metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(meso-5,5,7,12,12,14-Hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­deca­ne)nickel(II) bis­­[O,O′-bis­­(4-methyl­phen­yl) thio­phosphate]

aCollege of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, 643000 Zigong, Sichuan, People's Republic of China, and bResearch Institute of Functional Material, Sichuan University of Science and Engineering, 643000 Zigong, Sichuan, People's Republic of China
*Correspondence e-mail: xiebinqhg@sina.com

(Received 21 November 2010; accepted 6 December 2010; online 11 December 2010)

In the centrosymmetric title complex, [Ni(C16H36N4)](C14H14O3PS)2, the NiII ion is coordinated by four N atoms and two O atoms within a slightly distorted NiN4O2 octa­hedral geometry. The asymmetric unit consits of one NiII ion that is located on a center of inversion, half of the macrocylic ligand and one anion occupying general positions. Intra­molecular N—H⋯O and N—H⋯S hydrogen bonding is found between the macrocyclic ligand and the monothio­phosphate anion.

Related literature

For the synthesis of O,O′-bis­(4-methyl­phen­yl) monothio­phos­phate, see: Pesin & Khaletakii (1961[Pesin, V. G. & Khaletakii, A. M. (1961). J. Gen. Chem. USSR, 31, 2337-2343.]). For related structures, see: Feng et al. (2010[Feng, J.-S., Zou, L.-K., Xie, B., Xiang, Y.-G. & Lai, C. (2010). Acta Cryst. E66, m1593.]); He et al. (2010[He, L.-X., Zou, L.-K., Xie, B., Xiang, Y.-G. & Feng, J.-S. (2010). Acta Cryst. E66, m428.]); Zou et al. (2010[Zou, L.-K., Xie, B., Feng, J.-S. & Lai, C. (2010). Acta Cryst. E66, m1592.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C16H36N4)](C14H14O3PS)2

  • Mr = 929.76

  • Monoclinic, P 21 /c

  • a = 10.977 (2) Å

  • b = 16.360 (3) Å

  • c = 12.767 (3) Å

  • β = 94.85 (3)°

  • V = 2284.6 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 113 K

  • 0.24 × 0.23 × 0.22 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.862, Tmax = 0.873

  • 18654 measured reflections

  • 5376 independent reflections

  • 2665 reflections with I > 2σ(I)

  • Rint = 0.101

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.122

  • S = 0.99

  • 5376 reflections

  • 281 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.91 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.92 (3) 2.66 (3) 3.574 (3) 171 (3)
N2—H2⋯O2 0.96 (3) 2.27 (3) 3.234 (3) 178 (3)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In our research on tetramine macrocycles transition metal complexes as mimetic hydrolases, we have recently reported several structures of their adducts with O,O'-dialkyldithiophosphate (He et al., 2010; Feng et al., 2010; Zou et al., 2010). Herein, we report the structure of an analogous O,O'-dialkylmonothiophosphate adducts, [Ni(meso-hmta)][OP(S)(OC6H4Me-4)2]2, where meso-hmta is meso-5,5,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane and (4-MeC6H4O)2(S)PO- is O,O'-bis(4-methylphenyl) monothiophosphate.

In the crystal structure of the title complex, the NiII ion is located on a center of inversion and possesses a slightly distorted NiN4O2 octahedral geometry (Fig. 1). The tetraamine macrocycle meso-hmta folds around the NiII centre at equatorial position and two O atoms from symmetry related O,O'-bis(4-methylphenyl) monothiophosphates are located in axial positions (Fig. 1). Intramolecular N—H···O and N—H···S hydrogen bonds are present between meso-hmta and monothiophosphates ligands (table 1). Furthermore, there exists a pair of symmetry related weak intermolecular C—H···π interactions for (C14—H14C)···C3(phenyl) between each couple of adjacent monothiophosphate ligands, which link the molecules into one-dimensional chains along [010]. The P1—O3 and P1—S1 bond lengths are 1.491 (2) and 1.9372 (14) Å respectively, corresponding to a delocalization of the negative charge over the O3—P1—S1 fragment.

Related literature top

For the synthesis of O,O'-bis(4-methylphenyl) monothiophosphate, see: Pesin & Khaletakii (1961). For related structures, see: Feng et al. (2010); He et al. (2010); Zou et al. (2010).

Experimental top

The ammonium O,O'-bis(4-methylphenyl)monothiophosphate was prepared according to the procedure described by Pesin (1961).

A solution of meso-5,5,7,12,12,14- hexamethyl-1,4,8,11- tetraazacyclotetradecane dihydrate (0.64 g, 2 mmol) and Ni(OAc)2.4H2O (0.50 g, 2 mmol) in 20 mL methanol was added to a solution of ammonium O,O'-bis(4-methylphenyl)monothiophosphate (4 mmol, 1.24 g) in 60 mL methanol. The mixture was refluxed for 6 h at 353 K and then filtered after cooling to room temperature. The filtrate was kept at room temperature and orange block crystals were obtained after 4 weeks.

Refinement top

H atoms attached to C atoms were fixed geometrically and treated as riding, with C—H = 1.00Å (methine), 0.99Å (methylene), 0.98Å (methyl), 0.95Å (aromatic). The Uiso(H) = 1.5Ueq(C) for methyl groups and Uiso(H) = 1.2Ueq(C) for all other carbon bound H atoms. H atoms on N atoms were located in the difference map and refined isotropically.

Structure description top

In our research on tetramine macrocycles transition metal complexes as mimetic hydrolases, we have recently reported several structures of their adducts with O,O'-dialkyldithiophosphate (He et al., 2010; Feng et al., 2010; Zou et al., 2010). Herein, we report the structure of an analogous O,O'-dialkylmonothiophosphate adducts, [Ni(meso-hmta)][OP(S)(OC6H4Me-4)2]2, where meso-hmta is meso-5,5,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane and (4-MeC6H4O)2(S)PO- is O,O'-bis(4-methylphenyl) monothiophosphate.

In the crystal structure of the title complex, the NiII ion is located on a center of inversion and possesses a slightly distorted NiN4O2 octahedral geometry (Fig. 1). The tetraamine macrocycle meso-hmta folds around the NiII centre at equatorial position and two O atoms from symmetry related O,O'-bis(4-methylphenyl) monothiophosphates are located in axial positions (Fig. 1). Intramolecular N—H···O and N—H···S hydrogen bonds are present between meso-hmta and monothiophosphates ligands (table 1). Furthermore, there exists a pair of symmetry related weak intermolecular C—H···π interactions for (C14—H14C)···C3(phenyl) between each couple of adjacent monothiophosphate ligands, which link the molecules into one-dimensional chains along [010]. The P1—O3 and P1—S1 bond lengths are 1.491 (2) and 1.9372 (14) Å respectively, corresponding to a delocalization of the negative charge over the O3—P1—S1 fragment.

For the synthesis of O,O'-bis(4-methylphenyl) monothiophosphate, see: Pesin & Khaletakii (1961). For related structures, see: Feng et al. (2010); He et al. (2010); Zou et al. (2010).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing the atom-numbering scheme with displacement ellipsoids drawn at 30% probability level. H atoms on N are represented as small spheres of arbitary radii and H atoms on C have been omitted for the sake of clarity. Hydrogen-bonds are shown as dashed lines. [Symmetry code: (i) -x + 1, -y + 1, -z + 1].
(meso-5,5,7,12,12,14-Hexamethyl-1,4,8,11- tetraazacyclotetradecane)nickel(II) bis[O,O'-bis(4-methylphenyl) thiophosphate] top
Crystal data top
[Ni(C16H36N4)](C14H14O3PS)2F(000) = 988
Mr = 929.76Dx = 1.352 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7232 reflections
a = 10.977 (2) Åθ = 2.2–27.9°
b = 16.360 (3) ŵ = 0.64 mm1
c = 12.767 (3) ÅT = 113 K
β = 94.85 (3)°Block, orange
V = 2284.6 (8) Å30.24 × 0.23 × 0.22 mm
Z = 2
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
5376 independent reflections
Radiation source: rotating anode2665 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.101
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 2.2°
φ and ω scansh = 1413
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2119
Tmin = 0.862, Tmax = 0.873l = 1616
18654 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: mixed
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0244P)2]
where P = (Fo2 + 2Fc2)/3
5376 reflections(Δ/σ)max < 0.001
281 parametersΔρmax = 0.97 e Å3
0 restraintsΔρmin = 0.91 e Å3
Crystal data top
[Ni(C16H36N4)](C14H14O3PS)2V = 2284.6 (8) Å3
Mr = 929.76Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.977 (2) ŵ = 0.64 mm1
b = 16.360 (3) ÅT = 113 K
c = 12.767 (3) Å0.24 × 0.23 × 0.22 mm
β = 94.85 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
5376 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2665 reflections with I > 2σ(I)
Tmin = 0.862, Tmax = 0.873Rint = 0.101
18654 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.97 e Å3
5376 reflectionsΔρmin = 0.91 e Å3
281 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.50000.02073 (17)
P10.49238 (7)0.69655 (5)0.59137 (7)0.0216 (2)
S10.57082 (7)0.69510 (5)0.73310 (7)0.0288 (2)
O10.38094 (17)0.76174 (13)0.58832 (18)0.0236 (6)
O20.58179 (16)0.73444 (12)0.50834 (17)0.0214 (5)
O30.44815 (16)0.61948 (12)0.53863 (17)0.0223 (5)
N10.3899 (2)0.50845 (17)0.3600 (2)0.0219 (6)
H10.395 (3)0.4578 (19)0.329 (3)0.035 (10)*
N20.6334 (2)0.55494 (16)0.4156 (2)0.0215 (7)
H20.616 (3)0.6087 (18)0.441 (3)0.030 (9)*
C10.2889 (3)0.76449 (19)0.5047 (3)0.0223 (8)
C20.3144 (3)0.76956 (19)0.4017 (3)0.0246 (8)
H2A0.39660.76820.38370.030*
C30.2189 (3)0.7767 (2)0.3242 (3)0.0275 (8)
H30.23660.78050.25280.033*
C40.0970 (3)0.77851 (19)0.3485 (3)0.0250 (8)
C50.0746 (3)0.7723 (2)0.4531 (3)0.0278 (9)
H50.00730.77270.47190.033*
C60.1699 (3)0.7656 (2)0.5310 (3)0.0296 (9)
H60.15310.76170.60260.035*
C70.0083 (3)0.7901 (2)0.2647 (3)0.0389 (10)
H7A0.01840.74050.22180.058*
H7C0.00930.83650.21980.058*
H7B0.08370.80090.29840.058*
C80.6458 (3)0.80740 (19)0.5269 (3)0.0217 (8)
C90.7636 (3)0.8040 (2)0.5759 (3)0.0267 (8)
H90.79780.75360.60080.032*
C100.8303 (3)0.8763 (2)0.5877 (3)0.0307 (9)
H100.91150.87430.61990.037*
C110.7829 (3)0.9500 (2)0.5545 (3)0.0295 (9)
C120.6644 (3)0.9517 (2)0.5073 (3)0.0341 (9)
H120.62921.00230.48430.041*
C130.5966 (3)0.8805 (2)0.4934 (3)0.0301 (9)
H130.51570.88260.46050.036*
C140.8567 (3)1.0273 (2)0.5677 (3)0.0458 (11)
H14A0.87931.04580.49890.069*
H14B0.93101.01690.61390.069*
H14C0.80801.06970.59890.069*
C150.8417 (3)0.6094 (2)0.3973 (3)0.0361 (10)
H15A0.82630.61040.32060.054*
H15C0.92910.60100.41640.054*
H15B0.81610.66150.42640.054*
C160.8058 (3)0.45790 (19)0.3946 (3)0.0322 (9)
H16A0.74790.41530.41150.048*
H16C0.88820.44290.42390.048*
H16B0.80500.46350.31820.048*
C170.7688 (3)0.5393 (2)0.4421 (3)0.0264 (8)
C180.5894 (3)0.5475 (2)0.3036 (3)0.0292 (9)
H18A0.60390.49140.27830.035*
H18B0.63350.58640.26100.035*
C190.4532 (3)0.5665 (2)0.2936 (3)0.0286 (9)
H19B0.43950.62330.31670.034*
H19A0.42020.56120.21930.034*
C200.2599 (3)0.5272 (2)0.3719 (3)0.0271 (8)
H200.25540.58040.41020.033*
C210.2064 (3)0.4599 (2)0.4382 (3)0.0284 (9)
H21B0.11660.46060.42210.034*
H21A0.23600.40690.41290.034*
C220.1847 (3)0.5349 (2)0.2649 (3)0.0393 (10)
H22C0.21880.57880.22400.059*
H22B0.09960.54770.27620.059*
H22A0.18800.48320.22660.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0054 (3)0.0286 (3)0.0277 (4)0.0020 (2)0.0018 (2)0.0003 (3)
P10.0101 (4)0.0288 (5)0.0254 (6)0.0011 (4)0.0012 (4)0.0002 (4)
S10.0183 (5)0.0418 (6)0.0253 (6)0.0041 (4)0.0039 (4)0.0001 (4)
O10.0097 (11)0.0319 (13)0.0286 (16)0.0078 (10)0.0013 (10)0.0016 (10)
O20.0102 (11)0.0251 (12)0.0287 (15)0.0035 (9)0.0003 (10)0.0007 (10)
O30.0090 (11)0.0259 (12)0.0311 (16)0.0025 (9)0.0037 (10)0.0022 (10)
N10.0093 (14)0.0271 (16)0.0282 (19)0.0002 (12)0.0046 (12)0.0010 (13)
N20.0068 (13)0.0291 (17)0.0287 (19)0.0005 (12)0.0022 (12)0.0010 (13)
C10.0087 (16)0.0267 (18)0.030 (2)0.0015 (14)0.0059 (15)0.0003 (15)
C20.0074 (16)0.037 (2)0.028 (2)0.0006 (15)0.0028 (15)0.0053 (16)
C30.0164 (18)0.041 (2)0.025 (2)0.0003 (16)0.0000 (16)0.0053 (16)
C40.0109 (17)0.0274 (19)0.035 (2)0.0008 (14)0.0083 (15)0.0062 (15)
C50.0088 (17)0.037 (2)0.037 (3)0.0005 (15)0.0000 (16)0.0045 (17)
C60.0208 (19)0.037 (2)0.031 (2)0.0005 (16)0.0033 (17)0.0057 (17)
C70.0173 (19)0.053 (3)0.044 (3)0.0011 (18)0.0110 (18)0.005 (2)
C80.0154 (17)0.0243 (18)0.025 (2)0.0019 (14)0.0005 (15)0.0022 (14)
C90.0120 (17)0.0276 (19)0.039 (3)0.0033 (14)0.0042 (15)0.0014 (16)
C100.0104 (17)0.035 (2)0.045 (3)0.0011 (15)0.0036 (16)0.0060 (18)
C110.0216 (19)0.0244 (19)0.042 (3)0.0039 (15)0.0015 (17)0.0068 (17)
C120.028 (2)0.0241 (19)0.049 (3)0.0052 (16)0.0078 (18)0.0010 (17)
C130.0134 (17)0.034 (2)0.041 (3)0.0020 (16)0.0046 (16)0.0004 (17)
C140.033 (2)0.032 (2)0.071 (4)0.0046 (18)0.002 (2)0.007 (2)
C150.0163 (18)0.040 (2)0.052 (3)0.0080 (17)0.0056 (18)0.0021 (19)
C160.0117 (17)0.039 (2)0.046 (3)0.0004 (16)0.0041 (16)0.0026 (18)
C170.0038 (15)0.032 (2)0.043 (3)0.0026 (14)0.0005 (15)0.0032 (17)
C180.0139 (17)0.037 (2)0.038 (3)0.0031 (15)0.0064 (16)0.0042 (17)
C190.0194 (18)0.035 (2)0.030 (2)0.0013 (16)0.0020 (16)0.0037 (16)
C200.0071 (16)0.038 (2)0.036 (2)0.0036 (15)0.0035 (15)0.0000 (17)
C210.0051 (16)0.037 (2)0.043 (3)0.0018 (15)0.0024 (15)0.0024 (17)
C220.0195 (19)0.051 (3)0.045 (3)0.0058 (18)0.0129 (17)0.004 (2)
Geometric parameters (Å, º) top
Ni1—N12.076 (3)C9—H90.9500
Ni1—N1i2.076 (3)C10—C111.367 (4)
Ni1—N22.093 (2)C10—H100.9500
Ni1—N2i2.093 (2)C11—C121.388 (4)
Ni1—O3i2.106 (2)C11—C141.504 (4)
Ni1—O32.106 (2)C12—C131.385 (4)
P1—O31.491 (2)C12—H120.9500
P1—O11.621 (2)C13—H130.9500
P1—O21.627 (2)C14—H14A0.9800
P1—S11.9372 (14)C14—H14B0.9800
O1—C11.407 (4)C14—H14C0.9800
O2—C81.395 (3)C15—C171.535 (4)
N1—C201.480 (4)C15—H15A0.9800
N1—C191.485 (4)C15—H15C0.9800
N1—H10.92 (3)C15—H15B0.9800
N2—C181.474 (4)C16—C171.533 (4)
N2—C171.518 (4)C16—H16A0.9800
N2—H20.96 (3)C16—H16C0.9800
C1—C21.370 (4)C16—H16B0.9800
C1—C61.376 (4)C17—C21i1.529 (5)
C2—C31.384 (4)C18—C191.522 (4)
C2—H2A0.9500C18—H18A0.9900
C3—C41.399 (4)C18—H18B0.9900
C3—H30.9500C19—H19B0.9900
C4—C51.382 (5)C19—H19A0.9900
C4—C71.519 (4)C20—C211.536 (4)
C5—C61.385 (4)C20—C221.540 (4)
C5—H50.9500C20—H201.0000
C6—H60.9500C21—C17i1.529 (5)
C7—H7A0.9800C21—H21B0.9900
C7—H7C0.9800C21—H21A0.9900
C7—H7B0.9800C22—H22C0.9800
C8—C131.366 (4)C22—H22B0.9800
C8—C91.390 (4)C22—H22A0.9800
C9—C101.392 (4)
N1—Ni1—N1i180.0C11—C10—C9122.2 (3)
N1—Ni1—N284.83 (11)C11—C10—H10118.9
N1i—Ni1—N295.17 (11)C9—C10—H10118.9
N1—Ni1—N2i95.17 (11)C10—C11—C12118.1 (3)
N1i—Ni1—N2i84.83 (11)C10—C11—C14121.4 (3)
N2—Ni1—N2i180.0C12—C11—C14120.6 (3)
N1—Ni1—O3i90.54 (10)C13—C12—C11120.8 (3)
N1i—Ni1—O3i89.46 (10)C13—C12—H12119.6
N2—Ni1—O3i93.63 (9)C11—C12—H12119.6
N2i—Ni1—O3i86.37 (9)C8—C13—C12120.2 (3)
N1—Ni1—O389.46 (10)C8—C13—H13119.9
N1i—Ni1—O390.54 (10)C12—C13—H13119.9
N2—Ni1—O386.37 (9)C11—C14—H14A109.5
N2i—Ni1—O393.63 (9)C11—C14—H14B109.5
O3i—Ni1—O3179.999 (1)H14A—C14—H14B109.5
O3—P1—O1109.22 (12)C11—C14—H14C109.5
O3—P1—O2102.67 (12)H14A—C14—H14C109.5
O1—P1—O2103.25 (11)H14B—C14—H14C109.5
O3—P1—S1120.90 (10)C17—C15—H15A109.5
O1—P1—S1107.79 (10)C17—C15—H15C109.5
O2—P1—S1111.61 (9)H15A—C15—H15C109.5
C1—O1—P1122.1 (2)C17—C15—H15B109.5
C8—O2—P1122.6 (2)H15A—C15—H15B109.5
P1—O3—Ni1143.74 (12)H15C—C15—H15B109.5
C20—N1—C19115.3 (2)C17—C16—H16A109.5
C20—N1—Ni1115.0 (2)C17—C16—H16C109.5
C19—N1—Ni1105.51 (19)H16A—C16—H16C109.5
C20—N1—H1108.7 (19)C17—C16—H16B109.5
C19—N1—H1106 (2)H16A—C16—H16B109.5
Ni1—N1—H1105 (2)H16C—C16—H16B109.5
C18—N2—C17115.9 (2)N2—C17—C21i108.1 (2)
C18—N2—Ni1106.15 (18)N2—C17—C16110.2 (3)
C17—N2—Ni1121.8 (2)C21i—C17—C16111.8 (3)
C18—N2—H2110 (2)N2—C17—C15108.8 (3)
C17—N2—H2107.0 (18)C21i—C17—C15108.2 (3)
Ni1—N2—H293.0 (17)C16—C17—C15109.7 (3)
C2—C1—C6120.6 (3)N2—C18—C19107.6 (3)
C2—C1—O1122.5 (3)N2—C18—H18A110.2
C6—C1—O1116.8 (3)C19—C18—H18A110.2
C1—C2—C3119.2 (3)N2—C18—H18B110.2
C1—C2—H2A120.4C19—C18—H18B110.2
C3—C2—H2A120.4H18A—C18—H18B108.5
C2—C3—C4121.6 (3)N1—C19—C18109.0 (3)
C2—C3—H3119.2N1—C19—H19B109.9
C4—C3—H3119.2C18—C19—H19B109.9
C5—C4—C3117.6 (3)N1—C19—H19A109.9
C5—C4—C7120.2 (3)C18—C19—H19A109.9
C3—C4—C7122.1 (3)H19B—C19—H19A108.3
C4—C5—C6121.0 (3)N1—C20—C21108.9 (3)
C4—C5—H5119.5N1—C20—C22112.0 (3)
C6—C5—H5119.5C21—C20—C22110.3 (3)
C1—C6—C5120.0 (3)N1—C20—H20108.5
C1—C6—H6120.0C21—C20—H20108.5
C5—C6—H6120.0C22—C20—H20108.5
C4—C7—H7A109.5C17i—C21—C20120.1 (3)
C4—C7—H7C109.5C17i—C21—H21B107.3
H7A—C7—H7C109.5C20—C21—H21B107.3
C4—C7—H7B109.5C17i—C21—H21A107.3
H7A—C7—H7B109.5C20—C21—H21A107.3
H7C—C7—H7B109.5H21B—C21—H21A106.9
C13—C8—C9120.3 (3)C20—C22—H22C109.5
C13—C8—O2121.1 (3)C20—C22—H22B109.5
C9—C8—O2118.6 (3)H22C—C22—H22B109.5
C8—C9—C10118.4 (3)C20—C22—H22A109.5
C8—C9—H9120.8H22C—C22—H22A109.5
C10—C9—H9120.8H22B—C22—H22A109.5
O3—P1—O1—C132.3 (3)C2—C3—C4—C7177.2 (3)
O2—P1—O1—C176.4 (2)C3—C4—C5—C60.8 (5)
S1—P1—O1—C1165.4 (2)C7—C4—C5—C6176.9 (3)
O3—P1—O2—C8179.0 (2)C2—C1—C6—C50.4 (5)
O1—P1—O2—C867.5 (2)O1—C1—C6—C5176.8 (3)
S1—P1—O2—C848.0 (2)C4—C5—C6—C10.3 (5)
O1—P1—O3—Ni1177.58 (19)P1—O2—C8—C1391.2 (4)
O2—P1—O3—Ni173.3 (2)P1—O2—C8—C991.8 (3)
S1—P1—O3—Ni151.7 (2)C13—C8—C9—C101.4 (5)
N1—Ni1—O3—P1144.9 (2)O2—C8—C9—C10175.6 (3)
N1i—Ni1—O3—P135.1 (2)C8—C9—C10—C111.2 (5)
N2—Ni1—O3—P160.0 (2)C9—C10—C11—C120.3 (5)
N2i—Ni1—O3—P1120.0 (2)C9—C10—C11—C14179.8 (3)
N2—Ni1—N1—C20143.3 (2)C10—C11—C12—C130.6 (6)
N2i—Ni1—N1—C2036.7 (2)C14—C11—C12—C13178.9 (3)
O3i—Ni1—N1—C20123.1 (2)C9—C8—C13—C120.6 (5)
O3—Ni1—N1—C2056.9 (2)O2—C8—C13—C12176.3 (3)
N2—Ni1—N1—C1915.08 (19)C11—C12—C13—C80.5 (5)
N2i—Ni1—N1—C19164.92 (19)C18—N2—C17—C21i173.6 (3)
O3i—Ni1—N1—C19108.67 (19)Ni1—N2—C17—C21i41.9 (3)
O3—Ni1—N1—C1971.33 (19)C18—N2—C17—C1651.1 (4)
N1—Ni1—N2—C1815.2 (2)Ni1—N2—C17—C1680.6 (3)
N1i—Ni1—N2—C18164.8 (2)C18—N2—C17—C1569.2 (4)
O3i—Ni1—N2—C1875.0 (2)Ni1—N2—C17—C15159.1 (2)
O3—Ni1—N2—C18105.0 (2)C17—N2—C18—C19179.2 (3)
N1—Ni1—N2—C17150.8 (2)Ni1—N2—C18—C1942.2 (3)
N1i—Ni1—N2—C1729.2 (2)C20—N1—C19—C18170.7 (3)
O3i—Ni1—N2—C1760.6 (2)Ni1—N1—C19—C1842.7 (3)
O3—Ni1—N2—C17119.4 (2)N2—C18—C19—N158.6 (3)
P1—O1—C1—C252.2 (4)C19—N1—C20—C21177.5 (3)
P1—O1—C1—C6130.7 (3)Ni1—N1—C20—C2159.3 (3)
C6—C1—C2—C30.7 (5)C19—N1—C20—C2255.2 (4)
O1—C1—C2—C3176.3 (3)Ni1—N1—C20—C22178.4 (2)
C1—C2—C3—C40.3 (5)N1—C20—C21—C17i79.5 (4)
C2—C3—C4—C50.4 (5)C22—C20—C21—C17i157.2 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.92 (3)2.66 (3)3.574 (3)171 (3)
N2—H2···O20.96 (3)2.27 (3)3.234 (3)178 (3)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C16H36N4)](C14H14O3PS)2
Mr929.76
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)10.977 (2), 16.360 (3), 12.767 (3)
β (°) 94.85 (3)
V3)2284.6 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.24 × 0.23 × 0.22
Data collection
DiffractometerRigaku Saturn CCD area-detector
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.862, 0.873
No. of measured, independent and
observed [I > 2σ(I)] reflections
18654, 5376, 2665
Rint0.101
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.122, 0.99
No. of reflections5376
No. of parameters281
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.97, 0.91

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.92 (3)2.66 (3)3.574 (3)171 (3)
N2—H2···O20.96 (3)2.27 (3)3.234 (3)178 (3)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Education Committee (No. 09ZA057) and the Science and Technology Committee (No. 2010GZ0130) of Sichuan Province, the Science and Technology Office of Zigong City (Nos. 08X01 and 10X05) and the Graduate Student Innovation Fund of Sichuan University of Science & Engineering (No. Y2009023).

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFeng, J.-S., Zou, L.-K., Xie, B., Xiang, Y.-G. & Lai, C. (2010). Acta Cryst. E66, m1593.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, L.-X., Zou, L.-K., Xie, B., Xiang, Y.-G. & Feng, J.-S. (2010). Acta Cryst. E66, m428.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPesin, V. G. & Khaletakii, A. M. (1961). J. Gen. Chem. USSR, 31, 2337–2343.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZou, L.-K., Xie, B., Feng, J.-S. & Lai, C. (2010). Acta Cryst. E66, m1592.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds