metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­bis­­(benzoato-κO)(1,10-phenanthroline-κ2N,N′)zinc(II)

aDepartment of Chemistry, Guangxi University for Nationalities, Nanning 530006, People's Republic of China
*Correspondence e-mail: shizhanwang2010@yahoo.cn

(Received 20 November 2010; accepted 27 November 2010; online 4 December 2010)

The Zn atom in the title compound, [Zn(C7H5O2)2(C12H8N2)(H2O)], is five-coordinate in a distorted trigonal–bipyramidal coordination environment involving two O atoms of two monodentate benzoates, two N atoms of a 1,10-phenanthroline mol­ecule and one O atom of a water mol­ecule. The axial positions are occupied by a carboxyl­ate O atom from the benzoate ligand and an N atom from the 1,10-phenanthroline ligand [N—Zn—O = 146.90 (7)°]. The water mol­ecule forms an intra­molecular O—H⋯O hydrogen bond; an inter­molecular O—H⋯O hydrogen bond gives rise to a dimer.

Related literature

For a related structure, see: Necefoglu et al. (2001[Necefoglu, H., Clegg, W. & Scott, A. J. (2001). Acta Cryst. E57, m472-m474.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H5O2)2(C12H8N2)(H2O)]

  • Mr = 505.81

  • Monoclinic, P 21 /c

  • a = 10.635 (5) Å

  • b = 21.073 (10) Å

  • c = 11.197 (5) Å

  • β = 116.647 (5)°

  • V = 2243.0 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.14 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.779, Tmax = 0.815

  • 12067 measured reflections

  • 3992 independent reflections

  • 3424 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.077

  • S = 1.03

  • 3992 reflections

  • 309 parameters

  • 180 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O2 0.89 1.78 2.616 (2) 154
O5—H5B⋯O4i 0.89 1.91 2.797 (2) 174
Symmetry code: (i) -x+2, -y+1, -z+2.

Data collection: SMART (Bruker, 1999[Bruker (1999). SAINT and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the present study, we report the synthesis and crystal structure of the title complex (I). The biological activity of (I) against common bacterial strains is to be investigated. Selected geometric parameters are listed in Table 1. As shown in Fig. 1, (I) is a mononuclear neutral zinc(II) complex in which the carboxylate group exhibits a monodentate coordination mode. By contrast, in the mononuclear zinc complex of diaquabis (benzoato)zinc(II), each carboxylate ligand forms a primary and a secondary Zn—O bond (Necefoglu et al., 2001). The Zn ion in (I) is coordinated by two O atoms from two monodentate benzoate ligands (O1 and O3), two N atoms from the 1,10-phenanthroline ligand (N1 and N2) and one O atom from the water molecule (O5), and exhibits distorted trigonal-bipyramidal coordination. The trigonal base plane is defined by atoms N1, O1 and O5, and atoms O3 and N2 occupy the axial positions [O3—Zn—N2 =146.91 (5)°]. A strong intermolecular hydrogen bond exists, involving uncoordinated atom O4 of the carboxylate group as an acceptor and atom O5 as a donor (Table 2), resulting in the formation of a dimer (Fig. 2). There is also an intramolecular hydrogen bond between the other H atom of the water molecule and uncoordinated atom O2 of the other carboxylate group (Table 2).

Related literature top

For a related structure, see: Necefoglu et al. (2001).

Experimental top

C4H6ZnO4.2H2O(0.2195 g,1 mmol), benzoic acid(0.2442 g,2 mmol), NaOH(0.08 g;2 mmol),1,10-phenanthroline (0.1802 g,1 mmol) were added to a mixture of water (15 ml) and ethanol (10 ml). The resulting mixture was stirred at 70 for 4 h and fltered off. The filtrate was allowed to stand at room temperature and slow evaporation afforded colorless block crystals of the complex(Yield 65%).Elemental analysis: found C,61.69;H,3.98;N,5.57;calc for C26H20N2O5Zn:C,61.73; H,3.99;N,5.54(%).

Refinement top

H atoms on C atoms were positioned geometrically refined using a riding model with C—H=0.93–0.96ÅandUiso(H) = 1.2Ueq(C),The water H atoms were located in difference density Fourier maps and refined using a riding model with O—H=0.82Åand Uiso(H) = 1.5Ueq(C).

Structure description top

In the present study, we report the synthesis and crystal structure of the title complex (I). The biological activity of (I) against common bacterial strains is to be investigated. Selected geometric parameters are listed in Table 1. As shown in Fig. 1, (I) is a mononuclear neutral zinc(II) complex in which the carboxylate group exhibits a monodentate coordination mode. By contrast, in the mononuclear zinc complex of diaquabis (benzoato)zinc(II), each carboxylate ligand forms a primary and a secondary Zn—O bond (Necefoglu et al., 2001). The Zn ion in (I) is coordinated by two O atoms from two monodentate benzoate ligands (O1 and O3), two N atoms from the 1,10-phenanthroline ligand (N1 and N2) and one O atom from the water molecule (O5), and exhibits distorted trigonal-bipyramidal coordination. The trigonal base plane is defined by atoms N1, O1 and O5, and atoms O3 and N2 occupy the axial positions [O3—Zn—N2 =146.91 (5)°]. A strong intermolecular hydrogen bond exists, involving uncoordinated atom O4 of the carboxylate group as an acceptor and atom O5 as a donor (Table 2), resulting in the formation of a dimer (Fig. 2). There is also an intramolecular hydrogen bond between the other H atom of the water molecule and uncoordinated atom O2 of the other carboxylate group (Table 2).

For a related structure, see: Necefoglu et al. (2001).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound(I) and the atom-numbering scheme. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Part of the packing of the title compand, viewed down the direction. Dashing lines indicate hydrongen bonds.
Aquabis(benzoato-κO)(1,10-phenanthroline- κ2N,N')zinc(II) top
Crystal data top
[Zn(C7H5O2)2(C12H8N2)(H2O)]F(000) = 1040
Mr = 505.81Dx = 1.498 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.635 (5) ÅCell parameters from 3686 reflections
b = 21.073 (10) Åθ = 2.4–24.4°
c = 11.197 (5) ŵ = 1.14 mm1
β = 116.647 (5)°T = 293 K
V = 2243.0 (18) Å3Block, colorless
Z = 40.22 × 0.20 × 0.18 mm
Data collection top
Bruker SMART
diffractometer
3992 independent reflections
Radiation source: fine-focus sealed tube3424 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
phi and ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1012
Tmin = 0.779, Tmax = 0.815k = 2523
12067 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0433P)2 + 0.4116P]
where P = (Fo2 + 2Fc2)/3
3992 reflections(Δ/σ)max = 0.001
309 parametersΔρmax = 0.27 e Å3
180 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Zn(C7H5O2)2(C12H8N2)(H2O)]V = 2243.0 (18) Å3
Mr = 505.81Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.635 (5) ŵ = 1.14 mm1
b = 21.073 (10) ÅT = 293 K
c = 11.197 (5) Å0.22 × 0.20 × 0.18 mm
β = 116.647 (5)°
Data collection top
Bruker SMART
diffractometer
3992 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3424 reflections with I > 2σ(I)
Tmin = 0.779, Tmax = 0.815Rint = 0.026
12067 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028180 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.03Δρmax = 0.27 e Å3
3992 reflectionsΔρmin = 0.36 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.73455 (2)0.468990 (10)0.79430 (2)0.02980 (9)
O20.91421 (15)0.39030 (7)0.67036 (15)0.0479 (4)
O50.95726 (15)0.46026 (7)0.87826 (14)0.0394 (3)
O10.70176 (15)0.39837 (6)0.66424 (14)0.0382 (3)
O30.73550 (16)0.54552 (7)0.69395 (15)0.0462 (4)
N10.51084 (17)0.48044 (7)0.73798 (16)0.0332 (4)
O40.84175 (16)0.59595 (7)0.88755 (14)0.0452 (4)
N20.71843 (17)0.43150 (8)0.96095 (16)0.0329 (4)
C20.7328 (2)0.32287 (9)0.52375 (18)0.0347 (5)
C90.8066 (2)0.65093 (9)0.68988 (18)0.0313 (4)
C10.7887 (2)0.37425 (9)0.62746 (18)0.0328 (4)
C80.79431 (19)0.59369 (10)0.7643 (2)0.0337 (4)
C190.4736 (2)0.45195 (9)0.82630 (19)0.0305 (4)
C220.6643 (2)0.37283 (11)1.1555 (2)0.0473 (6)
H220.64720.35321.22120.057*
C200.5848 (2)0.42643 (8)0.94545 (19)0.0298 (4)
C100.7484 (2)0.65085 (10)0.5520 (2)0.0466 (5)
H100.70200.61500.50430.056*
C170.2293 (3)0.47341 (11)0.6873 (2)0.0519 (6)
H170.13490.47070.66860.062*
C180.3338 (2)0.44721 (10)0.8055 (2)0.0382 (5)
C210.5522 (2)0.39749 (9)1.0407 (2)0.0363 (5)
C240.8211 (2)0.40768 (12)1.0706 (2)0.0462 (5)
H240.91290.41091.08180.055*
C70.5945 (2)0.30438 (11)0.4714 (2)0.0503 (6)
H70.53440.32440.49940.060*
C30.8209 (2)0.29284 (11)0.4798 (2)0.0450 (5)
H30.91450.30530.51300.054*
C260.4092 (2)0.39395 (11)1.0174 (2)0.0457 (5)
H260.38780.37511.08110.055*
C250.3045 (2)0.41735 (11)0.9048 (2)0.0477 (6)
H250.21200.41400.89150.057*
C150.4098 (2)0.50578 (11)0.6288 (2)0.0421 (5)
H150.43450.52630.56890.050*
C140.8760 (2)0.70456 (10)0.7581 (2)0.0431 (5)
H140.91740.70490.85100.052*
C230.7978 (2)0.37786 (13)1.1703 (2)0.0546 (6)
H230.87290.36161.24590.066*
C160.2681 (2)0.50307 (12)0.5999 (2)0.0518 (6)
H160.20030.52120.52190.062*
C130.8849 (3)0.75778 (11)0.6907 (2)0.0535 (6)
H130.93090.79380.73800.064*
C40.7690 (3)0.24424 (12)0.3863 (2)0.0549 (6)
H40.82850.22390.35800.066*
C120.8259 (3)0.75749 (11)0.5539 (3)0.0552 (6)
H120.83100.79340.50810.066*
C110.7593 (3)0.70405 (12)0.4849 (2)0.0607 (7)
H110.72100.70360.39220.073*
C50.6316 (3)0.22613 (12)0.3356 (2)0.0569 (7)
H50.59760.19360.27300.068*
C60.5433 (3)0.25633 (13)0.3777 (2)0.0621 (7)
H60.44930.24430.34290.075*
H5B1.02060.44500.95610.078 (9)*
H5A0.97020.43400.82210.087 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03210 (15)0.03006 (14)0.03060 (14)0.00163 (9)0.01704 (11)0.00108 (9)
O20.0355 (9)0.0604 (10)0.0473 (9)0.0013 (7)0.0181 (7)0.0157 (7)
O50.0324 (8)0.0498 (9)0.0337 (8)0.0002 (6)0.0128 (7)0.0041 (6)
O10.0371 (8)0.0398 (8)0.0400 (8)0.0024 (6)0.0194 (7)0.0094 (6)
O30.0459 (9)0.0379 (9)0.0469 (9)0.0105 (7)0.0137 (7)0.0091 (7)
N10.0360 (9)0.0313 (9)0.0347 (9)0.0013 (7)0.0180 (8)0.0012 (7)
O40.0547 (10)0.0523 (9)0.0371 (8)0.0132 (7)0.0282 (8)0.0134 (7)
N20.0316 (9)0.0352 (9)0.0341 (9)0.0006 (7)0.0167 (7)0.0031 (7)
C20.0432 (12)0.0321 (11)0.0279 (10)0.0038 (9)0.0150 (9)0.0017 (8)
C90.0289 (10)0.0326 (11)0.0340 (10)0.0012 (8)0.0155 (8)0.0048 (8)
C10.0360 (12)0.0322 (11)0.0291 (10)0.0065 (9)0.0135 (9)0.0043 (8)
C80.0260 (10)0.0374 (12)0.0406 (12)0.0052 (8)0.0175 (9)0.0083 (9)
C190.0337 (11)0.0265 (10)0.0358 (10)0.0005 (8)0.0196 (9)0.0026 (8)
C220.0525 (15)0.0537 (14)0.0443 (13)0.0055 (11)0.0294 (11)0.0144 (10)
C200.0327 (11)0.0260 (10)0.0360 (10)0.0009 (8)0.0200 (9)0.0026 (8)
C100.0559 (15)0.0390 (13)0.0373 (12)0.0062 (10)0.0142 (11)0.0027 (9)
C170.0344 (12)0.0613 (16)0.0593 (15)0.0057 (11)0.0205 (11)0.0021 (12)
C180.0326 (11)0.0383 (12)0.0455 (12)0.0014 (9)0.0192 (10)0.0006 (9)
C210.0419 (12)0.0343 (11)0.0400 (11)0.0008 (9)0.0249 (10)0.0016 (9)
C240.0335 (12)0.0637 (15)0.0434 (13)0.0043 (10)0.0190 (10)0.0112 (11)
C70.0502 (14)0.0567 (15)0.0475 (13)0.0043 (11)0.0252 (11)0.0143 (11)
C30.0478 (13)0.0474 (13)0.0354 (11)0.0109 (10)0.0148 (10)0.0010 (10)
C260.0479 (13)0.0478 (14)0.0564 (14)0.0003 (10)0.0368 (12)0.0079 (10)
C250.0363 (12)0.0556 (15)0.0616 (15)0.0015 (10)0.0311 (12)0.0032 (11)
C150.0454 (13)0.0452 (13)0.0362 (11)0.0059 (10)0.0187 (10)0.0059 (9)
C140.0528 (14)0.0405 (13)0.0375 (11)0.0040 (10)0.0215 (10)0.0013 (9)
C230.0466 (14)0.0753 (18)0.0417 (13)0.0133 (12)0.0197 (11)0.0231 (12)
C160.0417 (13)0.0607 (15)0.0447 (13)0.0103 (11)0.0121 (11)0.0082 (11)
C130.0660 (17)0.0355 (13)0.0641 (16)0.0105 (11)0.0338 (14)0.0038 (11)
C40.0730 (18)0.0499 (15)0.0419 (13)0.0205 (13)0.0258 (13)0.0031 (10)
C120.0735 (18)0.0376 (13)0.0659 (16)0.0018 (11)0.0415 (14)0.0155 (11)
C110.0805 (19)0.0593 (17)0.0395 (13)0.0022 (14)0.0246 (13)0.0156 (11)
C50.083 (2)0.0422 (14)0.0417 (13)0.0056 (13)0.0243 (13)0.0106 (10)
C60.0618 (17)0.0668 (18)0.0562 (16)0.0205 (13)0.0249 (13)0.0211 (13)
Geometric parameters (Å, º) top
Zn1—O31.9681 (16)C17—C181.405 (3)
Zn1—O12.0003 (15)C17—H170.9300
Zn1—N22.1030 (17)C18—C251.428 (3)
Zn1—O52.1285 (17)C21—C261.425 (3)
Zn1—N12.184 (2)C24—C231.396 (3)
O2—C11.246 (2)C24—H240.9300
O5—H5B0.8887C7—C61.383 (3)
O5—H5A0.8928C7—H70.9300
O1—C11.274 (2)C3—C41.390 (3)
O3—C81.265 (3)C3—H30.9300
N1—C151.325 (3)C26—C251.346 (3)
N1—C191.359 (2)C26—H260.9300
O4—C81.239 (2)C25—H250.9300
N2—C241.322 (3)C15—C161.393 (3)
N2—C201.357 (2)C15—H150.9300
C2—C71.373 (3)C14—C131.378 (3)
C2—C31.391 (3)C14—H140.9300
C2—C11.502 (3)C23—H230.9300
C9—C141.378 (3)C16—H160.9300
C9—C101.382 (3)C13—C121.370 (3)
C9—C81.505 (3)C13—H130.9300
C19—C181.401 (3)C4—C51.363 (4)
C19—C201.433 (3)C4—H40.9300
C22—C231.358 (3)C12—C111.370 (4)
C22—C211.404 (3)C12—H120.9300
C22—H220.9300C11—H110.9300
C20—C211.400 (3)C5—C61.381 (3)
C10—C111.383 (3)C5—H50.9300
C10—H100.9300C6—H60.9300
C17—C161.372 (3)
O3—Zn1—O1103.76 (7)C17—C18—C25123.3 (2)
O3—Zn1—N2146.90 (7)C20—C21—C22117.41 (19)
O1—Zn1—N2108.03 (7)C20—C21—C26119.46 (19)
O3—Zn1—O591.91 (6)C22—C21—C26123.13 (18)
O1—Zn1—O593.06 (6)N2—C24—C23123.0 (2)
N2—Zn1—O595.34 (6)N2—C24—H24118.5
O3—Zn1—N191.63 (6)C23—C24—H24118.5
O1—Zn1—N193.46 (6)C2—C7—C6120.9 (2)
N2—Zn1—N177.64 (6)C2—C7—H7119.6
O5—Zn1—N1171.63 (6)C6—C7—H7119.6
Zn1—O5—H5B131.9C4—C3—C2119.9 (2)
Zn1—O5—H5A103.6C4—C3—H3120.0
H5B—O5—H5A100.3C2—C3—H3120.0
C1—O1—Zn1128.11 (13)C25—C26—C21121.24 (19)
C8—O3—Zn1115.44 (13)C25—C26—H26119.4
C15—N1—C19117.96 (18)C21—C26—H26119.4
C15—N1—Zn1129.69 (14)C26—C25—C18120.9 (2)
C19—N1—Zn1112.11 (13)C26—C25—H25119.6
C24—N2—C20118.04 (17)C18—C25—H25119.6
C24—N2—Zn1127.20 (14)N1—C15—C16122.9 (2)
C20—N2—Zn1114.44 (12)N1—C15—H15118.6
C7—C2—C3118.9 (2)C16—C15—H15118.6
C7—C2—C1120.76 (18)C9—C14—C13121.0 (2)
C3—C2—C1120.37 (19)C9—C14—H14119.5
C14—C9—C10118.68 (19)C13—C14—H14119.5
C14—C9—C8120.55 (18)C22—C23—C24119.2 (2)
C10—C9—C8120.76 (18)C22—C23—H23120.4
O2—C1—O1125.05 (18)C24—C23—H23120.4
O2—C1—C2118.57 (17)C17—C16—C15119.6 (2)
O1—C1—C2116.39 (18)C17—C16—H16120.2
O4—C8—O3124.40 (19)C15—C16—H16120.2
O4—C8—C9119.53 (19)C12—C13—C14119.9 (2)
O3—C8—C9116.07 (17)C12—C13—H13120.0
N1—C19—C18122.98 (18)C14—C13—H13120.0
N1—C19—C20117.09 (17)C5—C4—C3120.6 (2)
C18—C19—C20119.93 (17)C5—C4—H4119.7
C23—C22—C21119.64 (19)C3—C4—H4119.7
C23—C22—H22120.2C11—C12—C13119.7 (2)
C21—C22—H22120.2C11—C12—H12120.1
N2—C20—C21122.68 (18)C13—C12—H12120.1
N2—C20—C19117.99 (16)C12—C11—C10120.5 (2)
C21—C20—C19119.32 (17)C12—C11—H11119.7
C9—C10—C11120.1 (2)C10—C11—H11119.7
C9—C10—H10120.0C4—C5—C6119.7 (2)
C11—C10—H10120.0C4—C5—H5120.2
C16—C17—C18119.1 (2)C6—C5—H5120.2
C16—C17—H17120.4C5—C6—C7120.0 (2)
C18—C17—H17120.4C5—C6—H6120.0
C19—C18—C17117.46 (19)C7—C6—H6120.0
C19—C18—C25119.19 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O20.891.782.616 (2)154
O5—H5B···O4i0.891.912.797 (2)174
Symmetry code: (i) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Zn(C7H5O2)2(C12H8N2)(H2O)]
Mr505.81
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.635 (5), 21.073 (10), 11.197 (5)
β (°) 116.647 (5)
V3)2243.0 (18)
Z4
Radiation typeMo Kα
µ (mm1)1.14
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.779, 0.815
No. of measured, independent and
observed [I > 2σ(I)] reflections
12067, 3992, 3424
Rint0.026
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.077, 1.03
No. of reflections3992
No. of parameters309
No. of restraints180
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.36

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O20.891.782.616 (2)154.1
O5—H5B···O4i0.891.912.797 (2)173.5
Symmetry code: (i) x+2, y+1, z+2.
 

References

First citationBruker (1999). SAINT and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNecefoglu, H., Clegg, W. & Scott, A. J. (2001). Acta Cryst. E57, m472–m474.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds