organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Bis(2,2-di­phenyl­vin­yl)-1,1′-biphen­yl

aXi'an Modern Chemistry Research Institute, Xi'an 710065, People's Republic of China, and bXi'an Caijing Opto-Electrical Science & Technology Co. Ltd, Xi'an 710065, People's Republic of China
*Correspondence e-mail: winny_521@163.com

(Received 6 December 2010; accepted 16 December 2010; online 24 December 2010)

The title mol­ecule, C40H30, lies on an inversion center. The two unique phenyl rings form dihedral angles of 51.98 (8) and 67.58 (8)° with the essentially planar biphenyl unit [maximum deviation = 0.0360 (14) Å].

Related literature

For applications of the title compound, see: Park et al. (2005[Park, J. S., Lee, J. W., Kim, Y. M., Bae, S. J., Jang, J., Kim, J. K. & Ju, B. K. (2005). J. Electrochem. Soc. 152, H196-H199.]); Kim et al. (2009[Kim, Y.-H., Seo, J. H., Hyung, G. W., Lee, S. Y., Ryu, D. H., Chae, S. J., Shin, S. S., Kim, Y. K. & Kim, W. Y. (2009). Mol. Cryst. Liq. Cryst. 510, 282-292.]). For the preparation of the title compound, see: Zheng et al. (2004[Zheng, X.-Y., Zhu, W.-Q., Wu, Y.-Z., Ding, B.-D., Jiang, X.-Y., Zhang, Z.-L., Sun, R.-G. & Xu, S.-H. (2004). Guangxue Xuebao, 24, 70-74.]).

[Scheme 1]

Experimental

Crystal data
  • C40H30

  • Mr = 510.7

  • Monoclinic, P 21 /c

  • a = 9.277 (2) Å

  • b = 14.625 (3) Å

  • c = 10.460 (2) Å

  • β = 92.669 (4)°

  • V = 1417.6 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.39 × 0.25 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 6984 measured reflections

  • 2508 independent reflections

  • 1479 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.110

  • S = 0.94

  • 2508 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Distyrylarylene (DSA) derivatives have been widely investigated because of there high thermal stability and good film forming ability. The title compound has been used to fabricate white organic light-emitting diodes (WOLEDs)(Kim et al., 2009; Park et al., 2005). The synthesis and luminescent properties of DPVBi have already been described (Zheng, et al. 2004). The molecular structure of the title compound is shown in Fig.1. The molecule lies on an inversion center. The two unique phenyl rings form dihedral angles of 51.98 (8) [for C9-C14] and 67.58 (8)° [for C15-C20] with the essentially planar biphenyl unit [maximum deviation = 0.0360 (14)Å]

Related literature top

For applications of the title compound, see: Park et al. (2005); Kim et al. (2009). For the preparation of the title compound, see: Zheng et al. (2004).

Experimental top

The synthesis of the crude product was carried out according to reported methods (Zheng, et al. 2004). Suitable crystals were obtained by evaporation of a tetrahydrofuran/methanol (1:9, v/v) solution of the title compound at room temperature. Spectroscopic analysis: IR(KBr, cm-1): 3020,1597,1494,1441,762,697,815; 1H NMR (CDCl3, δ, p.p.m.): 7.3 (s, 20H), 6.9—7.2 (m, 10 H).

Refinement top

All H atoms were positioned geometrically and refined as riding [C—H = 0.93Å; Uiso(H) = 1.2Ueq(C)].

Structure description top

Distyrylarylene (DSA) derivatives have been widely investigated because of there high thermal stability and good film forming ability. The title compound has been used to fabricate white organic light-emitting diodes (WOLEDs)(Kim et al., 2009; Park et al., 2005). The synthesis and luminescent properties of DPVBi have already been described (Zheng, et al. 2004). The molecular structure of the title compound is shown in Fig.1. The molecule lies on an inversion center. The two unique phenyl rings form dihedral angles of 51.98 (8) [for C9-C14] and 67.58 (8)° [for C15-C20] with the essentially planar biphenyl unit [maximum deviation = 0.0360 (14)Å]

For applications of the title compound, see: Park et al. (2005); Kim et al. (2009). For the preparation of the title compound, see: Zheng et al. (2004).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms (symmetry code (A): 1-x, 2-y, -z).
4,4'-Bis(2,2-diphenylvinyl)-1,1'-biphenyl top
Crystal data top
C40H30F(000) = 540
Mr = 510.7Dx = 1.196 Mg m3
Monoclinic, P21/cMelting point: 477 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.277 (2) ÅCell parameters from 1536 reflections
b = 14.625 (3) Åθ = 2.4–25.1°
c = 10.460 (2) ŵ = 0.07 mm1
β = 92.669 (4)°T = 296 K
V = 1417.6 (5) Å3Block, yellow
Z = 20.39 × 0.25 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
1479 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 25.1°, θmin = 2.4°
φ and ω scansh = 1110
6984 measured reflectionsk = 1717
2508 independent reflectionsl = 1210
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0637P)2]
where P = (Fo2 + 2Fc2)/3
2508 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C40H30V = 1417.6 (5) Å3
Mr = 510.7Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.277 (2) ŵ = 0.07 mm1
b = 14.625 (3) ÅT = 296 K
c = 10.460 (2) Å0.39 × 0.25 × 0.18 mm
β = 92.669 (4)°
Data collection top
Bruker SMART CCD
diffractometer
1479 reflections with I > 2σ(I)
6984 measured reflectionsRint = 0.030
2508 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 0.94Δρmax = 0.12 e Å3
2508 reflectionsΔρmin = 0.18 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.69791 (18)0.84611 (10)0.10768 (16)0.0652 (5)
H10.69510.78550.13430.078*
C20.57204 (17)0.88788 (10)0.06689 (14)0.0625 (4)
H20.48640.85490.06770.075*
C30.56784 (15)0.97810 (9)0.02422 (13)0.0488 (4)
C40.69840 (17)1.02440 (10)0.03150 (16)0.0633 (5)
H40.70091.08540.00660.076*
C50.82414 (17)0.98268 (10)0.07443 (16)0.0642 (5)
H50.90881.01680.07950.077*
C60.82915 (16)0.89105 (10)0.11058 (13)0.0539 (4)
C70.96931 (16)0.85159 (11)0.15032 (14)0.0609 (4)
H71.04110.89430.17030.073*
C81.01194 (17)0.76349 (10)0.16283 (14)0.0570 (4)
C91.16235 (17)0.74195 (11)0.20673 (15)0.0599 (4)
C101.2386 (2)0.79640 (12)0.29442 (18)0.0746 (5)
H101.19330.84640.33000.090*
C111.3807 (2)0.77781 (13)0.33001 (19)0.0849 (6)
H111.43010.81550.38870.102*
C121.4498 (2)0.70404 (14)0.27931 (19)0.0835 (6)
H121.54630.69230.30140.100*
C131.3742 (2)0.64829 (16)0.19597 (19)0.0928 (6)
H131.41940.59740.16250.111*
C141.2324 (2)0.66610 (13)0.16054 (17)0.0809 (5)
H141.18280.62650.10460.097*
C150.91607 (18)0.68499 (10)0.12923 (15)0.0588 (4)
C160.86251 (18)0.62995 (10)0.22408 (15)0.0630 (4)
H160.88990.64110.30930.076*
C170.7692 (2)0.55891 (11)0.19388 (18)0.0730 (5)
H170.73280.52350.25880.088*
C180.7301 (2)0.54030 (12)0.0686 (2)0.0828 (6)
H180.66660.49270.04850.099*
C190.7846 (2)0.59197 (14)0.02639 (18)0.0935 (6)
H190.75990.57860.11150.112*
C200.8763 (2)0.66401 (12)0.00322 (17)0.0815 (6)
H200.91200.69910.06240.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0611 (11)0.0537 (9)0.0803 (12)0.0013 (9)0.0031 (9)0.0190 (8)
C20.0585 (11)0.0566 (10)0.0719 (11)0.0035 (8)0.0022 (8)0.0120 (8)
C30.0532 (9)0.0464 (8)0.0472 (8)0.0022 (7)0.0066 (7)0.0038 (6)
C40.0540 (11)0.0446 (8)0.0918 (12)0.0042 (8)0.0095 (9)0.0033 (8)
C50.0487 (10)0.0507 (9)0.0937 (12)0.0002 (8)0.0088 (9)0.0001 (8)
C60.0510 (10)0.0550 (9)0.0558 (9)0.0048 (8)0.0044 (7)0.0019 (7)
C70.0555 (11)0.0601 (10)0.0673 (10)0.0027 (8)0.0046 (8)0.0031 (8)
C80.0604 (10)0.0573 (10)0.0536 (10)0.0061 (8)0.0068 (7)0.0043 (7)
C90.0627 (11)0.0613 (10)0.0560 (9)0.0105 (8)0.0052 (8)0.0096 (8)
C100.0694 (13)0.0656 (11)0.0882 (13)0.0097 (9)0.0017 (10)0.0013 (9)
C110.0693 (13)0.0806 (13)0.1033 (15)0.0018 (11)0.0101 (11)0.0094 (11)
C120.0641 (12)0.1014 (15)0.0855 (15)0.0166 (12)0.0084 (11)0.0284 (12)
C130.0890 (16)0.1085 (16)0.0810 (14)0.0430 (13)0.0047 (12)0.0004 (12)
C140.0833 (14)0.0875 (13)0.0713 (12)0.0301 (11)0.0033 (10)0.0057 (10)
C150.0696 (11)0.0540 (9)0.0531 (10)0.0130 (8)0.0038 (8)0.0019 (7)
C160.0745 (11)0.0573 (9)0.0572 (10)0.0107 (9)0.0035 (8)0.0040 (8)
C170.0866 (13)0.0547 (10)0.0784 (13)0.0044 (9)0.0127 (10)0.0072 (9)
C180.0938 (15)0.0632 (11)0.0905 (15)0.0015 (10)0.0057 (12)0.0074 (11)
C190.1305 (18)0.0808 (13)0.0676 (12)0.0064 (13)0.0119 (12)0.0094 (11)
C200.1173 (17)0.0712 (12)0.0558 (11)0.0056 (11)0.0041 (10)0.0024 (9)
Geometric parameters (Å, º) top
C1—C21.368 (2)C10—H100.9300
C1—C61.383 (2)C11—C121.374 (2)
C1—H10.9300C11—H110.9300
C2—C31.3929 (19)C12—C131.363 (3)
C2—H20.9300C12—H120.9300
C3—C41.387 (2)C13—C141.375 (3)
C3—C3i1.481 (3)C13—H130.9300
C4—C51.373 (2)C14—H140.9300
C4—H40.9300C15—C201.386 (2)
C5—C61.393 (2)C15—C161.388 (2)
C5—H50.9300C16—C171.379 (2)
C6—C71.465 (2)C16—H160.9300
C7—C81.352 (2)C17—C181.371 (2)
C7—H70.9300C17—H170.9300
C8—C91.482 (2)C18—C191.364 (3)
C8—C151.484 (2)C18—H180.9300
C9—C101.384 (2)C19—C201.380 (3)
C9—C141.384 (2)C19—H190.9300
C10—C111.380 (3)C20—H200.9300
C2—C1—C6122.16 (14)C12—C11—C10120.49 (19)
C2—C1—H1118.9C12—C11—H11119.8
C6—C1—H1118.9C10—C11—H11119.8
C1—C2—C3122.25 (15)C13—C12—C11118.78 (18)
C1—C2—H2118.9C13—C12—H12120.6
C3—C2—H2118.9C11—C12—H12120.6
C4—C3—C2115.70 (14)C12—C13—C14121.05 (19)
C4—C3—C3i122.27 (16)C12—C13—H13119.5
C2—C3—C3i122.02 (17)C14—C13—H13119.5
C5—C4—C3121.84 (14)C13—C14—C9121.11 (19)
C5—C4—H4119.1C13—C14—H14119.4
C3—C4—H4119.1C9—C14—H14119.4
C4—C5—C6122.23 (15)C20—C15—C16117.58 (16)
C4—C5—H5118.9C20—C15—C8121.76 (14)
C6—C5—H5118.9C16—C15—C8120.66 (14)
C1—C6—C5115.68 (14)C17—C16—C15120.99 (16)
C1—C6—C7126.01 (14)C17—C16—H16119.5
C5—C6—C7118.30 (14)C15—C16—H16119.5
C8—C7—C6130.88 (15)C18—C17—C16120.27 (16)
C8—C7—H7114.6C18—C17—H17119.9
C6—C7—H7114.6C16—C17—H17119.9
C7—C8—C9119.95 (15)C19—C18—C17119.70 (18)
C7—C8—C15123.00 (14)C19—C18—H18120.1
C9—C8—C15117.00 (13)C17—C18—H18120.1
C10—C9—C14117.29 (16)C18—C19—C20120.32 (18)
C10—C9—C8121.86 (14)C18—C19—H19119.8
C14—C9—C8120.85 (16)C20—C19—H19119.8
C11—C10—C9121.19 (17)C19—C20—C15121.09 (17)
C11—C10—H10119.4C19—C20—H20119.5
C9—C10—H10119.4C15—C20—H20119.5
C6—C1—C2—C30.7 (2)C8—C9—C10—C11177.03 (15)
C1—C2—C3—C43.0 (2)C9—C10—C11—C120.4 (3)
C1—C2—C3—C3i177.73 (16)C10—C11—C12—C131.7 (3)
C2—C3—C4—C51.9 (2)C11—C12—C13—C141.4 (3)
C3i—C3—C4—C5178.81 (15)C12—C13—C14—C91.0 (3)
C3—C4—C5—C61.4 (2)C10—C9—C14—C133.0 (3)
C2—C1—C6—C52.6 (2)C8—C9—C14—C13176.71 (15)
C2—C1—C6—C7178.80 (14)C7—C8—C15—C2071.1 (2)
C4—C5—C6—C13.7 (2)C9—C8—C15—C20106.38 (18)
C4—C5—C6—C7177.62 (14)C7—C8—C15—C16108.71 (17)
C1—C6—C7—C817.8 (2)C9—C8—C15—C1673.86 (18)
C5—C6—C7—C8163.63 (15)C20—C15—C16—C172.1 (2)
C6—C7—C8—C9179.39 (14)C8—C15—C16—C17177.65 (14)
C6—C7—C8—C153.3 (2)C15—C16—C17—C181.3 (2)
C7—C8—C9—C1034.1 (2)C16—C17—C18—C190.5 (3)
C15—C8—C9—C10148.38 (15)C17—C18—C19—C201.5 (3)
C7—C8—C9—C14145.60 (15)C18—C19—C20—C150.6 (3)
C15—C8—C9—C1431.9 (2)C16—C15—C20—C191.2 (3)
C14—C9—C10—C112.7 (2)C8—C15—C20—C19178.61 (16)
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC40H30
Mr510.7
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.277 (2), 14.625 (3), 10.460 (2)
β (°) 92.669 (4)
V3)1417.6 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.39 × 0.25 × 0.18
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6984, 2508, 1479
Rint0.030
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.110, 0.94
No. of reflections2508
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.18

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors are grateful for financial support from the Xi'an Modern Chemistry Institute (grant No. jcky28).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKim, Y.-H., Seo, J. H., Hyung, G. W., Lee, S. Y., Ryu, D. H., Chae, S. J., Shin, S. S., Kim, Y. K. & Kim, W. Y. (2009). Mol. Cryst. Liq. Cryst. 510, 282–292.  CAS Google Scholar
First citationPark, J. S., Lee, J. W., Kim, Y. M., Bae, S. J., Jang, J., Kim, J. K. & Ju, B. K. (2005). J. Electrochem. Soc. 152, H196–H199.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, X.-Y., Zhu, W.-Q., Wu, Y.-Z., Ding, B.-D., Jiang, X.-Y., Zhang, Z.-L., Sun, R.-G. & Xu, S.-H. (2004). Guangxue Xuebao, 24, 70–74.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds