metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2,9-Bis(3,5-di­methyl-1H-pyrazol-1-yl-κN2)-1,10-phenanthroline-κ2N,N′]bis­­(thio­cyanato-κN)cadmium(II)

aCollege of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China, and bDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: zhengluyi11@yahoo.cn

(Received 29 November 2010; accepted 7 December 2010; online 11 December 2010)

In the title complex, [Cd(NCS)2(C22H20N6)], the CdII ion is in a CdN6 coordination geometry which is inter­mediate between octa­hedral and trigonal–prismatic. The dihedral angles formed between the mean planes of the pyrazole rings and the phenanthroline system are 15.74 (15) and 16.30 (13)°. In the crystal, there is a ππ stacking inter­action involving two symmetry-related pyrazole rings, with a centroid–centroid distance of 3.664 (3) Å. In addition, there is a relatively short inter­molecular contact between C atoms [C⋯C = 3.399 (6) Å] involving symmetry-related pyridine rings along the a axis.

Related literature

For a related structure, see: Wang et al. (2009[Wang, Y. Q., Meng, L. & Shi, J. M. (2009). Acta Cryst. E65, m1317.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(NCS)2(C22H20N6)]

  • Mr = 597.00

  • Monoclinic, P 21 /n

  • a = 8.1350 (15) Å

  • b = 20.601 (4) Å

  • c = 14.633 (3) Å

  • β = 99.323 (3)°

  • V = 2420.0 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.11 mm−1

  • T = 298 K

  • 0.35 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.698, Tmax = 0.917

  • 14038 measured reflections

  • 5272 independent reflections

  • 4099 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.101

  • S = 1.05

  • 5272 reflections

  • 320 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Derivatives of 1,10-phenanthroline play an important role in modern coordination chemistry and many complexes have been reported with these types of compounds as ligands [see e.g. Wang et al. (2009) for a closely related Cd complex]. To the best of our knowledge, no crystal structures of complexes with 2,9-bis(3,5-Dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline as a ligand have been reported so far. Herein we report the crystal structure of the title compound (I).

Fig. 1 shows the title complex. The CdII ion is in a CdN6 coordination geometry which is approximately intermediate between octahedral and triginal-prismatic and this may be attributed to the chelation mode of the 2,9-bis(3,5-dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline ligand. The dihedral angles between the planes that consist of the non-hydrogen atoms of the 1,10-phenanthroline ring system and the pyrazole rings are 15.74 (15)° (involving the pyrazole ring containing atoms N1 and N2) and 16.30 (13)° (involving the pyrazole ring containing atoms N5 and N6), respectively. In the crystal structure, there is a ππ stacking interaction involving symmetry related pyrazole rings, with the relevant distance being Cg1···Cg2i 3.664 (3) Å and Cg1···Cg2iperp = 3.610 Å (symmetry code: (i) 1+x, y, z; Cg1 and Cg2 are the centroids of C2-C4/N1N2 pyrazole ring and C19-C21/N5N6 pyrazole ring, respectively; Cg1···Cg2iperp is the perpendicular distance from Cg1 ring to Cg2i ring). In addition, there is a relatively short intermolecular contact between atom C16 and C7ii (symmetry code: (ii) -1+x, y, z with a C···C separation of 3.399 (6) Å involving pyridine rings along the a axis (Fig. 2).

Related literature top

For a related structure, see: Wang et al. (2009).

Experimental top

A 10 ml methanol solution of Cd(ClO4).6H2O (0.0744 g, 0.177 mmol) was added into 10 ml dichloromethane solution of 2,9-bis(3,5-Dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline (0.0299 g, 0.081 mmol) in drops, and 5 ml of methanol solution containing NaNCS (0.0149 g, 0.184 mmol) was added into the mixed soluton. This solution was stirred for a few minutes. Colorless single crystals were obtained after the filtrate had been allowed to stand at room temperature for about a week.

Refinement top

All H atoms were placed in calculated positions and refined as riding with C—H = 0.96 Å, Uiso = 1.5Ueq(C) for methyl H and C—H = 0.93 Å, Uiso = 1.2Ueq(C) for other H atoms.

Structure description top

Derivatives of 1,10-phenanthroline play an important role in modern coordination chemistry and many complexes have been reported with these types of compounds as ligands [see e.g. Wang et al. (2009) for a closely related Cd complex]. To the best of our knowledge, no crystal structures of complexes with 2,9-bis(3,5-Dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline as a ligand have been reported so far. Herein we report the crystal structure of the title compound (I).

Fig. 1 shows the title complex. The CdII ion is in a CdN6 coordination geometry which is approximately intermediate between octahedral and triginal-prismatic and this may be attributed to the chelation mode of the 2,9-bis(3,5-dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline ligand. The dihedral angles between the planes that consist of the non-hydrogen atoms of the 1,10-phenanthroline ring system and the pyrazole rings are 15.74 (15)° (involving the pyrazole ring containing atoms N1 and N2) and 16.30 (13)° (involving the pyrazole ring containing atoms N5 and N6), respectively. In the crystal structure, there is a ππ stacking interaction involving symmetry related pyrazole rings, with the relevant distance being Cg1···Cg2i 3.664 (3) Å and Cg1···Cg2iperp = 3.610 Å (symmetry code: (i) 1+x, y, z; Cg1 and Cg2 are the centroids of C2-C4/N1N2 pyrazole ring and C19-C21/N5N6 pyrazole ring, respectively; Cg1···Cg2iperp is the perpendicular distance from Cg1 ring to Cg2i ring). In addition, there is a relatively short intermolecular contact between atom C16 and C7ii (symmetry code: (ii) -1+x, y, z with a C···C separation of 3.399 (6) Å involving pyridine rings along the a axis (Fig. 2).

For a related structure, see: Wang et al. (2009).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure with short C···C contacts drawn as dashed lines.
[2,9-Bis(3,5-dimethyl-1H-pyrazol-1-yl-κN2)-1,10- phenanthroline-κ2N,N']bis(thiocyanato-κN)cadmium(II) top
Crystal data top
[Cd(NCS)2(C22H20N6)]F(000) = 1200
Mr = 597.00Dx = 1.639 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3140 reflections
a = 8.1350 (15) Åθ = 2.4–23.4°
b = 20.601 (4) ŵ = 1.11 mm1
c = 14.633 (3) ÅT = 298 K
β = 99.323 (3)°Block, colorless
V = 2420.0 (8) Å30.35 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
5272 independent reflections
Radiation source: fine-focus sealed tube4099 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
φ and ω scansθmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 108
Tmin = 0.698, Tmax = 0.917k = 2626
14038 measured reflectionsl = 1518
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.045P)2]
where P = (Fo2 + 2Fc2)/3
5272 reflections(Δ/σ)max = 0.008
320 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[Cd(NCS)2(C22H20N6)]V = 2420.0 (8) Å3
Mr = 597.00Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.1350 (15) ŵ = 1.11 mm1
b = 20.601 (4) ÅT = 298 K
c = 14.633 (3) Å0.35 × 0.10 × 0.08 mm
β = 99.323 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
5272 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4099 reflections with I > 2σ(I)
Tmin = 0.698, Tmax = 0.917Rint = 0.042
14038 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.05Δρmax = 0.69 e Å3
5272 reflectionsΔρmin = 0.56 e Å3
320 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8695 (5)0.05079 (18)0.3551 (3)0.0601 (12)
H1A0.87020.05560.42050.090*
H1B0.94820.01800.34480.090*
H1C0.76010.03830.32550.090*
C20.9159 (5)0.11345 (19)0.3160 (3)0.0439 (9)
C31.0243 (5)0.1263 (2)0.2541 (3)0.0495 (10)
H31.08560.09580.22710.059*
C41.0250 (5)0.19112 (19)0.2401 (3)0.0447 (9)
C51.1171 (5)0.2293 (2)0.1789 (3)0.0578 (11)
H5A1.20740.25190.21590.087*
H5B1.04310.26000.14440.087*
H5C1.16040.20060.13690.087*
C60.8625 (4)0.28073 (18)0.3082 (2)0.0384 (8)
C70.9490 (5)0.3351 (2)0.2864 (3)0.0484 (10)
H71.04560.33100.26050.058*
C80.8881 (5)0.3949 (2)0.3042 (3)0.0518 (11)
H80.94460.43190.29030.062*
C90.7434 (5)0.40128 (17)0.3424 (2)0.0430 (9)
C100.6661 (5)0.34335 (17)0.3633 (2)0.0377 (8)
C110.5198 (5)0.34594 (17)0.4057 (2)0.0367 (8)
C120.4500 (5)0.40613 (17)0.4212 (2)0.0411 (9)
C130.5276 (5)0.46377 (18)0.3973 (3)0.0500 (10)
H130.47930.50370.40620.060*
C140.6701 (5)0.46183 (18)0.3618 (3)0.0509 (11)
H140.72170.50040.34960.061*
C150.3018 (5)0.40495 (18)0.4590 (3)0.0465 (10)
H150.24830.44370.46840.056*
C160.2359 (5)0.34780 (18)0.4821 (3)0.0453 (9)
H160.13870.34720.50790.054*
C170.3165 (4)0.28978 (17)0.4663 (2)0.0356 (8)
C180.0569 (5)0.2532 (2)0.6005 (3)0.0634 (12)
H18A0.00720.22850.64450.095*
H18B0.02890.27410.55780.095*
H18C0.12970.28550.63250.095*
C190.1546 (5)0.20902 (18)0.5488 (3)0.0418 (9)
C200.1604 (5)0.14376 (19)0.5516 (3)0.0484 (10)
H200.10230.11660.58600.058*
C210.2705 (5)0.12476 (18)0.4929 (3)0.0467 (10)
C220.3248 (6)0.05741 (19)0.4726 (3)0.0691 (14)
H22A0.38060.05840.41960.104*
H22B0.22900.02960.46010.104*
H22C0.39950.04110.52520.104*
C230.4455 (4)0.10746 (17)0.2012 (3)0.0410 (9)
C240.7410 (4)0.12250 (18)0.5941 (3)0.0403 (9)
Cd10.58715 (3)0.191050 (12)0.393278 (17)0.03432 (10)
N10.8486 (4)0.16784 (15)0.3401 (2)0.0415 (7)
N20.9165 (4)0.21615 (15)0.2943 (2)0.0396 (7)
N30.7267 (4)0.28377 (14)0.34580 (19)0.0356 (7)
N40.4537 (4)0.28927 (14)0.42863 (19)0.0348 (7)
N50.2597 (4)0.22869 (13)0.4890 (2)0.0370 (7)
N60.3316 (4)0.17518 (14)0.4562 (2)0.0431 (8)
N70.4794 (4)0.13517 (17)0.2698 (2)0.0547 (9)
N80.7010 (4)0.14735 (18)0.5244 (2)0.0588 (10)
S10.80382 (16)0.08898 (6)0.69384 (8)0.0680 (4)
S20.39440 (16)0.07173 (7)0.10205 (8)0.0730 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.070 (3)0.042 (2)0.075 (3)0.006 (2)0.034 (3)0.004 (2)
C20.040 (2)0.047 (2)0.046 (2)0.0034 (18)0.0100 (18)0.0002 (19)
C30.044 (2)0.052 (2)0.057 (3)0.0061 (19)0.021 (2)0.001 (2)
C40.038 (2)0.055 (2)0.044 (2)0.0012 (19)0.0133 (17)0.0005 (19)
C50.057 (3)0.066 (3)0.058 (3)0.001 (2)0.034 (2)0.007 (2)
C60.038 (2)0.042 (2)0.034 (2)0.0040 (17)0.0021 (16)0.0048 (17)
C70.043 (2)0.052 (2)0.051 (2)0.0088 (19)0.0112 (19)0.000 (2)
C80.055 (3)0.044 (2)0.055 (3)0.015 (2)0.006 (2)0.006 (2)
C90.052 (2)0.037 (2)0.037 (2)0.0069 (18)0.0000 (18)0.0010 (17)
C100.044 (2)0.038 (2)0.0288 (19)0.0029 (17)0.0004 (16)0.0012 (16)
C110.043 (2)0.0364 (19)0.0289 (19)0.0032 (17)0.0002 (15)0.0013 (16)
C120.056 (2)0.0329 (19)0.0306 (19)0.0058 (18)0.0032 (17)0.0053 (16)
C130.070 (3)0.034 (2)0.043 (2)0.004 (2)0.000 (2)0.0053 (17)
C140.070 (3)0.035 (2)0.044 (2)0.007 (2)0.002 (2)0.0017 (18)
C150.056 (3)0.037 (2)0.046 (2)0.0133 (19)0.0030 (19)0.0034 (18)
C160.044 (2)0.045 (2)0.047 (2)0.0158 (19)0.0072 (18)0.0026 (19)
C170.038 (2)0.0354 (19)0.0329 (19)0.0031 (16)0.0046 (16)0.0022 (15)
C180.064 (3)0.064 (3)0.071 (3)0.002 (2)0.036 (2)0.009 (2)
C190.035 (2)0.047 (2)0.045 (2)0.0031 (17)0.0114 (17)0.0026 (18)
C200.045 (2)0.047 (2)0.057 (3)0.0055 (19)0.0202 (19)0.004 (2)
C210.042 (2)0.038 (2)0.063 (3)0.0004 (18)0.0176 (19)0.001 (2)
C220.068 (3)0.038 (2)0.112 (4)0.002 (2)0.046 (3)0.000 (3)
C230.040 (2)0.037 (2)0.049 (2)0.0033 (17)0.0154 (18)0.0010 (18)
C240.037 (2)0.046 (2)0.040 (2)0.0055 (17)0.0137 (17)0.0028 (18)
Cd10.03855 (16)0.03186 (15)0.03399 (16)0.00236 (12)0.01020 (11)0.00097 (11)
N10.0418 (18)0.0401 (17)0.0451 (19)0.0025 (14)0.0149 (15)0.0044 (15)
N20.0342 (17)0.0435 (17)0.0423 (18)0.0006 (14)0.0099 (14)0.0014 (15)
N30.0417 (18)0.0303 (14)0.0357 (17)0.0002 (13)0.0093 (14)0.0073 (13)
N40.0357 (17)0.0333 (15)0.0359 (16)0.0038 (13)0.0072 (13)0.0029 (13)
N50.0371 (17)0.0341 (17)0.0410 (17)0.0039 (13)0.0095 (13)0.0029 (14)
N60.0455 (19)0.0345 (17)0.054 (2)0.0052 (14)0.0209 (16)0.0020 (14)
N70.053 (2)0.064 (2)0.049 (2)0.0099 (18)0.0115 (17)0.0110 (18)
N80.062 (2)0.076 (3)0.039 (2)0.017 (2)0.0101 (17)0.0153 (19)
S10.0826 (9)0.0803 (8)0.0411 (6)0.0306 (7)0.0101 (6)0.0166 (6)
S20.0951 (10)0.0682 (8)0.0584 (7)0.0295 (7)0.0204 (7)0.0252 (6)
Geometric parameters (Å, º) top
C1—C21.486 (5)C15—C161.359 (5)
C1—H1A0.9600C15—H150.9300
C1—H1B0.9600C16—C171.400 (5)
C1—H1C0.9600C16—H160.9300
C2—N11.320 (5)C17—N41.323 (4)
C2—C31.388 (5)C17—N51.399 (4)
C3—C41.351 (5)C18—C191.493 (5)
C3—H30.9300C18—H18A0.9600
C4—N21.379 (5)C18—H18B0.9600
C4—C51.482 (5)C18—H18C0.9600
C5—H5A0.9600C19—C201.346 (5)
C5—H5B0.9600C19—N51.379 (5)
C5—H5C0.9600C20—C211.394 (5)
C6—N31.312 (5)C20—H200.9300
C6—C71.388 (5)C21—N61.304 (5)
C6—N21.426 (5)C21—C221.500 (5)
C7—C81.368 (6)C22—H22A0.9600
C7—H70.9300C22—H22B0.9600
C8—C91.389 (6)C22—H22C0.9600
C8—H80.9300C23—N71.149 (4)
C9—C101.406 (5)C23—S21.620 (4)
C9—C141.431 (5)C24—N81.140 (4)
C10—N31.362 (5)C24—S11.621 (4)
C10—C111.430 (5)Cd1—N82.185 (3)
C11—N41.350 (5)Cd1—N72.201 (3)
C11—C121.398 (5)Cd1—N32.382 (3)
C12—C151.406 (5)Cd1—N42.392 (3)
C12—C131.415 (5)Cd1—N12.428 (3)
C13—C141.345 (6)Cd1—N62.428 (3)
C13—H130.9300N1—N21.366 (4)
C14—H140.9300N5—N61.371 (4)
C2—C1—H1A109.5C19—C18—H18B109.5
C2—C1—H1B109.5H18A—C18—H18B109.5
H1A—C1—H1B109.5C19—C18—H18C109.5
C2—C1—H1C109.5H18A—C18—H18C109.5
H1A—C1—H1C109.5H18B—C18—H18C109.5
H1B—C1—H1C109.5C20—C19—N5106.9 (3)
N1—C2—C3110.3 (3)C20—C19—C18127.8 (4)
N1—C2—C1119.5 (3)N5—C19—C18125.3 (3)
C3—C2—C1130.2 (4)C19—C20—C21106.5 (4)
C4—C3—C2107.8 (4)C19—C20—H20126.7
C4—C3—H3126.1C21—C20—H20126.7
C2—C3—H3126.1N6—C21—C20110.8 (3)
C3—C4—N2105.3 (3)N6—C21—C22120.7 (4)
C3—C4—C5129.1 (4)C20—C21—C22128.4 (4)
N2—C4—C5125.6 (4)C21—C22—H22A109.5
C4—C5—H5A109.5C21—C22—H22B109.5
C4—C5—H5B109.5H22A—C22—H22B109.5
H5A—C5—H5B109.5C21—C22—H22C109.5
C4—C5—H5C109.5H22A—C22—H22C109.5
H5A—C5—H5C109.5H22B—C22—H22C109.5
H5B—C5—H5C109.5N7—C23—S2177.2 (4)
N3—C6—C7123.4 (4)N8—C24—S1177.9 (4)
N3—C6—N2113.9 (3)N8—Cd1—N7124.13 (14)
C7—C6—N2122.7 (4)N8—Cd1—N3115.61 (12)
C8—C7—C6118.1 (4)N7—Cd1—N3108.99 (11)
C8—C7—H7121.0N8—Cd1—N4107.53 (11)
C6—C7—H7121.0N7—Cd1—N4119.05 (11)
C7—C8—C9121.2 (4)N3—Cd1—N468.85 (11)
C7—C8—H8119.4N8—Cd1—N186.08 (12)
C9—C8—H8119.4N7—Cd1—N183.53 (12)
C8—C9—C10116.4 (4)N3—Cd1—N165.22 (10)
C8—C9—C14124.8 (4)N4—Cd1—N1133.44 (10)
C10—C9—C14118.8 (4)N8—Cd1—N683.01 (12)
N3—C10—C9122.4 (3)N7—Cd1—N689.38 (12)
N3—C10—C11117.8 (3)N3—Cd1—N6134.12 (10)
C9—C10—C11119.7 (3)N4—Cd1—N665.52 (10)
N4—C11—C12122.6 (4)N1—Cd1—N6160.61 (11)
N4—C11—C10117.9 (3)C2—N1—N2105.6 (3)
C12—C11—C10119.5 (3)C2—N1—Cd1132.5 (3)
C11—C12—C15116.4 (3)N2—N1—Cd1117.3 (2)
C11—C12—C13119.7 (4)N1—N2—C4111.0 (3)
C15—C12—C13123.9 (4)N1—N2—C6116.8 (3)
C14—C13—C12121.2 (4)C4—N2—C6132.2 (3)
C14—C13—H13119.4C6—N3—C10118.5 (3)
C12—C13—H13119.4C6—N3—Cd1123.8 (2)
C13—C14—C9121.0 (4)C10—N3—Cd1117.6 (2)
C13—C14—H14119.5C17—N4—C11119.6 (3)
C9—C14—H14119.5C17—N4—Cd1122.7 (2)
C16—C15—C12120.7 (3)C11—N4—Cd1117.7 (2)
C16—C15—H15119.6N6—N5—C19109.2 (3)
C12—C15—H15119.6N6—N5—C17117.7 (3)
C15—C16—C17119.0 (4)C19—N5—C17132.6 (3)
C15—C16—H16120.5C21—N6—N5106.5 (3)
C17—C16—H16120.5C21—N6—Cd1132.1 (2)
N4—C17—N5115.2 (3)N5—N6—Cd1117.7 (2)
N4—C17—C16121.6 (4)C23—N7—Cd1169.8 (3)
N5—C17—C16123.2 (3)C24—N8—Cd1171.6 (3)
C19—C18—H18A109.5
N1—C2—C3—C40.5 (5)C11—C10—N3—Cd12.2 (4)
C1—C2—C3—C4179.7 (4)N8—Cd1—N3—C677.8 (3)
C2—C3—C4—N20.1 (5)N7—Cd1—N3—C667.6 (3)
C2—C3—C4—C5178.7 (4)N4—Cd1—N3—C6177.7 (3)
N3—C6—C7—C80.8 (6)N1—Cd1—N3—C65.6 (3)
N2—C6—C7—C8178.8 (3)N6—Cd1—N3—C6176.1 (2)
C6—C7—C8—C90.3 (6)N8—Cd1—N3—C1098.7 (2)
C7—C8—C9—C101.2 (6)N7—Cd1—N3—C10115.9 (2)
C7—C8—C9—C14179.0 (4)N4—Cd1—N3—C101.3 (2)
C8—C9—C10—N31.1 (5)N1—Cd1—N3—C10170.9 (3)
C14—C9—C10—N3179.1 (3)N6—Cd1—N3—C107.4 (3)
C8—C9—C10—C11177.9 (3)N5—C17—N4—C11178.9 (3)
C14—C9—C10—C111.9 (5)C16—C17—N4—C110.9 (5)
N3—C10—C11—N42.1 (5)N5—C17—N4—Cd13.4 (4)
C9—C10—C11—N4177.0 (3)C16—C17—N4—Cd1176.7 (2)
N3—C10—C11—C12177.3 (3)C12—C11—N4—C170.8 (5)
C9—C10—C11—C123.6 (5)C10—C11—N4—C17178.7 (3)
N4—C11—C12—C152.4 (5)C12—C11—N4—Cd1178.5 (2)
C10—C11—C12—C15177.0 (3)C10—C11—N4—Cd10.9 (4)
N4—C11—C12—C13178.7 (3)N8—Cd1—N4—C1771.1 (3)
C10—C11—C12—C131.9 (5)N7—Cd1—N4—C1776.9 (3)
C11—C12—C13—C141.6 (6)N3—Cd1—N4—C17177.5 (3)
C15—C12—C13—C14179.6 (4)N1—Cd1—N4—C17172.7 (2)
C12—C13—C14—C93.3 (6)N6—Cd1—N4—C172.4 (3)
C8—C9—C14—C13178.7 (4)N8—Cd1—N4—C11111.2 (2)
C10—C9—C14—C131.6 (6)N7—Cd1—N4—C11100.8 (2)
C11—C12—C15—C162.4 (5)N3—Cd1—N4—C110.2 (2)
C13—C12—C15—C16178.7 (3)N1—Cd1—N4—C119.6 (3)
C12—C15—C16—C170.9 (5)N6—Cd1—N4—C11175.3 (3)
C15—C16—C17—N40.8 (5)C20—C19—N5—N60.8 (4)
C15—C16—C17—N5179.0 (3)C18—C19—N5—N6178.3 (4)
N5—C19—C20—C210.1 (4)C20—C19—N5—C17172.4 (3)
C18—C19—C20—C21179.0 (4)C18—C19—N5—C176.7 (7)
C19—C20—C21—N60.7 (5)N4—C17—N5—N611.0 (4)
C19—C20—C21—C22178.4 (4)C16—C17—N5—N6169.1 (3)
C3—C2—N1—N20.8 (4)N4—C17—N5—C19160.0 (4)
C1—C2—N1—N2179.3 (3)C16—C17—N5—C1919.9 (6)
C3—C2—N1—Cd1153.5 (3)C20—C21—N6—N51.2 (5)
C1—C2—N1—Cd126.3 (5)C22—C21—N6—N5179.2 (4)
N8—Cd1—N1—C274.0 (4)C20—C21—N6—Cd1155.8 (3)
N7—Cd1—N1—C251.0 (3)C22—C21—N6—Cd122.2 (6)
N3—Cd1—N1—C2165.4 (4)C19—N5—N6—C211.3 (4)
N4—Cd1—N1—C2175.5 (3)C17—N5—N6—C21174.3 (3)
N6—Cd1—N1—C218.2 (5)C19—N5—N6—Cd1159.6 (2)
N8—Cd1—N1—N2134.0 (3)C17—N5—N6—Cd113.4 (4)
N7—Cd1—N1—N2101.0 (3)N8—Cd1—N6—C2150.1 (4)
N3—Cd1—N1—N213.4 (2)N7—Cd1—N6—C2174.4 (4)
N4—Cd1—N1—N223.5 (3)N3—Cd1—N6—C21169.3 (3)
N6—Cd1—N1—N2170.2 (3)N4—Cd1—N6—C21163.0 (4)
C2—N1—N2—C40.9 (4)N1—Cd1—N6—C216.1 (6)
Cd1—N1—N2—C4158.1 (2)N8—Cd1—N6—N5104.8 (3)
C2—N1—N2—C6179.5 (3)N7—Cd1—N6—N5130.7 (3)
Cd1—N1—N2—C620.6 (4)N3—Cd1—N6—N514.4 (3)
C3—C4—N2—N10.6 (4)N4—Cd1—N6—N58.1 (2)
C5—C4—N2—N1178.2 (4)N1—Cd1—N6—N5161.1 (3)
C3—C4—N2—C6179.0 (3)S2—C23—N7—Cd189 (8)
C5—C4—N2—C60.1 (6)N8—Cd1—N7—C2397.1 (19)
N3—C6—N2—N115.2 (4)N3—Cd1—N7—C2344.7 (19)
C7—C6—N2—N1163.0 (3)N4—Cd1—N7—C23120.5 (19)
N3—C6—N2—C4163.0 (4)N1—Cd1—N7—C2316.3 (19)
C7—C6—N2—C418.8 (6)N6—Cd1—N7—C23178.2 (19)
C7—C6—N3—C100.9 (5)S1—C24—N8—Cd1151 (9)
N2—C6—N3—C10179.1 (3)N7—Cd1—N8—C2472 (2)
C7—C6—N3—Cd1175.6 (3)N3—Cd1—N8—C24149 (2)
N2—C6—N3—Cd12.6 (4)N4—Cd1—N8—C2474 (2)
C9—C10—N3—C60.1 (5)N1—Cd1—N8—C24151 (2)
C11—C10—N3—C6178.9 (3)N6—Cd1—N8—C2413 (2)
C9—C10—N3—Cd1176.8 (2)

Experimental details

Crystal data
Chemical formula[Cd(NCS)2(C22H20N6)]
Mr597.00
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.1350 (15), 20.601 (4), 14.633 (3)
β (°) 99.323 (3)
V3)2420.0 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.11
Crystal size (mm)0.35 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.698, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
14038, 5272, 4099
Rint0.042
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.101, 1.05
No. of reflections5272
No. of parameters320
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.56

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Science Foundation of University of Jinan of China.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. Q., Meng, L. & Shi, J. M. (2009). Acta Cryst. E65, m1317.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds