organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-(1,8-Naphthalene-1,8-di­yl)dibenzo­nitrile

aCentro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, P-4169 007 Porto, Portugal, bREQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, P-4169 007 Porto, Portugal, and cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: jnlow111@gmail.com

(Received 29 November 2010; accepted 3 December 2010; online 11 December 2010)

In the title mol­ecule, C24H14N2, the exterior C—C—C angle of the naphthalene ring system involving the two phenyl-substituted C atoms is 126.06 (11)° and the dihedral angles between the mean plane of the naphthalene ring system and those of the benzene rings are 66.63 (5) and 67.89 (5)°. In the crystal, mol­ecules are linked into a ladders by four weak C—H⋯π inter­actions.

Related literature

For the structure of the related compound 4-(1-napht­yl)benzonitrile, see: Lima et al. (2010[Lima, C. F., Gomes, L. R., Santos, L. M. N. B. F. & Low, J. N. (2010). Acta Cryst. E66, o3289.]).

[Scheme 1]

Experimental

Crystal data
  • C24H14N2

  • Mr = 330.37

  • Monoclinic, C 2/c

  • a = 17.0872 (9) Å

  • b = 8.2997 (4) Å

  • c = 24.3656 (13) Å

  • β = 93.795 (2)°

  • V = 3447.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 150 K

  • 0.40 × 0.30 × 0.02 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.999

  • 11422 measured reflections

  • 4634 independent reflections

  • 3482 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.131

  • S = 1.04

  • 4634 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C10 and C8–C10 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Cg2i 0.95 2.75 3.6147 (13) 152
C16—H16⋯Cg2ii 0.95 2.92 3.6539 (15) 135
C82—H82⋯Cg1i 0.95 2.83 3.6180 (15) 141
C86—H86⋯Cg1ii 0.95 2.83 3.6614 (13) 147
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x+{\script{3\over 2}}, y+{\script{3\over 2}}, z+1].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OSCAIL (McArdle et al., 2004[McArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 303-309.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The exterior C1-C9-C8 angle of the naphthalene ring in C24H14N2 is significantly larger, 126.106 (11)°, than that found in the two independent molecules of the single phenyl substituted compound, 4-(1-naphtyl)benzonitrile (Lima et al., 2010), with values of 123.17 (11)° and 123.21 (10)° as are the angles C9—C1—C11 and C9—C8—C81, 124.93 (10)° and 124.79 (11)° as compared to the values for the single phenyl susbstituent of 121.463 (11)° and 121.47 (10)°.

The dihedral angles between the mean planes of the naphthalene ring and the C11—C16 ring and the C81—C86 rings are 66.33 (5)° and 67.89 (5)° respectively. These angles are significantly larger than those found for the single phenyl substituent in the two molecules of 4-(1-naphtyl)benzonitrile in which the naphthalene rings form dihedral angles of 60.28 (3)° and 60.79 (3)° for molecules 1 and 2 respectively.

C12 and C82 are linked via C—H···.π interactions to the centres-of-gravity of the rings C8—C10 and C1—C10 at (3/2 - x,3/2 - y,1 - y) respectively and C16 and C86 are linked via C—H···π interactions to the centres-of-gravity of the rings C8—C10 and C1—C10 at (1 - x,1 - y,1 - y) respectively, Table 1. The molecules are thus linked into ladders with the molecules being stacked alternately head-to-tail as the rungs with the cyano groups and atoms C4 and C5 of the naphthalene groups pointing outwards. Alternate ladders run parallel to (110) and (-110). There is an solvent accessible void of 47 Å3 in the structure lying between the ladders. These contains no residual electron density. There is no π···π stacking nor are there C—H···N hydrogen bonds.

Related literature top

For the structure of the related compound 4-(1-naphtyl)benzonitrile, see: Lima et al. (2010).

Refinement top

H atoms were treated as riding atoms with C—H(aromatic), 0.95 Å, with Uiso = 1.2Ueq(C). The positions of the H atoms were calculated and checked on a difference map during the refinement.

Structure description top

The exterior C1-C9-C8 angle of the naphthalene ring in C24H14N2 is significantly larger, 126.106 (11)°, than that found in the two independent molecules of the single phenyl substituted compound, 4-(1-naphtyl)benzonitrile (Lima et al., 2010), with values of 123.17 (11)° and 123.21 (10)° as are the angles C9—C1—C11 and C9—C8—C81, 124.93 (10)° and 124.79 (11)° as compared to the values for the single phenyl susbstituent of 121.463 (11)° and 121.47 (10)°.

The dihedral angles between the mean planes of the naphthalene ring and the C11—C16 ring and the C81—C86 rings are 66.33 (5)° and 67.89 (5)° respectively. These angles are significantly larger than those found for the single phenyl substituent in the two molecules of 4-(1-naphtyl)benzonitrile in which the naphthalene rings form dihedral angles of 60.28 (3)° and 60.79 (3)° for molecules 1 and 2 respectively.

C12 and C82 are linked via C—H···.π interactions to the centres-of-gravity of the rings C8—C10 and C1—C10 at (3/2 - x,3/2 - y,1 - y) respectively and C16 and C86 are linked via C—H···π interactions to the centres-of-gravity of the rings C8—C10 and C1—C10 at (1 - x,1 - y,1 - y) respectively, Table 1. The molecules are thus linked into ladders with the molecules being stacked alternately head-to-tail as the rungs with the cyano groups and atoms C4 and C5 of the naphthalene groups pointing outwards. Alternate ladders run parallel to (110) and (-110). There is an solvent accessible void of 47 Å3 in the structure lying between the ladders. These contains no residual electron density. There is no π···π stacking nor are there C—H···N hydrogen bonds.

For the structure of the related compound 4-(1-naphtyl)benzonitrile, see: Lima et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and OSCAIL (McArdle et al., 2004); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with our numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Stereoview of the ladders formed by C—H···π interactions (dashed lines). Hydrogen atoms not involved in the motifs are not included.
4,4'-(1,8-Naphthalene-1,8-diyl)dibenzonitrile top
Crystal data top
C24H14N2F(000) = 1376
Mr = 330.37Dx = 1.273 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 205 reflections
a = 17.0872 (9) Åθ = 7.4–29.2°
b = 8.2997 (4) ŵ = 0.08 mm1
c = 24.3656 (13) ÅT = 150 K
β = 93.795 (2)°Plate, white
V = 3447.9 (3) Å30.40 × 0.30 × 0.02 mm
Z = 8
Data collection top
Bruker SMART APEX
diffractometer
4634 independent reflections
Radiation source: fine-focus sealed tube3482 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 8.33 pixels mm-1θmax = 29.2°, θmin = 3.0°
ω scansh = 2223
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 116
Tmin = 0.971, Tmax = 0.999l = 2433
11422 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0635P)2 + 1.3141P]
where P = (Fo2 + 2Fc2)/3
4634 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C24H14N2V = 3447.9 (3) Å3
Mr = 330.37Z = 8
Monoclinic, C2/cMo Kα radiation
a = 17.0872 (9) ŵ = 0.08 mm1
b = 8.2997 (4) ÅT = 150 K
c = 24.3656 (13) Å0.40 × 0.30 × 0.02 mm
β = 93.795 (2)°
Data collection top
Bruker SMART APEX
diffractometer
4634 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3482 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.999Rint = 0.031
11422 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.04Δρmax = 0.38 e Å3
4634 reflectionsΔρmin = 0.26 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N140.69235 (9)0.27151 (19)0.76246 (5)0.0427 (4)
N840.60515 (8)0.8449 (2)0.77878 (5)0.0449 (4)
C10.64595 (7)0.48335 (15)0.49000 (5)0.0182 (3)
C20.66041 (7)0.35609 (16)0.45575 (5)0.0216 (3)
H20.67530.25530.47170.026*
C30.65391 (8)0.36994 (17)0.39800 (5)0.0237 (3)
H30.66440.28000.37550.028*
C40.63235 (8)0.51393 (17)0.37489 (5)0.0228 (3)
H40.62770.52380.33600.027*
C50.59492 (7)0.79704 (17)0.38171 (5)0.0225 (3)
H50.59090.80290.34270.027*
C60.57980 (8)0.93033 (17)0.41173 (5)0.0238 (3)
H60.56551.02880.39390.029*
C70.58549 (7)0.92080 (16)0.46957 (5)0.0219 (3)
H70.57551.01480.49020.026*
C80.60507 (7)0.77995 (15)0.49740 (5)0.0183 (3)
C90.62271 (7)0.63717 (15)0.46689 (5)0.0173 (3)
C100.61666 (7)0.64945 (16)0.40782 (5)0.0192 (3)
C110.65558 (7)0.44683 (15)0.55012 (5)0.0182 (3)
C120.71645 (7)0.51380 (15)0.58382 (5)0.0199 (3)
H120.75170.58760.56870.024*
C130.72607 (7)0.47384 (16)0.63911 (5)0.0220 (3)
H130.76700.52120.66200.026*
C140.67492 (8)0.36320 (16)0.66076 (5)0.0226 (3)
C150.61429 (8)0.29422 (16)0.62760 (6)0.0235 (3)
H150.57950.21940.64270.028*
C160.60519 (8)0.33568 (16)0.57243 (5)0.0222 (3)
H160.56430.28800.54960.027*
C810.60545 (7)0.78930 (15)0.55880 (5)0.0180 (3)
C820.66047 (8)0.88695 (16)0.58767 (5)0.0213 (3)
H820.69780.94480.56820.026*
C830.66135 (8)0.90069 (16)0.64442 (5)0.0227 (3)
H830.69970.96560.66380.027*
C840.60552 (8)0.81858 (17)0.67278 (5)0.0227 (3)
C850.54901 (7)0.72304 (17)0.64435 (5)0.0228 (3)
H850.51060.66800.66370.027*
C860.54928 (7)0.70913 (16)0.58781 (5)0.0201 (3)
H860.51080.64430.56850.024*
C1410.68499 (8)0.31483 (19)0.71759 (6)0.0287 (3)
C8410.60570 (8)0.83269 (19)0.73182 (6)0.0297 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N140.0462 (8)0.0557 (10)0.0262 (7)0.0037 (7)0.0020 (6)0.0074 (6)
N840.0411 (8)0.0708 (11)0.0227 (7)0.0121 (7)0.0020 (6)0.0000 (7)
C10.0156 (5)0.0202 (6)0.0184 (6)0.0023 (5)0.0006 (4)0.0009 (5)
C20.0210 (6)0.0199 (7)0.0239 (7)0.0000 (5)0.0007 (5)0.0011 (5)
C30.0229 (6)0.0258 (7)0.0227 (7)0.0014 (5)0.0042 (5)0.0083 (5)
C40.0214 (6)0.0298 (7)0.0173 (6)0.0028 (5)0.0018 (5)0.0033 (5)
C50.0210 (6)0.0294 (7)0.0169 (6)0.0014 (5)0.0001 (5)0.0039 (5)
C60.0216 (6)0.0244 (7)0.0253 (7)0.0025 (5)0.0020 (5)0.0061 (5)
C70.0202 (6)0.0210 (7)0.0247 (7)0.0007 (5)0.0036 (5)0.0012 (5)
C80.0157 (5)0.0221 (7)0.0171 (6)0.0008 (5)0.0023 (4)0.0016 (5)
C90.0142 (5)0.0215 (6)0.0161 (6)0.0009 (4)0.0004 (4)0.0008 (5)
C100.0155 (5)0.0248 (7)0.0173 (6)0.0027 (5)0.0013 (4)0.0001 (5)
C110.0188 (6)0.0175 (6)0.0182 (6)0.0033 (5)0.0014 (4)0.0010 (5)
C120.0182 (6)0.0204 (6)0.0209 (6)0.0007 (5)0.0006 (5)0.0011 (5)
C130.0202 (6)0.0240 (7)0.0211 (6)0.0016 (5)0.0025 (5)0.0017 (5)
C140.0256 (6)0.0235 (7)0.0188 (6)0.0043 (5)0.0021 (5)0.0009 (5)
C150.0244 (6)0.0213 (7)0.0249 (7)0.0006 (5)0.0033 (5)0.0032 (5)
C160.0213 (6)0.0207 (7)0.0241 (7)0.0026 (5)0.0006 (5)0.0007 (5)
C810.0193 (6)0.0170 (6)0.0179 (6)0.0034 (5)0.0023 (4)0.0013 (5)
C820.0235 (6)0.0202 (6)0.0206 (6)0.0011 (5)0.0033 (5)0.0001 (5)
C830.0247 (6)0.0213 (7)0.0217 (6)0.0016 (5)0.0009 (5)0.0022 (5)
C840.0250 (6)0.0253 (7)0.0179 (6)0.0026 (5)0.0022 (5)0.0008 (5)
C850.0202 (6)0.0264 (7)0.0222 (6)0.0006 (5)0.0041 (5)0.0017 (5)
C860.0179 (6)0.0214 (7)0.0212 (6)0.0001 (5)0.0020 (5)0.0025 (5)
C1410.0290 (7)0.0336 (8)0.0235 (7)0.0007 (6)0.0019 (5)0.0020 (6)
C8410.0277 (7)0.0384 (9)0.0229 (7)0.0045 (6)0.0011 (5)0.0005 (6)
Geometric parameters (Å, º) top
N14—C1411.1499 (19)C11—C121.3971 (17)
N84—C8411.1496 (19)C12—C131.3867 (17)
C1—C21.3785 (18)C12—H120.9500
C1—C91.4405 (17)C13—C141.3951 (19)
C1—C111.4943 (17)C13—H130.9500
C2—C31.4088 (18)C14—C151.3938 (18)
C2—H20.9500C14—C1411.4411 (18)
C3—C41.3614 (19)C15—C161.3864 (18)
C3—H30.9500C15—H150.9500
C4—C101.4176 (18)C16—H160.9500
C4—H40.9500C81—C821.3957 (17)
C5—C61.3603 (19)C81—C861.3976 (18)
C5—C101.4185 (18)C82—C831.3864 (18)
C5—H50.9500C82—H820.9500
C6—C71.4085 (18)C83—C841.3926 (19)
C6—H60.9500C83—H830.9500
C7—C81.3814 (18)C84—C851.3973 (18)
C7—H70.9500C84—C8411.4431 (18)
C8—C91.4413 (17)C85—C861.3829 (18)
C8—C811.4977 (17)C85—H850.9500
C9—C101.4396 (17)C86—H860.9500
C11—C161.3965 (18)
C2—C1—C9119.88 (11)C13—C12—H12119.6
C2—C1—C11115.18 (11)C11—C12—H12119.6
C9—C1—C11124.93 (11)C12—C13—C14119.19 (12)
C1—C2—C3122.46 (12)C12—C13—H13120.4
C1—C2—H2118.8C14—C13—H13120.4
C3—C2—H2118.8C15—C14—C13120.76 (12)
C4—C3—C2119.08 (12)C15—C14—C141118.65 (13)
C4—C3—H3120.5C13—C14—C141120.58 (12)
C2—C3—H3120.5C16—C15—C14119.44 (12)
C3—C4—C10121.23 (12)C16—C15—H15120.3
C3—C4—H4119.4C14—C15—H15120.3
C10—C4—H4119.4C15—C16—C11120.60 (12)
C6—C5—C10120.96 (12)C15—C16—H16119.7
C6—C5—H5119.5C11—C16—H16119.7
C10—C5—H5119.5C82—C81—C86118.93 (11)
C5—C6—C7119.30 (12)C82—C81—C8119.46 (11)
C5—C6—H6120.4C86—C81—C8121.52 (11)
C7—C6—H6120.4C83—C82—C81120.86 (12)
C8—C7—C6122.49 (12)C83—C82—H82119.6
C8—C7—H7118.8C81—C82—H82119.6
C6—C7—H7118.8C82—C83—C84119.47 (12)
C7—C8—C9119.65 (11)C82—C83—H83120.3
C7—C8—C81115.56 (11)C84—C83—H83120.3
C9—C8—C81124.79 (11)C83—C84—C85120.37 (12)
C10—C9—C1116.95 (11)C83—C84—C841119.90 (12)
C10—C9—C8116.99 (11)C85—C84—C841119.73 (12)
C1—C9—C8126.06 (11)C86—C85—C84119.56 (12)
C4—C10—C5119.01 (12)C86—C85—H85120.2
C4—C10—C9120.40 (12)C84—C85—H85120.2
C5—C10—C9120.59 (12)C85—C86—C81120.79 (12)
C16—C11—C12119.22 (12)C85—C86—H86119.6
C16—C11—C1119.01 (11)C81—C86—H86119.6
C12—C11—C1121.67 (11)N14—C141—C14177.90 (17)
C13—C12—C11120.78 (12)N84—C841—C84179.27 (18)
C9—C1—C2—C30.44 (19)C2—C1—C11—C12111.39 (14)
C11—C1—C2—C3179.92 (11)C9—C1—C11—C1269.16 (16)
C1—C2—C3—C40.18 (19)C16—C11—C12—C131.45 (19)
C2—C3—C4—C100.18 (19)C1—C11—C12—C13177.65 (12)
C10—C5—C6—C70.33 (19)C11—C12—C13—C141.13 (19)
C5—C6—C7—C80.80 (19)C12—C13—C14—C150.6 (2)
C6—C7—C8—C91.79 (19)C12—C13—C14—C141177.82 (13)
C6—C7—C8—C81177.71 (11)C13—C14—C15—C160.4 (2)
C2—C1—C9—C100.67 (17)C141—C14—C15—C16178.07 (13)
C11—C1—C9—C10179.91 (11)C14—C15—C16—C110.7 (2)
C2—C1—C9—C8179.44 (12)C12—C11—C16—C151.22 (19)
C11—C1—C9—C80.02 (19)C1—C11—C16—C15177.52 (12)
C7—C8—C9—C101.62 (17)C7—C8—C81—C8265.72 (15)
C81—C8—C9—C10177.84 (11)C9—C8—C81—C82114.80 (14)
C7—C8—C9—C1178.27 (11)C7—C8—C81—C86110.83 (14)
C81—C8—C9—C12.27 (19)C9—C8—C81—C8668.65 (16)
C3—C4—C10—C5179.57 (12)C86—C81—C82—C832.07 (19)
C3—C4—C10—C90.45 (19)C8—C81—C82—C83178.71 (12)
C6—C5—C10—C4179.61 (12)C81—C82—C83—C841.37 (19)
C6—C5—C10—C90.41 (19)C82—C83—C84—C850.0 (2)
C1—C9—C10—C40.68 (16)C82—C83—C84—C841179.70 (13)
C8—C9—C10—C4179.42 (11)C83—C84—C85—C860.64 (19)
C1—C9—C10—C5179.34 (11)C841—C84—C85—C86179.66 (12)
C8—C9—C10—C50.56 (17)C84—C85—C86—C810.08 (19)
C2—C1—C11—C1664.81 (15)C82—C81—C86—C851.42 (18)
C9—C1—C11—C16114.64 (14)C8—C81—C86—C85177.98 (11)
Hydrogen-bond geometry (Å, º) top
Cg1and Cg2 are the centroids of the C1–C10 and C8–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg2i0.952.753.6147 (13)152
C16—H16···Cg2ii0.952.923.6539 (15)135
C82—H82···Cg1i0.952.833.6180 (15)141
C86—H86···Cg1ii0.952.833.6614 (13)147
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+3/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC24H14N2
Mr330.37
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)17.0872 (9), 8.2997 (4), 24.3656 (13)
β (°) 93.795 (2)
V3)3447.9 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.30 × 0.02
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.971, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
11422, 4634, 3482
Rint0.031
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.131, 1.04
No. of reflections4634
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.26

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and OSCAIL (McArdle et al., 2004), PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1and Cg2 are the centroids of the C1–C10 and C8–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg2i0.952.753.6147 (13)152
C16—H16···Cg2ii0.952.923.6539 (15)135
C82—H82···Cg1i0.952.833.6180 (15)141
C86—H86···Cg1ii0.952.833.6614 (13)147
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+3/2, y+3/2, z+1.
 

Acknowledgements

CFL thanks the FCT and the European Social Fund (ESF) under the third Community Support Framework (CSF) for the award of a PhD Research Grant (SRFH/BD/29394/2006).

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLima, C. F., Gomes, L. R., Santos, L. M. N. B. F. & Low, J. N. (2010). Acta Cryst. E66, o3289.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 303–309.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds