organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[3-Meth­­oxy-4-(prop-2-yn-1-yl­­oxy)phen­yl]ethanone

aCollege of Chemistry and Chemical Engineering, Inner Mongolia University for the Nationalities, Inner Mongolia Autonomous Region Tongliao, 22 Huolinhe street, 028000, People's Republic of China, and bInstitute of Higher Vocational Education, Tongliao Vocational College, Inner Mongolia Autonomous Region Tongliao, 152 Huolinhe street, 028000, People's Republic of China
*Correspondence e-mail: zhangchtl@hotmail.com

(Received 3 December 2010; accepted 12 December 2010; online 18 December 2010)

In the title compound, C12H12O3, the meth­oxy and prop-2-yn­yloxy groups are nearly coplanar with the attached benzene ring [C—O—C—C torsion angles = 1.2 (3) and 2.2 (3)°, respectively]. In the crystal, inversion dimers linked by pairs of C—H⋯O inter­actions occur.

Related literature

For the β-O-4 substructure in lignin, see: Cathala et al. (2003[Cathala, B., Saake, B., Faix, O. & Monties, B. (2003). J. Chromatogr. A, 1020, 229-239.]). For attempts to prepare well defined linear polymers with the β-O-4 structure and to develop new methods of utilizing lignins, see: Kishimoto et al. (2005[Kishimoto, T., Uraki, Y. & Ubukata, M. (2005). Org. Biomol. Chem. 3, 1067-1073.]). For a related structure, see: Yang et al. (2009[Yang, X.-H., Zhou, Y.-H. & Song, X. (2009). Acta Cryst. E65, o1489.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12O3

  • Mr = 204.22

  • Monoclinic, P 21 /c

  • a = 12.152 (2) Å

  • b = 8.9870 (18) Å

  • c = 10.179 (2) Å

  • β = 103.86 (3)°

  • V = 1079.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.974, Tmax = 0.991

  • 2908 measured reflections

  • 1988 independent reflections

  • 1400 reflections with I > 2σ(I)

  • Rint = 0.052

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.169

  • S = 1.00

  • 1988 reflections

  • 141 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O2i 0.90 (4) 2.40 (4) 3.270 (3) 164 (3)
Symmetry code: (i) -x+1, -y, -z+2.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Lignin is natural polymer occurring in plant cell walls and considered to be the second most abundant biopolymer after cellulose and the β-O-4 structure is the most abundant substructure in lignin (Cathala B. et al., 2003). Lignin is an amorphous polyphenolic material arising from an enzyme-mediated dehydrogenate polymerization of three major phenylpropanoid monomers, i. e., coniferyl, sinapyl and p-coumaril alcohol. Therefore, lignin can be oxidized to produce syringaldehyde, vanillin, p-hydroxybenzaldehyde and acetovanillone etc. Acetovanillone and vanillin are usually used to synthesize lignin mimics (Kishimoto T. et al., 2005). In order to prepare well defined linear lignin mimics composed of the β-O-4 structure by "Click Chemistry" using acetovanillone, an intermediate product C12H12O3, the title compound was synthesized and identified by crystal structure analysis. In the molecular structure of the title compound, the acetophenone unit is almost a planar with a torsion angle C5—C6—C7—O1, -3.5 (3)° (Fig. 1). In addition, the methoxy group and the prop-2-ynyloxy group are nearly coplanar with the attached benzene ring [C9—O2—C4—C5 = 1.2 (3)° and C10—O3—C3—C2, 2.2 (3)°]. In the crystal structure weak intermolecular Cterminal alkynes—H···Omethoxy interactions aref found.

Related literature top

For the β-O-4 substructure in lignin, see: Cathala et al. (2003). For attempts to prepare well defined linear polymers with the β-O-4 structure and to develop new methods of utilizing lignins, see: Kishimoto et al. (2005). For a related structure, see: Yang et al. (2009).

Experimental top

A mixture of 4'-hydroxy-3'-methoxyacetophenon (5 mmol), propargyl bromide (5 mmol) and triethylamine (5 mmol) was stirred in acetone (20 ml) at 353 K. After completion of the reaction (TLC monitoring), the reaction mixture was diluted with ether (100 ml) and washed with water 3 times. The organic phase was dried over with anhydrous Na2SO4 and concentrated to dryness in vacuo. The obtained crude crystalline was purified by column chromatography to obtain a pure white solid. Colourless single crystals suitable for X-ray crystallographic analysis were grown by slow evaporation of an ethyl actate solution of the title compound.

Refinement top

The H atoms were fixed geometrically and allowed to ride on the attached non-H atoms, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.5 Ueq(C) for methyl H atoms and 1.2 Ueq(C) for all other atoms.

Structure description top

Lignin is natural polymer occurring in plant cell walls and considered to be the second most abundant biopolymer after cellulose and the β-O-4 structure is the most abundant substructure in lignin (Cathala B. et al., 2003). Lignin is an amorphous polyphenolic material arising from an enzyme-mediated dehydrogenate polymerization of three major phenylpropanoid monomers, i. e., coniferyl, sinapyl and p-coumaril alcohol. Therefore, lignin can be oxidized to produce syringaldehyde, vanillin, p-hydroxybenzaldehyde and acetovanillone etc. Acetovanillone and vanillin are usually used to synthesize lignin mimics (Kishimoto T. et al., 2005). In order to prepare well defined linear lignin mimics composed of the β-O-4 structure by "Click Chemistry" using acetovanillone, an intermediate product C12H12O3, the title compound was synthesized and identified by crystal structure analysis. In the molecular structure of the title compound, the acetophenone unit is almost a planar with a torsion angle C5—C6—C7—O1, -3.5 (3)° (Fig. 1). In addition, the methoxy group and the prop-2-ynyloxy group are nearly coplanar with the attached benzene ring [C9—O2—C4—C5 = 1.2 (3)° and C10—O3—C3—C2, 2.2 (3)°]. In the crystal structure weak intermolecular Cterminal alkynes—H···Omethoxy interactions aref found.

For the β-O-4 substructure in lignin, see: Cathala et al. (2003). For attempts to prepare well defined linear polymers with the β-O-4 structure and to develop new methods of utilizing lignins, see: Kishimoto et al. (2005). For a related structure, see: Yang et al. (2009).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
1-[3-Methoxy-4-(prop-2-yn-1-yloxy)phenyl]ethanone top
Crystal data top
C12H12O3F(000) = 432
Mr = 204.22Dx = 1.257 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 12.152 (2) Åθ = 9–13°
b = 8.9870 (18) ŵ = 0.09 mm1
c = 10.179 (2) ÅT = 293 K
β = 103.86 (3)°Block, colourless
V = 1079.3 (4) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1400 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.052
Graphite monochromatorθmax = 25.4°, θmin = 1.7°
ω/2θ scansh = 140
Absorption correction: ψ scan
(North et al., 1968)
k = 310
Tmin = 0.974, Tmax = 0.991l = 1112
2908 measured reflections3 standard reflections every 200 reflections
1988 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.169 w = 1/[σ2(Fo2) + (0.1P)2 + 0.1P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1988 reflectionsΔρmax = 0.21 e Å3
141 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.066 (9)
Crystal data top
C12H12O3V = 1079.3 (4) Å3
Mr = 204.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.152 (2) ŵ = 0.09 mm1
b = 8.9870 (18) ÅT = 293 K
c = 10.179 (2) Å0.30 × 0.20 × 0.10 mm
β = 103.86 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1400 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.052
Tmin = 0.974, Tmax = 0.9913 standard reflections every 200 reflections
2908 measured reflections intensity decay: 1%
1988 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.21 e Å3
1988 reflectionsΔρmin = 0.20 e Å3
141 parameters
Special details top

Experimental. Absorption correction: semi-empirical absorption based on psi-scan (North et al., 1968)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.02729 (15)0.0061 (2)0.20836 (17)0.0658 (6)
C10.29554 (18)0.1655 (3)0.3643 (2)0.0511 (6)
H1A0.30390.22960.29560.061*
O20.26138 (12)0.10284 (18)0.68203 (14)0.0529 (5)
C20.37931 (19)0.1593 (3)0.4840 (2)0.0506 (6)
H2A0.44440.21700.49430.061*
O30.44025 (13)0.05304 (19)0.71063 (15)0.0527 (5)
C30.36568 (17)0.0674 (2)0.5876 (2)0.0428 (5)
C40.26800 (18)0.0201 (2)0.5718 (2)0.0409 (5)
C50.18711 (18)0.0157 (2)0.4518 (2)0.0426 (6)
H5A0.12300.07540.44050.051*
C60.19980 (18)0.0773 (2)0.3462 (2)0.0433 (6)
C70.1073 (2)0.0778 (3)0.2195 (2)0.0493 (6)
C80.1143 (2)0.1817 (4)0.1077 (3)0.0835 (10)
H8A0.04910.16840.03380.125*
H8B0.18180.16120.07750.125*
H8C0.11640.28240.13970.125*
C90.1630 (2)0.1939 (3)0.6694 (3)0.0616 (7)
H9A0.16750.24650.75260.092*
H9B0.15900.26400.59730.092*
H9C0.09650.13230.64980.092*
C100.54011 (18)0.1439 (3)0.7385 (2)0.0510 (6)
H10A0.52010.24850.72910.061*
H10B0.58730.12030.67680.061*
C110.59931 (19)0.1100 (3)0.8775 (3)0.0547 (6)
C120.6418 (3)0.0809 (4)0.9899 (3)0.0737 (9)
H12A0.669 (3)0.067 (4)1.079 (4)0.094 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0531 (10)0.0781 (13)0.0590 (11)0.0090 (10)0.0009 (8)0.0004 (9)
C10.0513 (13)0.0543 (14)0.0470 (12)0.0053 (12)0.0105 (10)0.0068 (11)
O20.0519 (9)0.0597 (10)0.0453 (9)0.0136 (8)0.0080 (7)0.0078 (7)
C20.0457 (12)0.0544 (14)0.0507 (13)0.0109 (11)0.0097 (10)0.0047 (11)
O30.0472 (9)0.0611 (10)0.0448 (9)0.0132 (8)0.0011 (7)0.0045 (7)
C30.0422 (11)0.0469 (13)0.0377 (11)0.0025 (10)0.0065 (9)0.0021 (10)
C40.0446 (11)0.0379 (11)0.0411 (11)0.0014 (9)0.0120 (9)0.0010 (9)
C50.0397 (11)0.0439 (12)0.0443 (12)0.0027 (10)0.0105 (9)0.0046 (10)
C60.0456 (12)0.0429 (12)0.0411 (11)0.0044 (10)0.0096 (9)0.0007 (9)
C70.0467 (12)0.0523 (14)0.0464 (13)0.0077 (12)0.0065 (10)0.0001 (11)
C80.0727 (18)0.102 (2)0.0613 (16)0.0064 (18)0.0130 (14)0.0324 (17)
C90.0553 (14)0.0652 (16)0.0652 (15)0.0146 (13)0.0160 (12)0.0131 (13)
C100.0437 (12)0.0570 (14)0.0495 (13)0.0083 (11)0.0056 (10)0.0030 (11)
C110.0470 (12)0.0611 (16)0.0533 (14)0.0080 (12)0.0071 (11)0.0022 (12)
C120.0720 (18)0.086 (2)0.0551 (17)0.0111 (16)0.0008 (14)0.0035 (16)
Geometric parameters (Å, º) top
O1—C71.214 (3)C6—C71.494 (3)
C1—C61.383 (3)C7—C81.490 (4)
C1—C21.389 (3)C8—H8A0.9600
C1—H1A0.9300C8—H8B0.9600
O2—C41.365 (3)C8—H8C0.9600
O2—C91.429 (3)C9—H9A0.9600
C2—C31.381 (3)C9—H9B0.9600
C2—H2A0.9300C9—H9C0.9600
O3—C31.365 (3)C10—C111.457 (3)
O3—C101.433 (3)C10—H10A0.9700
C3—C41.400 (3)C10—H10B0.9700
C4—C51.373 (3)C11—C121.167 (4)
C5—C61.399 (3)C12—H12A0.90 (3)
C5—H5A0.9300
C6—C1—C2120.7 (2)C8—C7—C6119.5 (2)
C6—C1—H1A119.7C7—C8—H8A109.5
C2—C1—H1A119.7C7—C8—H8B109.5
C4—O2—C9116.81 (17)H8A—C8—H8B109.5
C3—C2—C1119.8 (2)C7—C8—H8C109.5
C3—C2—H2A120.1H8A—C8—H8C109.5
C1—C2—H2A120.1H8B—C8—H8C109.5
C3—O3—C10118.19 (17)O2—C9—H9A109.5
O3—C3—C2125.65 (19)O2—C9—H9B109.5
O3—C3—C4114.25 (18)H9A—C9—H9B109.5
C2—C3—C4120.1 (2)O2—C9—H9C109.5
O2—C4—C5125.21 (19)H9A—C9—H9C109.5
O2—C4—C3115.26 (19)H9B—C9—H9C109.5
C5—C4—C3119.53 (19)O3—C10—C11105.73 (19)
C4—C5—C6120.9 (2)O3—C10—H10A110.6
C4—C5—H5A119.6C11—C10—H10A110.6
C6—C5—H5A119.6O3—C10—H10B110.6
C1—C6—C5119.0 (2)C11—C10—H10B110.6
C1—C6—C7123.2 (2)H10A—C10—H10B108.7
C5—C6—C7117.8 (2)C12—C11—C10176.8 (3)
O1—C7—C8120.6 (2)C11—C12—H12A173 (2)
O1—C7—C6119.9 (2)
C6—C1—C2—C31.8 (4)C3—C4—C5—C61.4 (3)
C10—O3—C3—C22.2 (3)C2—C1—C6—C51.6 (3)
C10—O3—C3—C4176.96 (19)C2—C1—C6—C7179.4 (2)
C1—C2—C3—O3178.8 (2)C4—C5—C6—C10.0 (3)
C1—C2—C3—C40.4 (3)C4—C5—C6—C7179.01 (19)
C9—O2—C4—C51.2 (3)C1—C6—C7—O1177.5 (2)
C9—O2—C4—C3179.78 (19)C5—C6—C7—O13.5 (3)
O3—C3—C4—O21.4 (3)C1—C6—C7—C82.5 (4)
C2—C3—C4—O2177.8 (2)C5—C6—C7—C8176.5 (2)
O3—C3—C4—C5179.54 (19)C3—O3—C10—C11177.2 (2)
C2—C3—C4—C51.2 (3)O3—C10—C11—C1225 (6)
O2—C4—C5—C6177.52 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O2i0.90 (4)2.40 (4)3.270 (3)164 (3)
Symmetry code: (i) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC12H12O3
Mr204.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.152 (2), 8.9870 (18), 10.179 (2)
β (°) 103.86 (3)
V3)1079.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.974, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
2908, 1988, 1400
Rint0.052
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.169, 1.00
No. of reflections1988
No. of parameters141
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.20

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O2i0.90 (4)2.40 (4)3.270 (3)164 (3)
Symmetry code: (i) x+1, y, z+2.
 

References

First citationCathala, B., Saake, B., Faix, O. & Monties, B. (2003). J. Chromatogr. A, 1020, 229–239.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKishimoto, T., Uraki, Y. & Ubukata, M. (2005). Org. Biomol. Chem. 3, 1067–1073.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, X.-H., Zhou, Y.-H. & Song, X. (2009). Acta Cryst. E65, o1489.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds