organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Nitro­phenolato)(subphthalo­cyaninato)boron(III)1

aDepartment of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5, and bDepartment of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
*Correspondence e-mail: tim.bender@utoronto.ca

(Received 29 October 2010; accepted 2 December 2010; online 8 December 2010)

The main feature of the structure of the title compound, C30H16BN7O3 or NO2PhO-BsubPc, are pairs of mol­ecules linked through π-inter­actions between the concave faces of the BsubPc fragments at a distance of 3.5430 (11) Å across an inversion centre. However, the angle between the planes of the five- and six-menbered rings involved in this inter­action is 1.44 (10)°, causing the inter­acting BsubPcs units to be slightly askew rather than parallel as is typical for π-stacking inter­actions.

Related literature

For a general review of boronsubphthalocyanine compounds (BsubPcs), see: Claessens et al. (2002[Claessens, C. G., González-Rodríguez, D., del Rey, B. & Torres, T. (2002). Chem. Rev. 102, 835-853.]). For synthesis of BsubPcs and their derivatives, see: Zyskowski & Kennedy (2000[Zyskowski, C. D. & Kennedy, V. O. (2000). J. Porphyrins Phthalocyanins, pp. 707-712.]); Claessens et al. (2003[Claessens, C. G., González-Rodríguez, D., del Rey, B., Torres, T., Mark, G., Schuchmann, H.-P., von Sonntag, C., MacDonald, J. G. & Nohr, R. S. (2003). Eur. J. Org. Chem. pp. 2547-2551.]); Paton et al. (2010[Paton, A. S., Morse, G. E., Lough, A. J. & Bender, T. P. (2010b). CrystEngComm, doi:10.1039/C0CE00599A.]). For the application of BsubPcs in organic electronic devices, see: Morse et al. (2010[Morse, G. E., Helander, M. G., Maka, J. F., Lu, Z. H. & Bender, T. P. (2010). Appl. Mater. Inter. 2, 1934-1944.]) and references cited therein; Gommans et al. (2007[Gommans, H., Cheyns, D., Aernouts, T., Girotto, C., Poortmans, J. & Heremans, P. (2007). Adv. Funct. Mater. 17, 2653-2658.]). For related structures of non-halogenated BsubPc derivatives, see: Potz et al. (2000[Potz, R., Goldner, M., Huckstadt, H., Cornelissen, U., Tutass, A. & Homborg, H. (2000). Z. Anorg. Allg. Chem. 626, 588-596.]); Paton et al. (2010a[Paton, A. S., Lough, A. J. & Bender, T. P. (2010a). Acta Cryst. E66, o3246.],b[Paton, A. S., Morse, G. E., Lough, A. J. & Bender, T. P. (2010b). CrystEngComm, doi:10.1039/C0CE00599A.]).

[Scheme 1]

Experimental

Crystal data
  • C30H16BN7O3

  • Mr = 533.31

  • Monoclinic, P 21 /n

  • a = 15.6597 (4) Å

  • b = 8.2959 (1) Å

  • c = 19.5409 (5) Å

  • β = 110.3060 (9)°

  • V = 2380.82 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 150 K

  • 0.40 × 0.26 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.786, Tmax = 1.000

  • 19982 measured reflections

  • 5413 independent reflections

  • 3646 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.141

  • S = 1.03

  • 5413 reflections

  • 371 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We report the crystal structure of 4-nitrophenoxy-boronsubphthalocyanine (NO2PhO-BsubPcs), which possesses an electron withdrawing group in the para position of the phenoxy molecular fragment. We have recently reported a study of the crystal structures of a series of para-substituted phenoxy-BsubPcs wherein most of the substituents were electron donating (alkyl, Paton et al., 2010). Contained within the study was 4-fluorophenoxy-BsubPcs (FPhO-BsubPcs). While fluorine is moderately electron withdrawing we did not observe any difference in its crystal structure compared to the baseline phenoxy-BsubPcs. We have since reported the structure of a derivative with a stronger electron withdrawing group, 4-acetylphenoxy-BsubPcs. (Paton et al., 2011) This structure was only slightly different from the typical FPhO-BsubPcs crystal packing motif. We synthesized the title compound as the next derivative in a series studying the effects of electron withdrawing groups on related compounds.

The title compound was prepared by a method described previously (Paton et al., 2010; Claessens et al., 2003), in which chloro-boronsubphthalocyanine (Cl-BsubPcs) is reacted with an excess of the appropriate phenol until substitution is complete. Further details are given in the experimental sections which accompany this article.

The molecular structure of the title compound obtained from benzene-heptane diffusion crystallization is shown in Fig. 1. The compound shows the expected bowl shape of the BsubPcs ligand. The boron-oxygen-carbon (B—O—C) angle in the molecule is 124.56 (14)°, which differs significantly from both the experimental (115.2 (2)°) and computational gas-phase (ca 115°) values of B—O—C angle for the typical phenoxy derivatized FPhO-BsubPcs (Paton et al., 2010). Examining the torsion angle between the boron, oxygen, and the first two carbon atoms on the phenoxy substituent (B—O—C—C) gives values of -44.7 (3)°. In contrast, the angle associated with FPhO-BsubPcs is -91.0 (2)° relative to the plane of the BsubPcs fragment (Paton et al., 2010).

The crystal structure of NO2PhO-BsubPcs (Fig. 2) shows pairs of BsubPcs fragments associated through a π-interaction separated by a centroid-to-centroid distance of 3.5430 (11) Å. These pairs of molecules form one-dimensional rows aligned with the b axis. The π-interaction creating the pairs is between two sets of BsubPcs fragments whose ring planes are not perfectly parallel; the planes of the two rings (C9/C10/C11/C12/C13/C14/C15 and C9/C10/C15/C16/N3 on neighbouring molecules) are at an angle of 1.44 (10)°.

Related literature top

For a general review of boronsubphthalocyanine compounds (BsubPcs), see: Claessens et al. (2002). For synthesis of BsubPcs and their derivatives, see: Zyskowski & Kennedy (2000); Claessens et al. (2003); Paton et al. (2010). For the application of BsubPcs in organic electronic devices, see: Morse et al. (2010) and references cited therein; Gommans et al. (2007). For related structures of non-halogenated BsubPc derivatives, see: Potz et al. (2000); Paton et al. (2010, 2011).

Experimental top

Cl-BsubPc, synthesized by a procedure adapted from Zyskowski and Kennedy (2000), The title compound was synthesized using a method adapted from Claessens et al. (2003) and Paton et al. (2010): 4-Nitrophenoxy-boronsubphthalocyanine. Cl-BsubPc (0.510 g, 0.0012 mol) was mixed with 4-nitrophenol (0.567 g, 0.0041 mol) in toluene (10 ml) in a cylindrical vessel fitted with a reflux condenser and argon inlet. The mixture was stirred and heated at reflux under a constant pressure of argon for 17 h. Reaction was determined complete via HPLC by the absence of Cl-BsubPc. The solvent was evaporated under rotary evaporation. The crude product purified on a Kauffman column using standard basic alumina (300 mesh) as the adsorbent and dichloromethane as the eluent. The product elutes from the Kauffman column while the excess phenol remains adsorbed. The dichloromethane was then removed under reduced pressure yielding a dark pink/magenta powder of the title compound (0.223 g, 37%).

Structure description top

We report the crystal structure of 4-nitrophenoxy-boronsubphthalocyanine (NO2PhO-BsubPcs), which possesses an electron withdrawing group in the para position of the phenoxy molecular fragment. We have recently reported a study of the crystal structures of a series of para-substituted phenoxy-BsubPcs wherein most of the substituents were electron donating (alkyl, Paton et al., 2010). Contained within the study was 4-fluorophenoxy-BsubPcs (FPhO-BsubPcs). While fluorine is moderately electron withdrawing we did not observe any difference in its crystal structure compared to the baseline phenoxy-BsubPcs. We have since reported the structure of a derivative with a stronger electron withdrawing group, 4-acetylphenoxy-BsubPcs. (Paton et al., 2011) This structure was only slightly different from the typical FPhO-BsubPcs crystal packing motif. We synthesized the title compound as the next derivative in a series studying the effects of electron withdrawing groups on related compounds.

The title compound was prepared by a method described previously (Paton et al., 2010; Claessens et al., 2003), in which chloro-boronsubphthalocyanine (Cl-BsubPcs) is reacted with an excess of the appropriate phenol until substitution is complete. Further details are given in the experimental sections which accompany this article.

The molecular structure of the title compound obtained from benzene-heptane diffusion crystallization is shown in Fig. 1. The compound shows the expected bowl shape of the BsubPcs ligand. The boron-oxygen-carbon (B—O—C) angle in the molecule is 124.56 (14)°, which differs significantly from both the experimental (115.2 (2)°) and computational gas-phase (ca 115°) values of B—O—C angle for the typical phenoxy derivatized FPhO-BsubPcs (Paton et al., 2010). Examining the torsion angle between the boron, oxygen, and the first two carbon atoms on the phenoxy substituent (B—O—C—C) gives values of -44.7 (3)°. In contrast, the angle associated with FPhO-BsubPcs is -91.0 (2)° relative to the plane of the BsubPcs fragment (Paton et al., 2010).

The crystal structure of NO2PhO-BsubPcs (Fig. 2) shows pairs of BsubPcs fragments associated through a π-interaction separated by a centroid-to-centroid distance of 3.5430 (11) Å. These pairs of molecules form one-dimensional rows aligned with the b axis. The π-interaction creating the pairs is between two sets of BsubPcs fragments whose ring planes are not perfectly parallel; the planes of the two rings (C9/C10/C11/C12/C13/C14/C15 and C9/C10/C15/C16/N3 on neighbouring molecules) are at an angle of 1.44 (10)°.

For a general review of boronsubphthalocyanine compounds (BsubPcs), see: Claessens et al. (2002). For synthesis of BsubPcs and their derivatives, see: Zyskowski & Kennedy (2000); Claessens et al. (2003); Paton et al. (2010). For the application of BsubPcs in organic electronic devices, see: Morse et al. (2010) and references cited therein; Gommans et al. (2007). For related structures of non-halogenated BsubPc derivatives, see: Potz et al. (2000); Paton et al. (2010, 2011).

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure with labels of NO2PhO-BsubPc with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Extended crystal structure of NO2PhO-BsubPc shown from two views.
(7,12:14,19-diimino-21,5-nitrilo-5H- tribenzo[c,h,m][1,6,11]triazacyclopentadecinato)(4-nitrophenoxy)boron(III) top
Crystal data top
C30H16BN7O3F(000) = 1096
Mr = 533.31Dx = 1.488 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 19982 reflections
a = 15.6597 (4) Åθ = 2.7–27.5°
b = 8.2959 (1) ŵ = 0.10 mm1
c = 19.5409 (5) ÅT = 150 K
β = 110.3060 (9)°Needle, purple
V = 2380.82 (9) Å30.40 × 0.26 × 0.20 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
5413 independent reflections
Radiation source: fine-focus sealed tube3646 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.7°
φ scans and ω scans with κ offsetsh = 2020
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1010
Tmin = 0.788, Tmax = 1.002l = 2025
19982 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.0779P)2 + 0.3383P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5413 reflectionsΔρmax = 0.27 e Å3
371 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXTL (Version 6.1; Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0062 (13)
Crystal data top
C30H16BN7O3V = 2380.82 (9) Å3
Mr = 533.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.6597 (4) ŵ = 0.10 mm1
b = 8.2959 (1) ÅT = 150 K
c = 19.5409 (5) Å0.40 × 0.26 × 0.20 mm
β = 110.3060 (9)°
Data collection top
Nonius KappaCCD
diffractometer
5413 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
3646 reflections with I > 2σ(I)
Tmin = 0.788, Tmax = 1.002Rint = 0.052
19982 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.03Δρmax = 0.27 e Å3
5413 reflectionsΔρmin = 0.33 e Å3
371 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.16074 (8)0.41514 (14)0.53315 (7)0.0317 (3)
O20.02540 (12)1.06889 (18)0.61544 (8)0.0608 (5)
O30.15045 (11)1.04404 (18)0.70707 (8)0.0506 (4)
N10.23549 (10)0.23375 (17)0.47826 (8)0.0264 (3)
N20.27422 (10)0.41366 (17)0.39899 (8)0.0280 (3)
N30.31349 (10)0.47425 (16)0.52541 (8)0.0257 (3)
N40.41782 (10)0.47197 (17)0.64801 (8)0.0278 (4)
N50.30600 (10)0.26475 (17)0.60546 (8)0.0264 (3)
N60.26077 (10)0.00320 (18)0.55444 (8)0.0295 (4)
N70.09529 (12)0.99495 (19)0.64927 (9)0.0365 (4)
C10.23052 (12)0.0710 (2)0.48797 (10)0.0260 (4)
C20.21032 (12)0.0005 (2)0.41596 (10)0.0274 (4)
C30.19231 (12)0.1576 (2)0.39047 (10)0.0307 (4)
H3A0.18860.24230.42210.037*
C40.18000 (13)0.1875 (2)0.31828 (11)0.0339 (5)
H4A0.16640.29400.29990.041*
C50.18705 (14)0.0644 (2)0.27145 (11)0.0349 (5)
H5A0.17890.08930.22210.042*
C60.20568 (12)0.0928 (2)0.29572 (10)0.0314 (4)
H6A0.21130.17560.26390.038*
C70.21605 (12)0.1264 (2)0.36818 (10)0.0279 (4)
C80.23789 (12)0.2738 (2)0.41126 (10)0.0267 (4)
C90.31727 (12)0.5053 (2)0.45789 (10)0.0268 (4)
C100.38989 (12)0.6226 (2)0.46887 (10)0.0285 (4)
C110.42434 (13)0.6997 (2)0.42060 (11)0.0326 (4)
H11A0.39730.68450.36940.039*
C120.49891 (14)0.7987 (2)0.44965 (11)0.0349 (5)
H12A0.52250.85440.41760.042*
C130.54074 (13)0.8193 (2)0.52464 (11)0.0331 (5)
H13A0.59210.88850.54250.040*
C140.50902 (12)0.7412 (2)0.57373 (10)0.0308 (4)
H14A0.53830.75400.62490.037*
C150.43269 (12)0.6432 (2)0.54535 (10)0.0283 (4)
C160.38688 (12)0.5356 (2)0.58077 (10)0.0276 (4)
C170.38092 (12)0.3310 (2)0.65744 (9)0.0268 (4)
C180.42053 (12)0.2038 (2)0.70988 (9)0.0274 (4)
C190.49496 (12)0.2021 (2)0.77467 (10)0.0317 (4)
H19A0.52840.29770.79320.038*
C200.51877 (13)0.0575 (2)0.81119 (11)0.0384 (5)
H20A0.56790.05480.85650.046*
C210.47226 (13)0.0857 (2)0.78312 (11)0.0384 (5)
H21A0.49020.18320.80970.046*
C220.40048 (13)0.0871 (2)0.71720 (10)0.0341 (4)
H22A0.37090.18500.69710.041*
C230.37281 (12)0.0595 (2)0.68102 (10)0.0282 (4)
C240.30390 (12)0.0996 (2)0.61117 (10)0.0275 (4)
C250.14725 (12)0.5556 (2)0.56414 (10)0.0273 (4)
C260.19917 (12)0.6002 (2)0.63496 (10)0.0307 (4)
H26A0.24610.53110.66400.037*
C270.18261 (12)0.7450 (2)0.66318 (10)0.0302 (4)
H27A0.21880.77740.71110.036*
C280.11247 (13)0.8418 (2)0.62041 (10)0.0290 (4)
C290.05805 (13)0.7966 (2)0.55091 (10)0.0322 (4)
H29A0.00880.86300.52320.039*
C300.07611 (12)0.6538 (2)0.52219 (10)0.0299 (4)
H30A0.04020.62260.47400.036*
B10.24932 (14)0.3530 (2)0.53782 (11)0.0264 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0254 (7)0.0321 (7)0.0366 (8)0.0012 (5)0.0094 (6)0.0069 (6)
O20.0690 (12)0.0495 (9)0.0467 (10)0.0283 (8)0.0017 (9)0.0077 (7)
O30.0539 (10)0.0491 (9)0.0383 (9)0.0037 (7)0.0027 (8)0.0168 (7)
N10.0260 (8)0.0272 (8)0.0251 (8)0.0008 (6)0.0077 (6)0.0006 (6)
N20.0279 (8)0.0262 (8)0.0267 (8)0.0025 (6)0.0054 (7)0.0022 (6)
N30.0253 (8)0.0254 (7)0.0246 (8)0.0018 (6)0.0065 (6)0.0008 (6)
N40.0277 (8)0.0296 (8)0.0261 (9)0.0004 (6)0.0091 (7)0.0016 (6)
N50.0250 (8)0.0296 (8)0.0246 (8)0.0006 (6)0.0088 (6)0.0011 (6)
N60.0261 (8)0.0330 (8)0.0297 (9)0.0038 (6)0.0099 (7)0.0015 (7)
N70.0424 (10)0.0367 (9)0.0281 (9)0.0037 (8)0.0092 (8)0.0025 (7)
C10.0226 (9)0.0270 (9)0.0283 (10)0.0004 (7)0.0089 (8)0.0015 (7)
C20.0221 (9)0.0315 (9)0.0272 (10)0.0012 (7)0.0069 (8)0.0008 (7)
C30.0276 (10)0.0292 (9)0.0348 (11)0.0003 (7)0.0102 (8)0.0017 (8)
C40.0315 (11)0.0316 (10)0.0377 (12)0.0021 (8)0.0111 (9)0.0075 (8)
C50.0362 (11)0.0378 (11)0.0300 (11)0.0006 (8)0.0108 (9)0.0065 (8)
C60.0297 (10)0.0355 (10)0.0283 (10)0.0004 (8)0.0092 (8)0.0012 (8)
C70.0223 (9)0.0304 (9)0.0289 (10)0.0003 (7)0.0061 (8)0.0015 (7)
C80.0233 (9)0.0299 (9)0.0257 (10)0.0034 (7)0.0068 (7)0.0018 (7)
C90.0281 (10)0.0253 (9)0.0257 (10)0.0046 (7)0.0078 (8)0.0025 (7)
C100.0281 (10)0.0241 (9)0.0326 (11)0.0047 (7)0.0098 (8)0.0009 (7)
C110.0362 (11)0.0266 (9)0.0360 (11)0.0059 (8)0.0138 (9)0.0027 (8)
C120.0379 (11)0.0272 (9)0.0453 (13)0.0038 (8)0.0217 (10)0.0032 (8)
C130.0266 (10)0.0249 (9)0.0487 (13)0.0017 (7)0.0143 (9)0.0002 (8)
C140.0269 (10)0.0275 (9)0.0340 (11)0.0046 (7)0.0054 (8)0.0002 (8)
C150.0272 (10)0.0241 (9)0.0331 (11)0.0036 (7)0.0100 (8)0.0017 (7)
C160.0260 (10)0.0261 (9)0.0294 (10)0.0019 (7)0.0079 (8)0.0033 (7)
C170.0226 (9)0.0333 (10)0.0244 (10)0.0003 (7)0.0078 (8)0.0025 (7)
C180.0255 (10)0.0343 (10)0.0244 (10)0.0007 (7)0.0113 (8)0.0020 (7)
C190.0259 (10)0.0403 (11)0.0291 (10)0.0021 (8)0.0098 (8)0.0005 (8)
C200.0278 (11)0.0491 (12)0.0335 (11)0.0006 (8)0.0047 (9)0.0086 (9)
C210.0299 (11)0.0423 (11)0.0404 (12)0.0019 (8)0.0089 (9)0.0132 (9)
C220.0303 (11)0.0374 (10)0.0351 (11)0.0002 (8)0.0121 (9)0.0063 (8)
C230.0269 (10)0.0340 (10)0.0262 (10)0.0001 (7)0.0121 (8)0.0035 (8)
C240.0268 (10)0.0297 (9)0.0285 (10)0.0015 (7)0.0128 (8)0.0015 (7)
C250.0259 (10)0.0288 (9)0.0293 (10)0.0010 (7)0.0124 (8)0.0014 (7)
C260.0239 (10)0.0403 (10)0.0260 (10)0.0039 (8)0.0061 (8)0.0000 (8)
C270.0261 (10)0.0400 (10)0.0247 (10)0.0016 (8)0.0090 (8)0.0022 (8)
C280.0316 (10)0.0306 (9)0.0267 (10)0.0023 (7)0.0125 (8)0.0019 (7)
C290.0331 (11)0.0326 (10)0.0273 (10)0.0020 (8)0.0061 (8)0.0013 (8)
C300.0302 (10)0.0330 (10)0.0244 (10)0.0001 (8)0.0068 (8)0.0006 (8)
B10.0245 (11)0.0280 (10)0.0264 (11)0.0012 (8)0.0084 (9)0.0008 (8)
Geometric parameters (Å, º) top
O1—C251.363 (2)C10—C111.394 (3)
O1—B11.453 (2)C10—C151.420 (3)
O2—N71.228 (2)C11—C121.378 (3)
O3—N71.229 (2)C11—H11A0.9500
N1—C81.364 (2)C12—C131.393 (3)
N1—C11.369 (2)C12—H12A0.9500
N1—B11.485 (2)C13—C141.385 (3)
N2—C91.349 (2)C13—H13A0.9500
N2—C81.350 (2)C14—C151.392 (3)
N3—C91.365 (2)C14—H14A0.9500
N3—C161.374 (2)C15—C161.461 (3)
N3—B11.500 (2)C17—C181.451 (2)
N4—C161.341 (2)C18—C191.392 (3)
N4—C171.345 (2)C18—C231.421 (3)
N5—C171.372 (2)C19—C201.379 (3)
N5—C241.376 (2)C19—H19A0.9500
N5—B11.502 (2)C20—C211.401 (3)
N6—C11.342 (2)C20—H20A0.9500
N6—C241.344 (2)C21—C221.385 (3)
N7—C281.453 (2)C21—H21A0.9500
C1—C21.454 (2)C22—C231.398 (3)
C2—C31.397 (2)C22—H22A0.9500
C2—C71.424 (2)C23—C241.455 (3)
C3—C41.378 (3)C25—C261.390 (2)
C3—H3A0.9500C25—C301.394 (2)
C4—C51.401 (3)C26—C271.383 (3)
C4—H4A0.9500C26—H26A0.9500
C5—C61.383 (3)C27—C281.383 (3)
C5—H5A0.9500C27—H27A0.9500
C6—C71.396 (2)C28—C291.381 (3)
C6—H6A0.9500C29—C301.382 (2)
C7—C81.457 (2)C29—H29A0.9500
C9—C101.455 (3)C30—H30A0.9500
C25—O1—B1124.58 (14)C13—C14—H14A121.2
C8—N1—C1113.27 (14)C15—C14—H14A121.2
C8—N1—B1123.03 (15)C14—C15—C10121.07 (17)
C1—N1—B1123.23 (15)C14—C15—C16131.53 (17)
C9—N2—C8116.73 (15)C10—C15—C16107.15 (15)
C9—N3—C16112.71 (15)N4—C16—N3123.03 (16)
C9—N3—B1122.61 (15)N4—C16—C15129.40 (16)
C16—N3—B1123.05 (15)N3—C16—C15105.50 (15)
C16—N4—C17116.75 (15)N4—C17—N5122.97 (16)
C17—N5—C24112.15 (15)N4—C17—C18129.05 (16)
C17—N5—B1123.28 (15)N5—C17—C18106.13 (15)
C24—N5—B1122.21 (15)C19—C18—C23120.77 (16)
C1—N6—C24117.15 (15)C19—C18—C17131.87 (16)
O2—N7—O3122.68 (17)C23—C18—C17107.18 (15)
O2—N7—C28118.57 (16)C20—C19—C18118.05 (17)
O3—N7—C28118.74 (16)C20—C19—H19A121.0
N6—C1—N1121.98 (16)C18—C19—H19A121.0
N6—C1—C2130.79 (16)C19—C20—C21121.60 (19)
N1—C1—C2105.44 (15)C19—C20—H20A119.2
C3—C2—C7120.36 (17)C21—C20—H20A119.2
C3—C2—C1132.24 (17)C22—C21—C20121.01 (18)
C7—C2—C1107.32 (15)C22—C21—H21A119.5
C4—C3—C2118.25 (17)C20—C21—H21A119.5
C4—C3—H3A120.9C21—C22—C23118.17 (18)
C2—C3—H3A120.9C21—C22—H22A120.9
C3—C4—C5121.49 (17)C23—C22—H22A120.9
C3—C4—H4A119.3C22—C23—C18120.29 (17)
C5—C4—H4A119.3C22—C23—C24132.28 (17)
C6—C5—C4121.21 (18)C18—C23—C24107.23 (15)
C6—C5—H5A119.4N6—C24—N5123.04 (16)
C4—C5—H5A119.4N6—C24—C23129.39 (16)
C5—C6—C7118.18 (17)N5—C24—C23105.86 (15)
C5—C6—H6A120.9O1—C25—C26122.87 (16)
C7—C6—H6A120.9O1—C25—C30116.98 (16)
C6—C7—C2120.47 (16)C26—C25—C30120.12 (16)
C6—C7—C8132.45 (17)C27—C26—C25120.16 (17)
C2—C7—C8106.99 (15)C27—C26—H26A119.9
N2—C8—N1122.25 (16)C25—C26—H26A119.9
N2—C8—C7130.40 (16)C28—C27—C26118.85 (17)
N1—C8—C7105.73 (14)C28—C27—H27A120.6
N2—C9—N3122.80 (16)C26—C27—H27A120.6
N2—C9—C10129.53 (17)C29—C28—C27121.77 (17)
N3—C9—C10106.11 (15)C29—C28—N7118.99 (16)
C11—C10—C15120.32 (17)C27—C28—N7119.24 (16)
C11—C10—C9132.33 (17)C28—C29—C30119.24 (17)
C15—C10—C9107.16 (15)C28—C29—H29A120.4
C12—C11—C10117.79 (18)C30—C29—H29A120.4
C12—C11—H11A121.1C29—C30—C25119.78 (17)
C10—C11—H11A121.1C29—C30—H30A120.1
C11—C12—C13121.91 (18)C25—C30—H30A120.1
C11—C12—H12A119.0O1—B1—N1108.11 (15)
C13—C12—H12A119.0O1—B1—N3115.48 (15)
C14—C13—C12121.35 (18)N1—B1—N3104.11 (14)
C14—C13—H13A119.3O1—B1—N5119.21 (15)
C12—C13—H13A119.3N1—B1—N5104.25 (14)
C13—C14—C15117.54 (17)N3—B1—N5104.16 (14)

Experimental details

Crystal data
Chemical formulaC30H16BN7O3
Mr533.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)15.6597 (4), 8.2959 (1), 19.5409 (5)
β (°) 110.3060 (9)
V3)2380.82 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.26 × 0.20
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.788, 1.002
No. of measured, independent and
observed [I > 2σ(I)] reflections
19982, 5413, 3646
Rint0.052
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.141, 1.03
No. of reflections5413
No. of parameters371
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.33

Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

 

Footnotes

1Electron withdrawing groups in the para position of the phen­oxy mol­ecular fragment. Part 2. For Part 1, see Paton et al. (2010a[Paton, A. S., Lough, A. J. & Bender, T. P. (2010a). Acta Cryst. E66, o3246.]).

Acknowledgements

We wish to acknowledge funding for this research from the Natural Sciences and Engineering Research Council (NSERC) of Canada.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationClaessens, C. G., González-Rodríguez, D., del Rey, B. & Torres, T. (2002). Chem. Rev. 102, 835–853.  Web of Science CrossRef PubMed CAS Google Scholar
First citationClaessens, C. G., González-Rodríguez, D., del Rey, B., Torres, T., Mark, G., Schuchmann, H.-P., von Sonntag, C., MacDonald, J. G. & Nohr, R. S. (2003). Eur. J. Org. Chem. pp. 2547–2551.  Web of Science CrossRef Google Scholar
First citationGommans, H., Cheyns, D., Aernouts, T., Girotto, C., Poortmans, J. & Heremans, P. (2007). Adv. Funct. Mater. 17, 2653–2658.  Web of Science CrossRef CAS Google Scholar
First citationMorse, G. E., Helander, M. G., Maka, J. F., Lu, Z. H. & Bender, T. P. (2010). Appl. Mater. Inter. 2, 1934–1944.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPaton, A. S., Lough, A. J. & Bender, T. P. (2010a). Acta Cryst. E66, o3246.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPaton, A. S., Morse, G. E., Lough, A. J. & Bender, T. P. (2010b). CrystEngComm, doi:10.1039/C0CE00599A.  Google Scholar
First citationPotz, R., Goldner, M., Huckstadt, H., Cornelissen, U., Tutass, A. & Homborg, H. (2000). Z. Anorg. Allg. Chem. 626, 588–596.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZyskowski, C. D. & Kennedy, V. O. (2000). J. Porphyrins Phthalocyanins, pp. 707–712.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds