.1078 (2)0.3807 (2)0.0322 (8)
H18A0.74240.07350.38610.039*
C191.1063 (12)0.2905 (3)0.4660 (3)0.0525 (14)
C201.244 (3)0.4000 (7)0.5078 (9)0.065 (4)0.493 (17)
H20A1.08100.42520.49060.078*0.493 (17)
H20B1.25090.38470.56100.078*0.493 (17)
C211.483 (3)0.4465 (6)0.4943 (9)0.066 (4)0.493 (17)
H21A1.49440.48960.52670.098*0.493 (17)
H21B1.46450.46150.44140.098*0.493 (17)
H21C1.63740.41730.50660.098*0.493 (17)
C20A1.343 (4)0.4184 (10)0.4745 (8)0.074 (5)0.507 (17)
H20C1.46220.44310.44520.088*0.507 (17)
H20D1.18540.44700.47490.088*0.507 (17)
C21A1.470 (3)0.3911 (11)0.5553 (10)0.103 (7)0.507 (17)
H21D1.49010.43220.59040.155*0.507 (17)
H21E1.63720.37010.55170.155*0.507 (17)
H21F1.36100.35430.57370.155*0.507 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0360 (15)0.0291 (14)0.0376 (15)0.0107 (12)0.0006 (12)0.0021 (11)
O20.0347 (15)0.0267 (14)0.0483 (17)0.0047 (11)0.0064 (13)0.0026 (12)
O30.126 (4)0.056 (2)0.043 (2)0.035 (3)0.014 (2)0.0126 (18)
O40.102 (4)0.056 (3)0.152 (6)0.014 (3)0.003 (4)0.071 (3)
C10.0237 (15)0.0251 (17)0.0286 (17)0.0035 (12)0.0027 (13)0.0016 (13)
C20.0257 (16)0.0246 (17)0.0311 (18)0.0002 (13)0.0050 (14)0.0010 (13)
C30.0293 (19)0.034 (2)0.036 (2)0.0037 (15)0.0017 (16)0.0033 (16)
C40.034 (2)0.042 (2)0.037 (2)0.0004 (17)0.0010 (17)0.0098 (18)
C50.0343 (19)0.0318 (19)0.0340 (19)0.0042 (16)0.0048 (16)0.0082 (15)
C60.0308 (18)0.0262 (18)0.0315 (18)0.0034 (14)0.0069 (15)0.0025 (14)
C70.042 (2)0.0202 (16)0.039 (2)0.0004 (15)0.0101 (17)0.0030 (14)
C80.041 (2)0.0174 (16)0.043 (2)0.0069 (15)0.0071 (17)0.0006 (15)
C90.0309 (18)0.0197 (15)0.0367 (19)0.0027 (13)0.0023 (15)0.0004 (14)
C100.0268 (17)0.0191 (15)0.0306 (17)0.0019 (12)0.0053 (14)0.0026 (13)
C110.0241 (16)0.0217 (15)0.0283 (16)0.0006 (12)0.0054 (13)0.0006 (12)
C120.0269 (16)0.0202 (15)0.0324 (17)0.0021 (13)0.0024 (13)0.0033 (13)
N10.0261 (14)0.0195 (13)0.0302 (15)0.0014 (11)0.0028 (12)0.0017 (11)
C130.0255 (16)0.0226 (16)0.0295 (17)0.0059 (13)0.0008 (13)0.0019 (13)
C140.0282 (17)0.0219 (16)0.0370 (19)0.0033 (13)0.0052 (14)0.0028 (14)
C150.0288 (18)0.0224 (17)0.051 (2)0.0011 (14)0.0009 (17)0.0081 (16)
C160.041 (2)0.0303 (19)0.0328 (19)0.0131 (16)0.0068 (16)0.0080 (15)
C170.039 (2)0.041 (2)0.0277 (18)0.0122 (17)0.0023 (16)0.0033 (16)
C180.0335 (19)0.033 (2)0.0305 (18)0.0038 (15)0.0059 (15)0.0003 (15)
C190.075 (4)0.032 (2)0.044 (2)0.021 (2)0.013 (2)0.0114 (19)
C200.092 (11)0.041 (6)0.058 (8)0.012 (6)0.003 (7)0.022 (6)
C210.079 (9)0.033 (5)0.085 (10)0.031 (6)0.014 (8)0.014 (5)
C20A0.082 (12)0.074 (11)0.068 (9)0.014 (9)0.023 (8)0.015 (8)
C21A0.068 (11)0.102 (14)0.15 (2)0.012 (9)0.047 (12)0.023 (13)
Geometric parameters (Å, º) top
O1—C11.217 (5)C12—N11.405 (4)
O2—C121.210 (5)N1—C131.448 (5)
O3—C191.188 (7)C13—C141.379 (5)
O4—C191.300 (9)C13—C181.387 (5)
O4—C201.576 (14)C14—C151.389 (5)
O4—C20A1.581 (19)C14—H14A0.9300
C1—N11.406 (5)C15—C161.394 (6)
C1—C21.468 (5)C15—H15A0.9300
C2—C31.377 (5)C16—C171.387 (7)
C2—C111.410 (5)C16—C191.494 (6)
C3—C41.417 (6)C17—C181.386 (6)
C3—H3A0.9300C17—H17A0.9300
C4—C51.375 (6)C18—H18A0.9300
C4—H4A0.9300C20—C211.546 (10)
C5—C61.402 (6)C20—H20A0.9700
C5—H5A0.9300C20—H20B0.9700
C6—C71.415 (6)C21—H21A0.9600
C6—C111.424 (5)C21—H21B0.9600
C7—C81.370 (6)C21—H21C0.9600
C7—H7A0.9300C20A—C21A1.555 (10)
C8—C91.409 (5)C20A—H20C0.9700
C8—H8A0.9300C20A—H20D0.9700
C9—C101.376 (5)C21A—H21D0.9600
C9—H9A0.9300C21A—H21E0.9600
C10—C111.410 (5)C21A—H21F0.9600
C10—C121.476 (5)
C19—O4—C2098.9 (7)C1—N1—C13116.7 (3)
C19—O4—C20A129.7 (8)C14—C13—C18122.0 (4)
C20—O4—C20A33.0 (6)C14—C13—N1120.5 (3)
O1—C1—N1119.7 (3)C18—C13—N1117.5 (3)
O1—C1—C2123.7 (3)C13—C14—C15119.1 (4)
N1—C1—C2116.6 (3)C13—C14—H14A120.5
C3—C2—C11120.8 (3)C15—C14—H14A120.5
C3—C2—C1118.9 (3)C14—C15—C16119.9 (4)
C11—C2—C1120.2 (3)C14—C15—H15A120.1
C2—C3—C4119.7 (4)C16—C15—H15A120.1
C2—C3—H3A120.1C17—C16—C15120.0 (4)
C4—C3—H3A120.1C17—C16—C19117.7 (4)
C5—C4—C3120.3 (4)C15—C16—C19122.3 (5)
C5—C4—H4A119.8C18—C17—C16120.6 (4)
C3—C4—H4A119.8C18—C17—H17A119.7
C4—C5—C6120.8 (4)C16—C17—H17A119.7
C4—C5—H5A119.6C17—C18—C13118.5 (4)
C6—C5—H5A119.6C17—C18—H18A120.8
C5—C6—C7122.5 (4)C13—C18—H18A120.8
C5—C6—C11119.3 (3)O3—C19—O4123.3 (5)
C7—C6—C11118.2 (3)O3—C19—C16124.6 (6)
C8—C7—C6121.4 (4)O4—C19—C16112.0 (5)
C8—C7—H7A119.3C21—C20—O496.2 (9)
C6—C7—H7A119.3C21—C20—H20A112.5
C7—C8—C9119.7 (4)O4—C20—H20A112.5
C7—C8—H8A120.1C21—C20—H20B112.5
C9—C8—H8A120.1O4—C20—H20B112.5
C10—C9—C8121.0 (4)H20A—C20—H20B110.0
C10—C9—H9A119.5C21A—C20A—O486.6 (13)
C8—C9—H9A119.5C21A—C20A—H20C114.2
C9—C10—C11119.8 (3)O4—C20A—H20C114.2
C9—C10—C12119.7 (3)C21A—C20A—H20D114.2
C11—C10—C12120.4 (3)O4—C20A—H20D114.2
C2—C11—C10121.0 (3)H20C—C20A—H20D111.4
C2—C11—C6119.1 (3)C20A—C21A—H21D109.5
C10—C11—C6119.9 (3)C20A—C21A—H21E109.5
O2—C12—N1120.3 (3)H21D—C21A—H21E109.5
O2—C12—C10123.7 (3)C20A—C21A—H21F109.5
N1—C12—C10116.0 (3)H21D—C21A—H21F109.5
C12—N1—C1125.5 (3)H21E—C21A—H21F109.5
C12—N1—C13117.8 (3)
O1—C1—C2—C31.1 (6)C10—C12—N1—C15.3 (5)
N1—C1—C2—C3179.1 (4)O2—C12—N1—C137.6 (5)
O1—C1—C2—C11179.5 (4)C10—C12—N1—C13171.5 (3)
N1—C1—C2—C110.3 (5)O1—C1—N1—C12175.6 (4)
C11—C2—C3—C41.3 (6)C2—C1—N1—C124.3 (5)
C1—C2—C3—C4178.1 (4)O1—C1—N1—C137.6 (5)
C2—C3—C4—C50.3 (7)C2—C1—N1—C13172.6 (3)
C3—C4—C5—C60.4 (7)C12—N1—C13—C1476.6 (4)
C4—C5—C6—C7179.1 (4)C1—N1—C13—C14106.3 (4)
C4—C5—C6—C110.1 (6)C12—N1—C13—C18104.4 (4)
C5—C6—C7—C8178.5 (4)C1—N1—C13—C1872.7 (4)
C11—C6—C7—C80.8 (6)C18—C13—C14—C150.3 (6)
C6—C7—C8—C90.4 (6)N1—C13—C14—C15178.6 (3)
C7—C8—C9—C100.8 (6)C13—C14—C15—C160.2 (6)
C8—C9—C10—C111.4 (6)C14—C15—C16—C170.7 (6)
C8—C9—C10—C12178.5 (4)C14—C15—C16—C19177.7 (4)
C3—C2—C11—C10178.4 (4)C15—C16—C17—C180.6 (6)
C1—C2—C11—C102.2 (5)C19—C16—C17—C18177.9 (4)
C3—C2—C11—C61.6 (5)C16—C17—C18—C130.1 (6)
C1—C2—C11—C6177.8 (3)C14—C13—C18—C170.3 (6)
C9—C10—C11—C2179.0 (4)N1—C13—C18—C17178.6 (3)
C12—C10—C11—C21.1 (5)C20—O4—C19—O30.3 (10)
C9—C10—C11—C61.0 (5)C20A—O4—C19—O313.0 (13)
C12—C10—C11—C6179.0 (3)C20—O4—C19—C16176.7 (7)
C5—C6—C11—C20.8 (5)C20A—O4—C19—C16163.4 (9)
C7—C6—C11—C2179.9 (4)C17—C16—C19—O34.0 (7)
C5—C6—C11—C10179.1 (4)C15—C16—C19—O3174.4 (5)
C7—C6—C11—C100.2 (5)C17—C16—C19—O4179.7 (5)
C9—C10—C12—O21.7 (6)C15—C16—C19—O41.9 (7)
C11—C10—C12—O2178.4 (4)C19—O4—C20—C21176.4 (10)
C9—C10—C12—N1177.4 (3)C20A—O4—C20—C2122.5 (12)
C11—C10—C12—N12.5 (5)C19—O4—C20A—C21A84.2 (13)
O2—C12—N1—C1175.5 (4)C20—O4—C20A—C21A59.5 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O3i0.932.603.249 (4)127
C14—H14A···O1ii0.932.413.312 (3)165
Symmetry codes: (i) x, y, z1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC21H15NO4
Mr345.34
Crystal system, space groupMonoclinic, Cc
Temperature (K)100
a, b, c (Å)5.2025 (7), 18.066 (3), 17.560 (2)
β (°) 98.365 (2)
V3)1632.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.49 × 0.21 × 0.08
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.953, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
15726, 2393, 2157
Rint0.040
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.171, 1.07
No. of reflections2393
No. of parameters256
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.38

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O3i0.932.603.249 (4)127
C14—H14A···O1ii0.932.413.312 (3)165
Symmetry codes: (i) x, y, z1/2; (ii) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: abdussalam@usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

YCC, AS and MK acknowledge financial support by the Universiti Sains Malaysia (USM) under the Science Fund Grant No. 1001/PKIMIA/823003. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMaldanis, R. J., Wood, J. S., Chandrasekaran, A., Rausch, M. D. & Chien, J. C. W. (2002). J. Organomet. Chem. 645, 158–167.  CSD CrossRef CAS Google Scholar
First citationMcDavid, J. E. & Daniels, T. C. (1951). J. Am. Pharm. Assoc. 40: 325, 8594.  Google Scholar
First citationMhaidat, I., Mergos, J. A., Hamilakis, S., Kollia, C., Loizos, Z., Tsolomitis, A. & Dervos, C. T. (2009). Mater. Lett. 63, 2587–2590.  Web of Science CrossRef CAS Google Scholar
First citationRodriguez-Argüelles, M. C., Ferrari, M. B., Fava, G. G., Pelizzi, C., Pelosi, G., Albertini, R., Botani, A., DallÁnglio, P. P., Lunghi, P. & Pinelli, S. (1997). J. Inorg. Biochem. 66, 7–17.  CrossRef PubMed Web of Science Google Scholar
First citationSalhin, A., Abdul Razak, N. & Rahman, I. A. (2008). Acta Cryst. E64, o2353.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSalhin, A., Abdul Razak, N. & Rahman, I. A. (2009). Acta Cryst. E65, o1221–o1222.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSalhin, A., Tameem, A. A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o2880.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShalash, M., Salhin, A., Adnan, R., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o3126–o3127.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSon, G. W., Bijal, K. B., Park, D. W., Ha, C. S. & Kim, I. I. (2006). Catal. Today, 111, 412–416.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTameem, A. A., Saad, B., Salhin, A., Jebas, S. R. & Fun, H. K. (2008). Acta Cryst. E64, o679–o680.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTameem, A. A., Salhin, A., Saad, B., Rahman, I. A., Saleh, M. I., Ng, S.-L. & Fun, H.-K. (2006). Acta Cryst. E62, o5686–o5688.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTameem, A. A., Salhin, A., Saad, B., Ng, S.-L. & Fun, H.-K. (2007). Acta Cryst. E63, o2502.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds