organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Oxo-2-phenyl­acet­yl)benzamide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: hkfun@usm.my

(Received 14 December 2010; accepted 15 December 2010; online 18 December 2010)

In the title compound, C15H11NO3, the two essentially planar benzaldehyde groups [maximum deviations = 0.0487 (12) and 0.0205 (10) Å] are inclined at a dihedral angle of 72.64 (6)° with respect to each other. The bridging C—C—N—C torsion angle is 22.58 (18)°. In the crystal, inter­molecular bifurcated acceptor N—H⋯O and C—H⋯O hydrogen bonds link inversion-related mol­ecules into dimers incorporating R12(7) and R22(8) ring motifs. The crystal structure is further stabilized by weak inter­molecular C—H⋯π inter­actions.

Related literature

For general background to and applications of the title benzamide compound, see: Haffner & Ulrich (2010[Haffner, C. D. & Ulrich, J. (2010). Bioorg. Med. Chem. Lett. 20, 6989-6992.]); Lavanya & Rao (2010[Lavanya, P. & Rao, C. V. (2010). J. Chem. Pharm. Res. 2, 25-32.]); Magarl et al. (2010[Magarl, D. D., Tapas, A. R. & Ambre, P. K. (2010). Pharma Chem. 2, 142-147.]). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related benzamide structures, see: Jotani et al. (2010[Jotani, M. M., Baldaniya, B. B. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o778.]); Fu et al. (1998[Fu, T. Y., Scheffer, J. R. & Trotter, J. (1998). Acta Cryst. C54, 101-102.]); Gallagher et al. (2009[Gallagher, J. F., Donnelly, K. & Lough, A. J. (2009). Acta Cryst. E65, o486-o487.]). For related diketone structures, see: Cheah et al. (2008[Cheah, W. C., Black, D. S., Goh, W. K. & Kumar, N. (2008). Tetrahedron Lett. 49, 2965-2968.]); Hartung et al. (2004[Hartung, J., Špehar, K., Svoboda, I. & Fuess, H. (2004). Acta Cryst. E60, o750-o751.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11NO3

  • Mr = 253.25

  • Monoclinic, P 21 /c

  • a = 5.7215 (1) Å

  • b = 10.7241 (1) Å

  • c = 20.6710 (3) Å

  • β = 98.255 (1)°

  • V = 1255.19 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.36 × 0.33 × 0.27 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 0.975

  • 13904 measured reflections

  • 3624 independent reflections

  • 2549 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.124

  • S = 1.03

  • 3624 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2i 0.879 (16) 2.107 (16) 2.9765 (14) 170.0 (15)
C11—H11A⋯O2i 0.93 2.51 3.4080 (18) 162
C14—H14ACg1ii 0.93 2.86 3.6592 (18) 145
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x, -y, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzamides have been reported to correlate with many pharmacology processes such as anti-emetic, anti-psychotic and anti-arrythmic activities. Various N-substituted derivatives of benzamide are reported to possess anti-convulsant activity (Magarl et al., 2010). Recently, Haffner & Ulrich (2010) reported that some N-substituted derivatives of benzamide can block the Kv1.3 ion channel. Moreover, N-substituted benzamides have been scanned for anti-microbial and anti-oxidant activities (Lavanya & Rao, 2010). The crystal structures of N-(2-oxo-2H-chromen-3-yl)benzamide (Jotani et al., 2010), N-phenyl-N-(phenylthioxomethyl)benzamide (Fu et al., 1998) and 2-fluoro-N-(2-fluorobenzoyl)-N-(2-pyridyl)benzamide (Gallagher et al., 2009) have been reported. The title compound which contains the N-substituted benzamide has a potential use in biochemical and pharmaceutical fields. Due to the importance of the N-substituted benzamide derivatives, we report here the crystal structure of the title compound.

In the title compound (Fig. 1), the two benzaldehyde moieties (C1-C7/O1 and C9-C15/O3) are essentially planar, with maximum deviations of -0.0483 (12) Å at atom C7 and -0.0205 (10) Å at atom O3, respectively. The whole molecule is not planar, as indicated by the C7–C8–N1–C9 torsion angle of 22.58 (18)° and the dihedral angle formed between the two benzaldehyde moieties of 72.64 (6)°. The diketonic C7—C8 bond length [1.5401 (16) Å] is observed to be longer than expected value for a hybridized Csp2—Csp2 bond (Allen et al., 1987), and is consistent to those observed in related diketone structures (Cheah et al., 2008; Hartung et al., 2004). All other geometrical parameters are comparable to those related N-substituted benzamide structures (Jotani et al., 2010; Fu et al., 1998; Gallagher et al., 2009).

In the crystal structure, intermolecular bifurcated acceptor N1—H1N1···O2i and C11—H11A···O2i hydrogen bonds (Table 1) link inversion-related molecules into hydrogen-bonded dimers incorporating R21(7) and R22(8) ring motifs (Fig. 2, Bernstein et al., 1995). Further stabilization of the crystal structure is provided by weak intermolecular C14—H14A···Cg1ii interactions (Table 1) involving the centroid of the C1-C6 benzene ring.

Related literature top

For general background to and applications of the title benzamide compound, see: Haffner & Ulrich (2010); Lavanya & Rao (2010); Magarl et al. (2010). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For related benzamide structures, see: Jotani et al. (2010); Fu et al. (1998); Gallagher et al. (2009). For related diketone structures, see: Cheah et al. (2008); Hartung et al. (2004). For standard bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was obtained in the photoreaction of 2,5-diphenyloxazole in visible light. The compound was purified by flash column chromatography. Good quality single crystals suitable for X-ray analysis were obtained from slow evaporation of a 1:1 solution of acetone and petroleum ether.

Refinement top

Atom H1N1 was located in a difference Fourier map and allowed to refine freely [N1—H1N1 = 0.879 (16) Å]. The remaining H atoms were placed in calculated positions, with C—H = 0.93 Å, and refined using a riding-model, with Uiso(H) = 1.2 Ueq(C).

Structure description top

Benzamides have been reported to correlate with many pharmacology processes such as anti-emetic, anti-psychotic and anti-arrythmic activities. Various N-substituted derivatives of benzamide are reported to possess anti-convulsant activity (Magarl et al., 2010). Recently, Haffner & Ulrich (2010) reported that some N-substituted derivatives of benzamide can block the Kv1.3 ion channel. Moreover, N-substituted benzamides have been scanned for anti-microbial and anti-oxidant activities (Lavanya & Rao, 2010). The crystal structures of N-(2-oxo-2H-chromen-3-yl)benzamide (Jotani et al., 2010), N-phenyl-N-(phenylthioxomethyl)benzamide (Fu et al., 1998) and 2-fluoro-N-(2-fluorobenzoyl)-N-(2-pyridyl)benzamide (Gallagher et al., 2009) have been reported. The title compound which contains the N-substituted benzamide has a potential use in biochemical and pharmaceutical fields. Due to the importance of the N-substituted benzamide derivatives, we report here the crystal structure of the title compound.

In the title compound (Fig. 1), the two benzaldehyde moieties (C1-C7/O1 and C9-C15/O3) are essentially planar, with maximum deviations of -0.0483 (12) Å at atom C7 and -0.0205 (10) Å at atom O3, respectively. The whole molecule is not planar, as indicated by the C7–C8–N1–C9 torsion angle of 22.58 (18)° and the dihedral angle formed between the two benzaldehyde moieties of 72.64 (6)°. The diketonic C7—C8 bond length [1.5401 (16) Å] is observed to be longer than expected value for a hybridized Csp2—Csp2 bond (Allen et al., 1987), and is consistent to those observed in related diketone structures (Cheah et al., 2008; Hartung et al., 2004). All other geometrical parameters are comparable to those related N-substituted benzamide structures (Jotani et al., 2010; Fu et al., 1998; Gallagher et al., 2009).

In the crystal structure, intermolecular bifurcated acceptor N1—H1N1···O2i and C11—H11A···O2i hydrogen bonds (Table 1) link inversion-related molecules into hydrogen-bonded dimers incorporating R21(7) and R22(8) ring motifs (Fig. 2, Bernstein et al., 1995). Further stabilization of the crystal structure is provided by weak intermolecular C14—H14A···Cg1ii interactions (Table 1) involving the centroid of the C1-C6 benzene ring.

For general background to and applications of the title benzamide compound, see: Haffner & Ulrich (2010); Lavanya & Rao (2010); Magarl et al. (2010). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For related benzamide structures, see: Jotani et al. (2010); Fu et al. (1998); Gallagher et al. (2009). For related diketone structures, see: Cheah et al. (2008); Hartung et al. (2004). For standard bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30 % probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis, showing hydrogen-bonded dimers lying parallel to the bc plane. Intermolecular hydrogen bonds are shown as dashed lines.
N-(2-Oxo-2-phenylacetyl)benzamide top
Crystal data top
C15H11NO3F(000) = 528
Mr = 253.25Dx = 1.340 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3981 reflections
a = 5.7215 (1) Åθ = 2.8–28.7°
b = 10.7241 (1) ŵ = 0.09 mm1
c = 20.6710 (3) ÅT = 293 K
β = 98.255 (1)°Block, colourless
V = 1255.19 (3) Å30.36 × 0.33 × 0.27 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3624 independent reflections
Radiation source: fine-focus sealed tube2549 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 30.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 87
Tmin = 0.967, Tmax = 0.975k = 1514
13904 measured reflectionsl = 2829
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0558P)2 + 0.1732P]
where P = (Fo2 + 2Fc2)/3
3624 reflections(Δ/σ)max = 0.001
176 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C15H11NO3V = 1255.19 (3) Å3
Mr = 253.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.7215 (1) ŵ = 0.09 mm1
b = 10.7241 (1) ÅT = 293 K
c = 20.6710 (3) Å0.36 × 0.33 × 0.27 mm
β = 98.255 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3624 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2549 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.975Rint = 0.025
13904 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.22 e Å3
3624 reflectionsΔρmin = 0.19 e Å3
176 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.09882 (19)0.34229 (9)0.84139 (5)0.0559 (3)
O20.55891 (18)0.43948 (9)0.92521 (5)0.0541 (3)
O30.15170 (19)0.15978 (8)0.95510 (5)0.0526 (3)
N10.2998 (2)0.34922 (9)0.98421 (5)0.0425 (3)
C10.3026 (3)0.14025 (14)0.78023 (7)0.0555 (4)
H1A0.15440.16680.76070.067*
C20.4136 (4)0.04282 (16)0.75346 (8)0.0682 (5)
H2A0.33930.00290.71610.082*
C30.6340 (3)0.00455 (15)0.78184 (8)0.0658 (5)
H3A0.70780.06130.76360.079*
C40.7464 (3)0.06306 (15)0.83711 (9)0.0632 (4)
H4A0.89640.03750.85570.076*
C50.6352 (3)0.15980 (13)0.86475 (7)0.0520 (3)
H5A0.70980.19880.90230.062*
C60.4132 (2)0.19867 (11)0.83662 (6)0.0409 (3)
C70.2867 (2)0.29847 (11)0.86611 (6)0.0399 (3)
C80.4020 (2)0.36431 (10)0.92888 (6)0.0401 (3)
C90.1548 (2)0.24758 (10)0.99227 (6)0.0387 (3)
C100.0059 (2)0.25238 (10)1.04531 (6)0.0383 (3)
C110.0018 (3)0.35326 (11)1.08721 (6)0.0462 (3)
H11A0.09170.42301.08330.055*
C120.1486 (3)0.34962 (13)1.13475 (7)0.0542 (4)
H12A0.15240.41681.16300.065*
C130.2892 (3)0.24711 (14)1.14054 (8)0.0612 (4)
H13A0.38760.24531.17270.073*
C140.2843 (3)0.14727 (14)1.09876 (9)0.0648 (4)
H14A0.38020.07841.10240.078*
C150.1369 (3)0.14978 (12)1.05150 (7)0.0527 (4)
H15A0.13320.08211.02350.063*
H1N10.337 (3)0.4056 (15)1.0148 (8)0.055 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0567 (6)0.0528 (6)0.0559 (6)0.0008 (5)0.0003 (5)0.0004 (4)
O20.0593 (6)0.0509 (5)0.0563 (6)0.0261 (5)0.0226 (5)0.0140 (4)
O30.0720 (7)0.0380 (4)0.0527 (5)0.0164 (4)0.0258 (5)0.0117 (4)
N10.0522 (7)0.0383 (5)0.0390 (5)0.0163 (5)0.0128 (5)0.0091 (4)
C10.0681 (10)0.0593 (8)0.0386 (6)0.0096 (7)0.0057 (6)0.0075 (6)
C20.0970 (14)0.0671 (10)0.0431 (7)0.0139 (9)0.0193 (8)0.0190 (7)
C30.0892 (13)0.0541 (8)0.0629 (9)0.0041 (8)0.0409 (9)0.0113 (7)
C40.0576 (9)0.0647 (9)0.0715 (10)0.0001 (7)0.0234 (8)0.0067 (8)
C50.0504 (8)0.0545 (8)0.0522 (8)0.0094 (6)0.0112 (6)0.0112 (6)
C60.0483 (7)0.0412 (6)0.0352 (6)0.0120 (5)0.0129 (5)0.0029 (5)
C70.0466 (7)0.0372 (6)0.0366 (6)0.0123 (5)0.0082 (5)0.0006 (4)
C80.0454 (7)0.0333 (5)0.0431 (6)0.0090 (5)0.0112 (5)0.0045 (4)
C90.0455 (7)0.0334 (5)0.0378 (6)0.0068 (5)0.0077 (5)0.0012 (4)
C100.0444 (7)0.0335 (5)0.0380 (6)0.0031 (5)0.0093 (5)0.0024 (4)
C110.0559 (8)0.0383 (6)0.0459 (7)0.0074 (6)0.0128 (6)0.0036 (5)
C120.0681 (10)0.0472 (7)0.0510 (8)0.0018 (7)0.0217 (7)0.0048 (6)
C130.0729 (10)0.0553 (8)0.0634 (9)0.0031 (7)0.0371 (8)0.0073 (7)
C140.0778 (11)0.0457 (7)0.0793 (11)0.0143 (7)0.0402 (9)0.0038 (7)
C150.0675 (9)0.0357 (6)0.0598 (8)0.0096 (6)0.0261 (7)0.0030 (5)
Geometric parameters (Å, º) top
O1—C71.2164 (16)C5—H5A0.9300
O2—C81.2170 (14)C6—C71.4723 (18)
O3—C91.2138 (14)C7—C81.5401 (16)
N1—C81.3667 (16)C9—C101.4828 (17)
N1—C91.3943 (15)C10—C151.3873 (17)
N1—H1N10.879 (16)C10—C111.3904 (17)
C1—C21.379 (2)C11—C121.3818 (19)
C1—C61.3929 (18)C11—H11A0.9300
C1—H1A0.9300C12—C131.378 (2)
C2—C31.375 (3)C12—H12A0.9300
C2—H2A0.9300C13—C141.378 (2)
C3—C41.379 (2)C13—H13A0.9300
C3—H3A0.9300C14—C151.380 (2)
C4—C51.383 (2)C14—H14A0.9300
C4—H4A0.9300C15—H15A0.9300
C5—C61.383 (2)
C8—N1—C9121.74 (10)O2—C8—N1122.59 (11)
C8—N1—H1N1115.6 (10)O2—C8—C7118.81 (11)
C9—N1—H1N1122.6 (10)N1—C8—C7117.88 (10)
C2—C1—C6119.74 (16)O3—C9—N1119.05 (11)
C2—C1—H1A120.1O3—C9—C10122.50 (10)
C6—C1—H1A120.1N1—C9—C10118.44 (10)
C3—C2—C1120.14 (15)C15—C10—C11119.20 (12)
C3—C2—H2A119.9C15—C10—C9116.69 (10)
C1—C2—H2A119.9C11—C10—C9124.09 (11)
C2—C3—C4120.52 (15)C12—C11—C10119.85 (12)
C2—C3—H3A119.7C12—C11—H11A120.1
C4—C3—H3A119.7C10—C11—H11A120.1
C3—C4—C5119.75 (16)C13—C12—C11120.44 (13)
C3—C4—H4A120.1C13—C12—H12A119.8
C5—C4—H4A120.1C11—C12—H12A119.8
C4—C5—C6120.10 (14)C12—C13—C14120.04 (14)
C4—C5—H5A119.9C12—C13—H13A120.0
C6—C5—H5A119.9C14—C13—H13A120.0
C5—C6—C1119.73 (13)C13—C14—C15119.87 (13)
C5—C6—C7121.43 (11)C13—C14—H14A120.1
C1—C6—C7118.81 (13)C15—C14—H14A120.1
O1—C7—C6124.36 (11)C14—C15—C10120.59 (13)
O1—C7—C8115.00 (11)C14—C15—H15A119.7
C6—C7—C8120.35 (11)C10—C15—H15A119.7
C6—C1—C2—C30.8 (2)O1—C7—C8—N171.15 (15)
C1—C2—C3—C40.2 (3)C6—C7—C8—N1114.71 (13)
C2—C3—C4—C50.9 (2)C8—N1—C9—O313.09 (19)
C3—C4—C5—C60.7 (2)C8—N1—C9—C10165.59 (12)
C4—C5—C6—C10.2 (2)O3—C9—C10—C151.00 (19)
C4—C5—C6—C7177.86 (13)N1—C9—C10—C15179.64 (12)
C2—C1—C6—C51.0 (2)O3—C9—C10—C11177.49 (13)
C2—C1—C6—C7177.13 (13)N1—C9—C10—C111.15 (19)
C5—C6—C7—O1174.79 (12)C15—C10—C11—C120.8 (2)
C1—C6—C7—O17.10 (19)C9—C10—C11—C12179.20 (13)
C5—C6—C7—C81.23 (18)C10—C11—C12—C130.6 (2)
C1—C6—C7—C8179.33 (11)C11—C12—C13—C140.0 (3)
C9—N1—C8—O2167.27 (13)C12—C13—C14—C150.5 (3)
C9—N1—C8—C722.58 (18)C13—C14—C15—C100.4 (3)
O1—C7—C8—O299.38 (15)C11—C10—C15—C140.3 (2)
C6—C7—C8—O274.76 (16)C9—C10—C15—C14178.82 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.879 (16)2.107 (16)2.9765 (14)170.0 (15)
C11—H11A···O2i0.932.513.4080 (18)162
C14—H14A···Cg1ii0.932.863.6592 (18)145
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y, z+2.

Experimental details

Crystal data
Chemical formulaC15H11NO3
Mr253.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)5.7215 (1), 10.7241 (1), 20.6710 (3)
β (°) 98.255 (1)
V3)1255.19 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.36 × 0.33 × 0.27
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.967, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
13904, 3624, 2549
Rint0.025
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.124, 1.03
No. of reflections3624
No. of parameters176
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.19

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.879 (16)2.107 (16)2.9765 (14)170.0 (15)
C11—H11A···O2i0.932.513.4080 (18)162
C14—H14A···Cg1ii0.932.863.6592 (18)145
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7576-2009.

Acknowledgements

HKF and JHG thank Universiti Sains Malaysia (USM) for a Research University Grant (No. 1001/PFIZIK/811160). Financial support from the Fok Ying Tung Education Foundation (114012) is also acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheah, W. C., Black, D. S., Goh, W. K. & Kumar, N. (2008). Tetrahedron Lett. 49, 2965–2968.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, T. Y., Scheffer, J. R. & Trotter, J. (1998). Acta Cryst. C54, 101–102.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGallagher, J. F., Donnelly, K. & Lough, A. J. (2009). Acta Cryst. E65, o486–o487.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHaffner, C. D. & Ulrich, J. (2010). Bioorg. Med. Chem. Lett. 20, 6989–6992.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHartung, J., Špehar, K., Svoboda, I. & Fuess, H. (2004). Acta Cryst. E60, o750–o751.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJotani, M. M., Baldaniya, B. B. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o778.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLavanya, P. & Rao, C. V. (2010). J. Chem. Pharm. Res. 2, 25–32.  CAS Google Scholar
First citationMagarl, D. D., Tapas, A. R. & Ambre, P. K. (2010). Pharma Chem. 2, 142–147.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds