organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,8-Di­methyl-4,7-di­aza­deca-3,7-diene-2,9-dione dioxime

aCenter of Excellence in Functional Materials, Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10903, Thailand, and bDepartment of Chemistry, Faculty of Science, Prince Songkla University, Hatyai, Songkla, Thailand
*Correspondence e-mail: fscists@ku.ac.th

(Received 16 November 2010; accepted 9 December 2010; online 15 December 2010)

The complete mol­ecule of the title compound, C10H18N4O2, is generated by a crystallographic inversion centre at the mid-point of the central C—C bond. The two oxime groups have an E configuration. In the crystal, mol­ecules are linked through inter­molecular O—H⋯N hydrogen bonds.

Related literature

For a related synthesis and the application of the title compound as a ligand, see: Uhlig et al. (1966[Uhlig, E. & Freidrich, M. (1966). Z. Anorg. Allg. Chem. 343, 299-307.]); Kitiphaisalnont et al. (2006[Kitiphaisalnont, P., Thohinung, S., Hanmungtum, P., Chaichit, N., Patrarakorn, S. & Siripaisarnpipat, S. (2006). Polyhedron, 25, 2710-2716.]).

[Scheme 1]

Experimental

Crystal data
  • C10H18N4O2

  • Mr = 226.28

  • Monoclinic, P 21 /n

  • a = 4.4128 (3) Å

  • b = 12.8534 (8) Å

  • c = 10.4860 (7) Å

  • β = 90.762 (2)°

  • V = 594.71 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.16 × 0.13 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 3578 measured reflections

  • 1293 independent reflections

  • 939 reflections with I > 2σ(I)

  • Rint = 0.032

  • 3 standard reflections every 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.132

  • S = 1.05

  • 1293 reflections

  • 75 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2i 0.82 2.12 2.8384 (19) 146
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The diiminedioxime have been used as ligand for the complexation of transition metal ions (Uhlig et al., 1966). The title molecule, C10H18N4O2,is a diiminedioxime which contains shortest methylene backbone. The hydrogen bonds are formed between two oxime groups (Kitiphaisalnont et al., 2006). Herein, we report on the crystal structue of the title compound.

The centrosymmetric unit of the title compound (Fig. 1) is generated by a crystallographic inversion centre (symmetry code: -x,-y,-z) at the mid-point of the the central C—C bond and there is a crystallographic twofold screw axis (symmetry code: -x + 1/2,y + 1/2,-z + 1/2). The two oxime groups have a E configuration. The crystal packing (Fig. 2) is stabilized by weak intermolecular O—H···N hydrogen bonds (Table 1; O1—H1···N2ii).

Related literature top

For a related synthesis and the application of the title compound as a ligand, see: Uhlig et al. (1966); Kitiphaisalnont et al. (2006).

Experimental top

The title compound was prepared from the simple reaction between diacetylmonoxime 20.2 g (0.200 mole)and ethylenediamine 6.7 ml (0.100 mole)in 50 ml me thanol. After the mixture was stirred at room temperature for 30 min, white solid precipitated (yield 75%).After recrystalization,the colorless crystals were obtained.

Refinement top

All H atoms were geometrically positioned (C—H 0.93–0.97 Ao) and refined as riding, with Uiso(H)= 1.2–1.5 Ueq of the parent atom.

Structure description top

The diiminedioxime have been used as ligand for the complexation of transition metal ions (Uhlig et al., 1966). The title molecule, C10H18N4O2,is a diiminedioxime which contains shortest methylene backbone. The hydrogen bonds are formed between two oxime groups (Kitiphaisalnont et al., 2006). Herein, we report on the crystal structue of the title compound.

The centrosymmetric unit of the title compound (Fig. 1) is generated by a crystallographic inversion centre (symmetry code: -x,-y,-z) at the mid-point of the the central C—C bond and there is a crystallographic twofold screw axis (symmetry code: -x + 1/2,y + 1/2,-z + 1/2). The two oxime groups have a E configuration. The crystal packing (Fig. 2) is stabilized by weak intermolecular O—H···N hydrogen bonds (Table 1; O1—H1···N2ii).

For a related synthesis and the application of the title compound as a ligand, see: Uhlig et al. (1966); Kitiphaisalnont et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.[Symmetry codes:(i) -x, 1 - y, -z.]
[Figure 2] Fig. 2. A view of O—H···N interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) 1/2 + x, 0.5 - y, 1/2 + z; (ii) -1/2 + x, 0.5 - y, -1/2 + z; (iii) -x, 1 - y, -z; (iv) -0.5 - x, 1/2 + y, -0.5 - z.]
3,8-Dimethyl-4,7-diazadeca-3,7-diene-2,9-dione dioxime top
Crystal data top
C10H18N4O2F(000) = 244
Mr = 226.28Dx = 1.264 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 4.4128 (3) Åθ = 25–35°
b = 12.8534 (8) ŵ = 0.09 mm1
c = 10.4860 (7) ÅT = 293 K
β = 90.762 (2)°Needle, colorless
V = 594.71 (7) Å30.16 × 0.13 × 0.12 mm
Z = 2
Data collection top
Bruker SMART CCD area detector
diffractometer
939 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 27.0°, θmin = 2.5°
multi–scanh = 55
3578 measured reflectionsk = 1616
1293 independent reflectionsl = 137
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: difference Fourier map
wR(F2) = 0.132H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0571P)2 + 0.1569P]
where P = (Fo2 + 2Fc2)/3
1293 reflections(Δ/σ)max < 0.001
75 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C10H18N4O2V = 594.71 (7) Å3
Mr = 226.28Z = 2
Monoclinic, P21/nMo Kα radiation
a = 4.4128 (3) ŵ = 0.09 mm1
b = 12.8534 (8) ÅT = 293 K
c = 10.4860 (7) Å0.16 × 0.13 × 0.12 mm
β = 90.762 (2)°
Data collection top
Bruker SMART CCD area detector
diffractometer
939 reflections with I > 2σ(I)
3578 measured reflectionsRint = 0.032
1293 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.05Δρmax = 0.16 e Å3
1293 reflectionsΔρmin = 0.22 e Å3
75 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8167 (3)0.17534 (10)0.32669 (12)0.0477 (4)
H10.87040.16610.40100.072*
N10.6414 (3)0.26556 (11)0.31833 (13)0.0378 (4)
N20.2568 (3)0.40201 (11)0.07864 (13)0.0351 (4)
C10.5506 (4)0.28417 (13)0.20383 (15)0.0345 (4)
C20.3631 (4)0.37999 (13)0.19019 (15)0.0335 (4)
C30.0664 (4)0.49535 (14)0.06676 (16)0.0378 (4)
H3A0.18710.55660.08610.045*
H3B0.09640.49180.12790.045*
C40.6133 (5)0.21689 (16)0.09136 (17)0.0521 (6)
H4A0.74420.25320.03400.078*
H4B0.42620.20030.04830.078*
H4C0.71000.15390.11940.078*
C50.3088 (5)0.44515 (16)0.30710 (17)0.0478 (5)
H5A0.35190.51670.28850.072*
H5B0.43870.42180.37540.072*
H5C0.10100.43850.33190.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0611 (9)0.0471 (8)0.0345 (7)0.0125 (7)0.0118 (6)0.0046 (6)
N10.0454 (9)0.0382 (8)0.0297 (8)0.0030 (7)0.0085 (6)0.0034 (6)
N20.0385 (8)0.0369 (8)0.0296 (7)0.0036 (6)0.0083 (6)0.0039 (6)
C10.0380 (9)0.0379 (9)0.0274 (9)0.0049 (7)0.0057 (7)0.0034 (7)
C20.0367 (9)0.0367 (9)0.0271 (8)0.0049 (7)0.0057 (7)0.0022 (7)
C30.0404 (9)0.0386 (10)0.0343 (9)0.0016 (8)0.0083 (7)0.0042 (7)
C40.0754 (15)0.0487 (12)0.0319 (10)0.0139 (10)0.0097 (9)0.0010 (8)
C50.0622 (13)0.0491 (11)0.0319 (9)0.0079 (9)0.0082 (8)0.0005 (8)
Geometric parameters (Å, º) top
O1—N11.3959 (19)C3—H3A0.9700
O1—H10.8200C3—H3B0.9700
N1—C11.283 (2)C4—H4A0.9600
N2—C21.286 (2)C4—H4B0.9600
N2—C31.469 (2)C4—H4C0.9600
C1—C21.490 (2)C5—H5A0.9600
C1—C41.491 (2)C5—H5B0.9600
C2—C51.507 (2)C5—H5C0.9600
C3—C3i1.515 (3)
N1—O1—H1109.5H3A—C3—H3B108.1
C1—N1—O1112.30 (14)C1—C4—H4A109.5
C2—N2—C3117.27 (15)C1—C4—H4B109.5
N1—C1—C2114.21 (15)H4A—C4—H4B109.5
N1—C1—C4124.96 (16)C1—C4—H4C109.5
C2—C1—C4120.81 (14)H4A—C4—H4C109.5
N2—C2—C1117.70 (15)H4B—C4—H4C109.5
N2—C2—C5123.89 (16)C2—C5—H5A109.5
C1—C2—C5118.41 (14)C2—C5—H5B109.5
N2—C3—C3i110.88 (19)H5A—C5—H5B109.5
N2—C3—H3A109.5C2—C5—H5C109.5
C3i—C3—H3A109.5H5A—C5—H5C109.5
N2—C3—H3B109.5H5B—C5—H5C109.5
C3i—C3—H3B109.5
O1—N1—C1—C2179.86 (14)C4—C1—C2—N20.4 (3)
O1—N1—C1—C41.8 (3)N1—C1—C2—C51.9 (2)
C3—N2—C2—C1178.63 (15)C4—C1—C2—C5179.72 (18)
C3—N2—C2—C51.3 (2)C2—N2—C3—C3i174.31 (18)
N1—C1—C2—N2178.05 (16)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2ii0.822.122.8384 (19)146
Symmetry code: (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H18N4O2
Mr226.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)4.4128 (3), 12.8534 (8), 10.4860 (7)
β (°) 90.762 (2)
V3)594.71 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.16 × 0.13 × 0.12
Data collection
DiffractometerBruker SMART CCD area detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3578, 1293, 939
Rint0.032
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.132, 1.05
No. of reflections1293
No. of parameters75
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.22

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.822.122.8384 (19)146
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Kasetsart University Research and Development Institute and the Department of Chemistry, Faculty of Science, Kasetsart University, for financial support.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKitiphaisalnont, P., Thohinung, S., Hanmungtum, P., Chaichit, N., Patrarakorn, S. & Siripaisarnpipat, S. (2006). Polyhedron, 25, 2710–2716.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUhlig, E. & Freidrich, M. (1966). Z. Anorg. Allg. Chem. 343, 299–307.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds