organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(5-Hy­dr­oxy-3-methyl-5-phenyl-4,5-di­hydro-1H-pyrazol-1-yl)(pyridin-4-yl)methanone monohydrate

aDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran, bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, cX-ray Crystallography Lab., Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran, dDepartment of Chemistry, Azarbaijan University of Tarbiat Moallem, Tabriz, Iran, and eDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: rkia@srbiau.ac.ir, zsrkk@yahoo.com, dmntahir_uos@yahoo.com

(Received 9 December 2010; accepted 15 December 2010; online 24 December 2010)

In the title compound, C16H15N3O2·H2O, the mean plane of the approximately planar pyrazole ring [maximum deviation = 0.0474 (18) Å] makes dihedral angles of 86.32 (11) and 45.04 (10)° with the phenyl and pyridine rings, respectively. The dihedral angle between the phenyl and pyridine rings is 69.62 (11)°. In the crystal, inter­molecular O—H⋯O and O—H⋯N hydrogen bonds connect the components into chains along [010]. The crystal structure is further stabilized by ππ stacking inter­actions with centroid–centroid distances of 3.7730 (12) Å.

Related literature

For standard values of bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15N3O2·H2O

  • Mr = 299.33

  • Monoclinic, P 21 /c

  • a = 16.9676 (10) Å

  • b = 7.0266 (5) Å

  • c = 12.6135 (6) Å

  • β = 93.004 (3)°

  • V = 1501.77 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.32 × 0.24 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.983

  • 8525 measured reflections

  • 3059 independent reflections

  • 1916 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.121

  • S = 1.03

  • 3059 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1Wi 0.92 1.84 2.7490 (19) 173
O1W—H1W1⋯O2ii 0.92 1.89 2.8003 (19) 169
O1W—H2W1⋯N3iii 0.85 2.13 2.976 (2) 173
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL and PLATON.

Supporting information


Comment top

The asymmetric unit of the title compound, Fig. 1, comprises a substituted pyrazole molecule and a solvent water molecule. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The dihedral angle the mean plane of the pyrazole ring makes with the phenyl and pyridine rings are 86.32 (11) and 45.04 (10)°, respectively. The dihedral angle between the phenyl ring and the pyridine ring is 69.62 (11)Å.

In the crystal structure, intermolecular O—H···O and O—H···N hydrogen bonds connect the components of the structure to form one-dimensional chains along [0 1 0]. The crystal structure is further stabilized by intermolecular ππ stacking interactions [Cg1···Cg1iv = 3.7730 (11)Å, (iv) -x, 1 - y, -z, Cg1 is the centroid of the C12-C16/N3 ring].

Related literature top

For standard values of bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was synthesized by adding isoniazide (2 mmol) to a solution of benzoylacetone (2 mmol) in ethanol (20 ml). The mixture was refluxed with stirring for half an hour. The resultant solution was filtered and the white single crystals suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement top

The H atoms of the water and hydroxy groups were located in a difference Fourier map and constraied to refine on the parent atom with Uiso(H) = 1.5 Ueq(O), see Table 1. The remaining H atoms were positioned geometrically with C—H = 0.93-0.97 Å and included in a riding-model approximation with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was used for the methyl group.

Structure description top

The asymmetric unit of the title compound, Fig. 1, comprises a substituted pyrazole molecule and a solvent water molecule. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The dihedral angle the mean plane of the pyrazole ring makes with the phenyl and pyridine rings are 86.32 (11) and 45.04 (10)°, respectively. The dihedral angle between the phenyl ring and the pyridine ring is 69.62 (11)Å.

In the crystal structure, intermolecular O—H···O and O—H···N hydrogen bonds connect the components of the structure to form one-dimensional chains along [0 1 0]. The crystal structure is further stabilized by intermolecular ππ stacking interactions [Cg1···Cg1iv = 3.7730 (11)Å, (iv) -x, 1 - y, -z, Cg1 is the centroid of the C12-C16/N3 ring].

For standard values of bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. The packing of the compound viewed along the c-axis showing 1-D extended chains along the b-axis through hydrogen bonds. All H atoms removed except those involved in the hydrogen bonds. Hydrogen bonds are shown as dashed lines.
(5-Hydroxy-3-methyl-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)(pyridin- 4-yl)methanone monohydrate top
Crystal data top
C16H15N3O2·H2OF(000) = 632
Mr = 299.33Dx = 1.324 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2540 reflections
a = 16.9676 (10) Åθ = 2.5–27.5°
b = 7.0266 (5) ŵ = 0.09 mm1
c = 12.6135 (6) ÅT = 296 K
β = 93.004 (3)°Prism, white
V = 1501.77 (16) Å30.32 × 0.24 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3059 independent reflections
Radiation source: fine-focus sealed tube1916 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 26.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1821
Tmin = 0.971, Tmax = 0.983k = 78
8525 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0554P)2]
where P = (Fo2 + 2Fc2)/3
3059 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C16H15N3O2·H2OV = 1501.77 (16) Å3
Mr = 299.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.9676 (10) ŵ = 0.09 mm1
b = 7.0266 (5) ÅT = 296 K
c = 12.6135 (6) Å0.32 × 0.24 × 0.18 mm
β = 93.004 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3059 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1916 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.983Rint = 0.038
8525 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.03Δρmax = 0.15 e Å3
3059 reflectionsΔρmin = 0.18 e Å3
200 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32045 (8)0.3424 (2)0.01490 (10)0.0461 (4)
H10.28490.24780.03220.069*
O20.22503 (8)0.70361 (19)0.00147 (10)0.0455 (4)
O1W0.21323 (8)0.4293 (2)0.41563 (10)0.0522 (4)
H1W10.21230.54490.44980.078*
H2W10.16560.39110.41430.078*
N10.17899 (8)0.3038 (2)0.15669 (11)0.0339 (4)
N20.22186 (8)0.4400 (2)0.10150 (11)0.0347 (4)
N30.05005 (9)0.7733 (2)0.10396 (13)0.0431 (4)
C10.36077 (10)0.5444 (3)0.12956 (14)0.0370 (5)
C20.35148 (13)0.6223 (3)0.22873 (16)0.0544 (6)
H20.31150.57880.27030.065*
C30.40176 (17)0.7653 (4)0.2661 (2)0.0726 (8)
H3A0.39470.81880.33230.087*
C40.46131 (16)0.8286 (4)0.2071 (3)0.0770 (8)
H40.49510.92380.23330.092*
C50.47118 (14)0.7520 (4)0.1099 (2)0.0726 (8)
H50.51190.79470.06940.087*
C60.42080 (12)0.6104 (3)0.07061 (17)0.0521 (6)
H60.42770.55960.00360.062*
C70.30659 (10)0.3854 (3)0.09099 (13)0.0359 (5)
C80.31075 (11)0.2087 (3)0.16286 (16)0.0449 (5)
H8A0.33100.10000.12550.054*
H8B0.34430.23200.22620.054*
C90.22789 (11)0.1762 (3)0.19037 (13)0.0339 (4)
C100.20331 (12)0.0106 (3)0.25333 (15)0.0469 (5)
H10A0.14760.01760.26280.070*
H10B0.23140.01160.32140.070*
H10C0.21500.10480.21660.070*
C110.18790 (11)0.5957 (3)0.05705 (13)0.0334 (4)
C120.10340 (10)0.6415 (2)0.07655 (13)0.0297 (4)
C130.07060 (11)0.6357 (3)0.17484 (14)0.0375 (5)
H130.09900.58580.23350.045*
C140.00432 (12)0.7045 (3)0.18447 (15)0.0430 (5)
H140.02470.70310.25150.052*
C150.01844 (11)0.7738 (3)0.00927 (15)0.0407 (5)
H150.04930.81760.04880.049*
C160.05681 (11)0.7135 (3)0.00760 (14)0.0361 (5)
H160.07640.72100.07500.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0399 (8)0.0500 (9)0.0490 (8)0.0025 (7)0.0074 (6)0.0062 (7)
O20.0370 (8)0.0445 (9)0.0556 (8)0.0018 (7)0.0082 (6)0.0166 (7)
O1W0.0428 (8)0.0447 (9)0.0690 (9)0.0001 (7)0.0023 (6)0.0063 (7)
N10.0297 (9)0.0353 (9)0.0368 (8)0.0024 (8)0.0008 (7)0.0024 (7)
N20.0240 (8)0.0362 (9)0.0438 (8)0.0016 (7)0.0022 (6)0.0106 (7)
N30.0319 (9)0.0421 (10)0.0553 (11)0.0033 (8)0.0027 (8)0.0013 (8)
C10.0274 (10)0.0373 (11)0.0457 (11)0.0028 (9)0.0031 (8)0.0043 (9)
C20.0458 (13)0.0606 (16)0.0564 (13)0.0085 (12)0.0017 (10)0.0066 (11)
C30.0676 (18)0.0689 (19)0.0786 (17)0.0129 (16)0.0232 (14)0.0247 (14)
C40.0537 (17)0.0506 (17)0.123 (2)0.0011 (14)0.0303 (16)0.0094 (16)
C50.0484 (15)0.0663 (19)0.102 (2)0.0183 (14)0.0027 (14)0.0144 (16)
C60.0413 (12)0.0551 (15)0.0598 (13)0.0080 (11)0.0028 (10)0.0046 (11)
C70.0253 (10)0.0393 (12)0.0434 (11)0.0041 (9)0.0048 (8)0.0036 (9)
C80.0352 (11)0.0387 (12)0.0605 (12)0.0049 (10)0.0006 (9)0.0118 (10)
C90.0355 (11)0.0314 (11)0.0345 (9)0.0005 (9)0.0000 (8)0.0005 (8)
C100.0472 (12)0.0370 (12)0.0567 (12)0.0009 (11)0.0055 (9)0.0069 (10)
C110.0294 (10)0.0355 (11)0.0349 (10)0.0017 (9)0.0009 (8)0.0008 (9)
C120.0289 (10)0.0249 (10)0.0351 (10)0.0014 (8)0.0004 (8)0.0009 (8)
C130.0348 (11)0.0420 (12)0.0355 (10)0.0022 (10)0.0015 (8)0.0012 (9)
C140.0381 (12)0.0480 (13)0.0431 (11)0.0005 (10)0.0053 (9)0.0035 (9)
C150.0343 (11)0.0386 (12)0.0480 (12)0.0020 (10)0.0095 (9)0.0048 (9)
C160.0363 (11)0.0358 (11)0.0360 (10)0.0017 (9)0.0013 (8)0.0013 (8)
Geometric parameters (Å, º) top
O1—C71.401 (2)C5—C61.386 (3)
O1—H10.9166C5—H50.9300
O2—C111.229 (2)C6—H60.9300
O1W—H1W10.9200C7—C81.536 (3)
O1W—H2W10.8517C8—C91.483 (3)
N1—C91.279 (2)C8—H8A0.9700
N1—N21.408 (2)C8—H8B0.9700
N2—C111.345 (2)C9—C101.481 (3)
N2—C71.501 (2)C10—H10A0.9600
N3—C151.334 (2)C10—H10B0.9600
N3—C141.336 (2)C10—H10C0.9600
C1—C61.373 (3)C11—C121.502 (2)
C1—C21.382 (3)C12—C161.386 (2)
C1—C71.511 (3)C12—C131.386 (2)
C2—C31.384 (3)C13—C141.371 (3)
C2—H20.9300C13—H130.9300
C3—C41.360 (4)C14—H140.9300
C3—H3A0.9300C15—C161.372 (3)
C4—C51.358 (4)C15—H150.9300
C4—H40.9300C16—H160.9300
C7—O1—H1104.0C9—C8—H8A110.9
H1W1—O1W—H2W1104.4C7—C8—H8A110.9
C9—N1—N2107.33 (14)C9—C8—H8B110.9
C11—N2—N1122.54 (15)C7—C8—H8B110.9
C11—N2—C7124.25 (15)H8A—C8—H8B108.9
N1—N2—C7113.06 (13)N1—C9—C10122.21 (17)
C15—N3—C14115.90 (17)N1—C9—C8114.87 (16)
C6—C1—C2118.6 (2)C10—C9—C8122.91 (17)
C6—C1—C7122.12 (17)C9—C10—H10A109.5
C2—C1—C7119.22 (17)C9—C10—H10B109.5
C1—C2—C3119.9 (2)H10A—C10—H10B109.5
C1—C2—H2120.1C9—C10—H10C109.5
C3—C2—H2120.1H10A—C10—H10C109.5
C4—C3—C2120.9 (2)H10B—C10—H10C109.5
C4—C3—H3A119.5O2—C11—N2121.24 (17)
C2—C3—H3A119.5O2—C11—C12118.90 (16)
C5—C4—C3119.6 (2)N2—C11—C12119.85 (16)
C5—C4—H4120.2C16—C12—C13117.15 (17)
C3—C4—H4120.2C16—C12—C11117.65 (15)
C4—C5—C6120.3 (2)C13—C12—C11124.86 (16)
C4—C5—H5119.9C14—C13—C12119.10 (17)
C6—C5—H5119.9C14—C13—H13120.4
C1—C6—C5120.7 (2)C12—C13—H13120.4
C1—C6—H6119.7N3—C14—C13124.36 (18)
C5—C6—H6119.7N3—C14—H14117.8
O1—C7—N2110.42 (13)C13—C14—H14117.8
O1—C7—C1109.67 (14)N3—C15—C16123.97 (17)
N2—C7—C1110.60 (15)N3—C15—H15118.0
O1—C7—C8112.56 (16)C16—C15—H15118.0
N2—C7—C899.74 (14)C15—C16—C12119.47 (17)
C1—C7—C8113.51 (15)C15—C16—H16120.3
C9—C8—C7104.34 (15)C12—C16—H16120.3
C9—N1—N2—C11179.02 (16)N2—C7—C8—C97.23 (18)
C9—N1—N2—C75.31 (18)C1—C7—C8—C9124.87 (16)
C6—C1—C2—C30.6 (3)N2—N1—C9—C10179.31 (16)
C7—C1—C2—C3178.63 (19)N2—N1—C9—C80.2 (2)
C1—C2—C3—C41.1 (4)C7—C8—C9—N15.2 (2)
C2—C3—C4—C50.7 (4)C7—C8—C9—C10175.69 (17)
C3—C4—C5—C60.2 (4)N1—N2—C11—O2173.53 (15)
C2—C1—C6—C50.2 (3)C7—N2—C11—O21.7 (3)
C7—C1—C6—C5177.7 (2)N1—N2—C11—C127.4 (2)
C4—C5—C6—C10.6 (4)C7—N2—C11—C12177.38 (15)
C11—N2—C7—O164.9 (2)O2—C11—C12—C1639.6 (2)
N1—N2—C7—O1110.71 (15)N2—C11—C12—C16141.39 (18)
C11—N2—C7—C156.7 (2)O2—C11—C12—C13133.48 (19)
N1—N2—C7—C1127.72 (15)N2—C11—C12—C1345.6 (3)
C11—N2—C7—C8176.49 (17)C16—C12—C13—C141.5 (3)
N1—N2—C7—C87.92 (18)C11—C12—C13—C14171.52 (18)
C6—C1—C7—O18.6 (2)C15—N3—C14—C130.4 (3)
C2—C1—C7—O1173.52 (17)C12—C13—C14—N32.0 (3)
C6—C1—C7—N2130.57 (19)C14—N3—C15—C161.7 (3)
C2—C1—C7—N251.5 (2)N3—C15—C16—C122.1 (3)
C6—C1—C7—C8118.3 (2)C13—C12—C16—C150.4 (3)
C2—C1—C7—C859.6 (2)C11—C12—C16—C15173.97 (17)
O1—C7—C8—C9109.82 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1Wi0.921.842.7490 (19)173
O1W—H1W1···O2ii0.921.892.8003 (19)169
O1W—H2W1···N3iii0.852.132.976 (2)173
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+3/2, z+1/2; (iii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H15N3O2·H2O
Mr299.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)16.9676 (10), 7.0266 (5), 12.6135 (6)
β (°) 93.004 (3)
V3)1501.77 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.24 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.971, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
8525, 3059, 1916
Rint0.038
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.121, 1.03
No. of reflections3059
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.18

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1Wi0.921.842.7490 (19)172.6
O1W—H1W1···O2ii0.921.892.8003 (19)169.0
O1W—H2W1···N3iii0.852.132.976 (2)173.2
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+3/2, z+1/2; (iii) x, y1/2, z+1/2.
 

Acknowledgements

HK and FF thank the PNU for the financial support. RK thanks the Science and Research Branch, Islamic Azad University. MNT thanks the University of Sargodha, Pakistan, for the research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds