organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Bis(2-methyl-1,3-diazinan-2-yl)pyridine

aInstitut für Organische Chemie und Chemische Biologie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany, and bInstitut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de

(Received 29 November 2010; accepted 30 November 2010; online 8 December 2010)

The title compound, C15H25N5, is an aminalization product between 2,6-diacetyl­pyridine and 1,3-diamino­propane. It crystallizes with two independent mol­ecules in the asymmetric unit with different conformations. In the first mol­ecule, the methyl groups are cis oriented with respect to the pyridine ring [N—C—C—C torsion angles = 72.5 (1) and 80.3 (1)°], while they are trans oriented in the second mol­ecule [N—C—C—C torsion angles = 82.6 (1) and −90.8 (1)°]. Each of the two mol­ecules forms centrosymmetric dimers held together by N—H⋯N hydrogen bonds, thus forming R22(16) rings. The two dimers are inter­linked by additional N—H⋯N bonds into R44(14) rings, building chains along the a axis. These patterns influence the orientation (either equatorial or axial) of the N—H bonds.

Related literature

For 2,6-diacetyl­pyridine, see: Burnet et al. (2003[Burnet, S., Hall, A. K., Hall, J. M., Harrowfield, J. M., Koutsantonis, G. A., Sanford, V., Sauter, D., Skelton, B. W. & White, A. H. (2003). Supramol. Chem. 15, 291-312.]) and for 1,3-diamino­propane, see: Thalladi et al. (2000[Thalladi, V. R., Boese, R. & Weiss, C.-H. (2000). Angew. Chem. Int. Ed. 39, 918-922.]).

[Scheme 1]

Experimental

Crystal data
  • C15H25N5

  • Mr = 275.40

  • Monoclinic, P 21 /c

  • a = 18.715 (4) Å

  • b = 7.512 (2) Å

  • c = 22.730 (5) Å

  • β = 102.07 (3)°

  • V = 3124.9 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 173 K

  • 0.40 × 0.32 × 0.30 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • 41522 measured reflections

  • 5758 independent reflections

  • 4924 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.098

  • S = 1.35

  • 5758 reflections

  • 394 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯N5i 0.893 (16) 2.596 (15) 3.3984 (16) 149.9 (12)
N4—H4N⋯N4′ii 0.908 (16) 2.623 (16) 3.4716 (16) 155.8 (13)
N3′—H3′N⋯N5′iii 0.873 (15) 2.418 (15) 3.2662 (17) 164.2 (12)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x-1, y, z; (iii) -x+1, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The aim of this investigation was to cocrystallize 2,6-diacetylpyridine (Burnet et al., 2003) with 1,3-diaminopropane (Thalladi et al., 2000). Unfortunately crystals of the title compound were obtained due to an aminalization reaction between the starting compounds (Fig. 2).

Related literature top

For 2,6-diacetylpyridine, see: Burnet et al. (2003) and for 1,3-diaminopropane, see: Thalladi et al. (2000).

Experimental top

The starting compounds were purchased from Aldrich and Lancaster and utilized for a cocrystallization experiment without purification. 2,6-diacetylpyridine (10 mg) was added to an excess of 1,3-diaminopropane (0.8 ml). The mixture in a flask was set aside at room temperature. After several months colourless crystals were obtained.

Refinement top

H atoms bonded to C were refined with fixed individual displacement parameters [U(H) = 1.2 Ueq(C)] using a riding model with Caromatic—H = 0.95 Å, Cmethylene—H = 0.99 Å, or Ctertiary—H = 0.98 Å, respectively. H atoms bonded to N were freely refined.

Structure description top

The aim of this investigation was to cocrystallize 2,6-diacetylpyridine (Burnet et al., 2003) with 1,3-diaminopropane (Thalladi et al., 2000). Unfortunately crystals of the title compound were obtained due to an aminalization reaction between the starting compounds (Fig. 2).

For 2,6-diacetylpyridine, see: Burnet et al. (2003) and for 1,3-diaminopropane, see: Thalladi et al. (2000).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A perspective view of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A partial packing diagram for (I). N—H···N hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Reaction scheme between 2,6-diacetylpyridine and 1,3-diaminopropane.
2,6-Bis(2-methyl-1,3-diazinan-2-yl)pyridine top
Crystal data top
C15H25N5F(000) = 1200
Mr = 275.40Dx = 1.171 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 38746 reflections
a = 18.715 (4) Åθ = 3.3–25.7°
b = 7.512 (2) ŵ = 0.07 mm1
c = 22.730 (5) ÅT = 173 K
β = 102.07 (3)°Block, colourless
V = 3124.9 (13) Å30.40 × 0.32 × 0.30 mm
Z = 8
Data collection top
Stoe IPDS II two-circle
diffractometer
4924 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Graphite monochromatorθmax = 25.5°, θmin = 3.3°
ω scansh = 2222
41522 measured reflectionsk = 99
5758 independent reflectionsl = 2727
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0513P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.35(Δ/σ)max < 0.001
5758 reflectionsΔρmax = 0.28 e Å3
394 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0182 (13)
Crystal data top
C15H25N5V = 3124.9 (13) Å3
Mr = 275.40Z = 8
Monoclinic, P21/cMo Kα radiation
a = 18.715 (4) ŵ = 0.07 mm1
b = 7.512 (2) ÅT = 173 K
c = 22.730 (5) Å0.40 × 0.32 × 0.30 mm
β = 102.07 (3)°
Data collection top
Stoe IPDS II two-circle
diffractometer
4924 reflections with I > 2σ(I)
41522 measured reflectionsRint = 0.050
5758 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.35Δρmax = 0.28 e Å3
5758 reflectionsΔρmin = 0.18 e Å3
394 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.01315 (5)0.64048 (12)0.38741 (4)0.0208 (2)
C20.06102 (6)0.70659 (15)0.35629 (5)0.0219 (2)
C30.03859 (7)0.78073 (19)0.29935 (6)0.0337 (3)
H30.07330.82270.27750.040*
C40.03613 (7)0.7920 (2)0.27508 (6)0.0419 (4)
H40.05300.84490.23670.050*
C50.08588 (6)0.72571 (18)0.30721 (6)0.0336 (3)
H50.13700.73370.29150.040*
C60.05903 (6)0.64714 (15)0.36306 (5)0.0222 (2)
C70.14237 (5)0.67781 (15)0.38678 (5)0.0205 (2)
C80.15860 (6)0.47996 (15)0.38048 (5)0.0262 (3)
H8A0.12750.40910.40130.039*
H8B0.21010.45650.39840.039*
H8C0.14860.44760.33780.039*
N20.15809 (5)0.71862 (13)0.45185 (4)0.0226 (2)
H2N0.1276 (8)0.658 (2)0.4698 (6)0.034 (4)*
C90.15049 (7)0.90860 (17)0.46430 (6)0.0319 (3)
H9A0.16080.92920.50830.038*
H9B0.09990.94820.44730.038*
C100.20407 (7)1.01382 (17)0.43596 (6)0.0363 (3)
H10A0.25480.97980.45480.044*
H10B0.19821.14280.44260.044*
C110.18907 (7)0.97400 (16)0.36861 (6)0.0325 (3)
H11A0.14091.02430.34950.039*
H11B0.22661.03380.35070.039*
N30.18942 (5)0.78179 (13)0.35523 (4)0.0255 (2)
H3N0.2350 (8)0.7418 (18)0.3682 (6)0.028 (3)*
C120.10820 (6)0.56698 (15)0.40310 (5)0.0228 (2)
C130.11675 (7)0.70647 (19)0.45014 (6)0.0357 (3)
H13A0.06870.73510.47490.054*
H13B0.14830.65930.47580.054*
H13C0.13880.81440.42990.054*
N40.18088 (5)0.52752 (14)0.36689 (5)0.0267 (2)
H4N0.2100 (9)0.506 (2)0.3935 (7)0.041 (4)*
C140.18228 (7)0.37221 (18)0.32745 (6)0.0339 (3)
H14A0.15750.40350.29440.041*
H14B0.23370.34290.30930.041*
C150.14553 (7)0.20842 (19)0.35991 (7)0.0405 (3)
H15A0.14220.11370.33030.049*
H15B0.17500.16270.38810.049*
C160.06904 (7)0.25698 (17)0.39462 (7)0.0353 (3)
H16A0.04630.15290.41800.042*
H16B0.03800.29160.36620.042*
N50.07435 (5)0.40640 (14)0.43568 (4)0.0270 (2)
H5N0.0281 (8)0.4360 (19)0.4533 (6)0.033 (4)*
N1'0.51250 (5)0.59589 (12)0.38384 (4)0.0199 (2)
C2'0.47119 (6)0.66760 (14)0.33387 (5)0.0204 (2)
C3'0.49877 (6)0.70014 (16)0.28223 (5)0.0250 (3)
H3'0.46910.75330.24770.030*
C4'0.57073 (6)0.65272 (16)0.28268 (5)0.0264 (3)
H4'0.59070.67290.24810.032*
C5'0.61335 (6)0.57584 (16)0.33375 (5)0.0249 (2)
H5'0.66240.54160.33460.030*
C6'0.58237 (5)0.55030 (14)0.38369 (5)0.0200 (2)
C7'0.39231 (6)0.71995 (15)0.33837 (5)0.0220 (2)
C8'0.39689 (6)0.90350 (16)0.36847 (6)0.0302 (3)
H8'10.42690.89540.40920.045*
H8'20.34770.94380.37050.045*
H8'30.41900.98860.34490.045*
N2'0.34706 (5)0.73352 (14)0.27711 (4)0.0272 (2)
H2'N0.3052 (8)0.7831 (19)0.2808 (6)0.033 (4)*
C9'0.33042 (6)0.55788 (17)0.24825 (5)0.0288 (3)
H9'10.37580.50780.23900.035*
H9'20.29500.57410.20970.035*
C10'0.29904 (6)0.42461 (17)0.28693 (5)0.0291 (3)
H10C0.29550.30550.26790.035*
H10D0.24940.46210.29040.035*
C11'0.34896 (6)0.41589 (15)0.34943 (5)0.0248 (2)
H11C0.32710.33730.37590.030*
H11D0.39710.36640.34650.030*
N3'0.35806 (5)0.59662 (13)0.37478 (4)0.0221 (2)
H3'N0.3836 (8)0.5952 (18)0.4116 (7)0.030 (3)*
C12'0.62660 (6)0.47668 (15)0.44412 (5)0.0208 (2)
C13'0.66464 (7)0.63378 (17)0.48080 (6)0.0335 (3)
H13D0.62780.71820.48870.050*
H13E0.69690.69350.45810.050*
H13F0.69360.59020.51910.050*
N4'0.68328 (5)0.35340 (13)0.43324 (5)0.0256 (2)
H4'N0.7143 (7)0.3368 (18)0.4685 (6)0.029 (3)*
C14'0.65331 (7)0.18110 (18)0.40894 (6)0.0360 (3)
H14C0.69430.09820.40840.043*
H14D0.62680.19830.36680.043*
C15'0.60164 (7)0.09624 (18)0.44454 (7)0.0407 (3)
H15C0.57850.01050.42310.049*
H15D0.62950.05840.48450.049*
C16'0.54299 (7)0.22950 (18)0.45217 (6)0.0364 (3)
H16C0.51180.25780.41250.044*
H16D0.51170.17770.47790.044*
N5'0.57811 (5)0.39283 (15)0.48008 (4)0.0281 (2)
H5'N0.5420 (9)0.474 (2)0.4791 (7)0.045 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0161 (4)0.0239 (5)0.0212 (5)0.0001 (3)0.0011 (3)0.0006 (4)
C20.0188 (5)0.0242 (6)0.0218 (6)0.0005 (4)0.0018 (4)0.0006 (4)
C30.0234 (6)0.0486 (8)0.0277 (6)0.0040 (5)0.0017 (5)0.0137 (6)
C40.0289 (7)0.0595 (9)0.0320 (7)0.0031 (6)0.0056 (5)0.0224 (6)
C50.0178 (6)0.0443 (7)0.0342 (7)0.0009 (5)0.0045 (5)0.0100 (6)
C60.0173 (5)0.0243 (6)0.0236 (6)0.0012 (4)0.0009 (4)0.0018 (4)
C70.0159 (5)0.0249 (6)0.0201 (5)0.0005 (4)0.0023 (4)0.0017 (4)
C80.0202 (5)0.0270 (6)0.0303 (6)0.0006 (4)0.0028 (5)0.0012 (5)
N20.0191 (5)0.0267 (5)0.0213 (5)0.0009 (4)0.0023 (4)0.0007 (4)
C90.0309 (6)0.0304 (6)0.0322 (6)0.0033 (5)0.0013 (5)0.0073 (5)
C100.0323 (7)0.0230 (6)0.0488 (8)0.0019 (5)0.0025 (6)0.0020 (5)
C110.0230 (6)0.0291 (6)0.0439 (7)0.0021 (5)0.0036 (5)0.0120 (6)
N30.0168 (5)0.0310 (5)0.0289 (5)0.0009 (4)0.0052 (4)0.0061 (4)
C120.0157 (5)0.0292 (6)0.0226 (5)0.0007 (4)0.0018 (4)0.0027 (5)
C130.0329 (7)0.0418 (7)0.0331 (7)0.0005 (6)0.0084 (5)0.0108 (6)
N40.0139 (4)0.0379 (6)0.0275 (5)0.0007 (4)0.0030 (4)0.0043 (4)
C140.0268 (6)0.0429 (8)0.0298 (6)0.0083 (5)0.0009 (5)0.0097 (5)
C150.0377 (7)0.0336 (7)0.0498 (8)0.0065 (6)0.0080 (6)0.0106 (6)
C160.0289 (6)0.0289 (7)0.0483 (8)0.0030 (5)0.0089 (6)0.0010 (6)
N50.0191 (5)0.0340 (6)0.0264 (5)0.0008 (4)0.0012 (4)0.0034 (4)
N1'0.0170 (4)0.0236 (5)0.0187 (4)0.0017 (3)0.0028 (3)0.0017 (4)
C2'0.0189 (5)0.0215 (5)0.0202 (5)0.0008 (4)0.0023 (4)0.0024 (4)
C3'0.0245 (6)0.0293 (6)0.0207 (6)0.0008 (5)0.0036 (4)0.0076 (5)
C4'0.0267 (6)0.0338 (6)0.0208 (6)0.0018 (5)0.0093 (4)0.0047 (5)
C5'0.0180 (5)0.0328 (6)0.0247 (6)0.0012 (4)0.0066 (4)0.0021 (5)
C6'0.0173 (5)0.0216 (5)0.0208 (5)0.0003 (4)0.0033 (4)0.0003 (4)
C7'0.0189 (5)0.0275 (6)0.0189 (5)0.0041 (4)0.0025 (4)0.0033 (4)
C8'0.0259 (6)0.0290 (6)0.0351 (7)0.0041 (5)0.0054 (5)0.0001 (5)
N2'0.0222 (5)0.0360 (6)0.0212 (5)0.0102 (4)0.0005 (4)0.0057 (4)
C9'0.0226 (6)0.0433 (7)0.0183 (5)0.0057 (5)0.0005 (4)0.0012 (5)
C10'0.0198 (5)0.0392 (7)0.0276 (6)0.0005 (5)0.0032 (5)0.0072 (5)
C11'0.0210 (5)0.0284 (6)0.0254 (6)0.0007 (4)0.0057 (4)0.0016 (5)
N3'0.0188 (4)0.0295 (5)0.0173 (5)0.0020 (4)0.0023 (4)0.0013 (4)
C12'0.0168 (5)0.0264 (6)0.0192 (5)0.0033 (4)0.0035 (4)0.0016 (4)
C13'0.0319 (6)0.0324 (7)0.0306 (6)0.0023 (5)0.0060 (5)0.0019 (5)
N4'0.0179 (5)0.0331 (5)0.0249 (5)0.0073 (4)0.0026 (4)0.0025 (4)
C14'0.0372 (7)0.0330 (7)0.0345 (7)0.0135 (5)0.0000 (6)0.0044 (5)
C15'0.0383 (7)0.0274 (7)0.0484 (8)0.0012 (5)0.0094 (6)0.0076 (6)
C16'0.0224 (6)0.0410 (7)0.0421 (8)0.0046 (5)0.0018 (5)0.0194 (6)
N5'0.0213 (5)0.0400 (6)0.0242 (5)0.0072 (4)0.0074 (4)0.0091 (4)
Geometric parameters (Å, º) top
N1—C21.3471 (15)N1'—C2'1.3456 (14)
N1—C61.3494 (14)N1'—C6'1.3523 (14)
C2—C31.3908 (17)C2'—C3'1.3992 (16)
C2—C71.5504 (15)C2'—C7'1.5515 (15)
C3—C41.3943 (18)C3'—C4'1.3909 (16)
C3—H30.9500C3'—H3'0.9500
C4—C51.3903 (19)C4'—C5'1.3892 (17)
C4—H40.9500C4'—H4'0.9500
C5—C61.3949 (17)C5'—C6'1.3916 (16)
C5—H50.9500C5'—H5'0.9500
C6—C121.5453 (16)C6'—C12'1.5499 (15)
C7—N31.4709 (14)C7'—N2'1.4742 (15)
C7—N21.4786 (15)C7'—N3'1.4752 (15)
C7—C81.5297 (16)C7'—C8'1.5337 (17)
C8—H8A0.9800C8'—H8'10.9800
C8—H8B0.9800C8'—H8'20.9800
C8—H8C0.9800C8'—H8'30.9800
N2—C91.4676 (16)N2'—C9'1.4774 (17)
N2—H2N0.893 (16)N2'—H2'N0.887 (15)
C9—C101.5217 (19)C9'—C10'1.5284 (18)
C9—H9A0.9900C9'—H9'10.9900
C9—H9B0.9900C9'—H9'20.9900
C10—C111.527 (2)C10'—C11'1.5297 (17)
C10—H10A0.9900C10'—H10C0.9900
C10—H10B0.9900C10'—H10D0.9900
C11—N31.4758 (17)C11'—N3'1.4707 (15)
C11—H11A0.9900C11'—H11C0.9900
C11—H11B0.9900C11'—H11D0.9900
N3—H3N0.894 (14)N3'—H3'N0.873 (15)
C12—N41.4653 (14)C12'—N4'1.4676 (14)
C12—N51.4862 (15)C12'—N5'1.4830 (15)
C12—C131.5293 (17)C12'—C13'1.5318 (16)
C13—H13A0.9800C13'—H13D0.9800
C13—H13B0.9800C13'—H13E0.9800
C13—H13C0.9800C13'—H13F0.9800
N4—C141.4683 (16)N4'—C14'1.4715 (17)
N4—H4N0.908 (16)N4'—H4'N0.894 (14)
C14—C151.523 (2)C14'—C15'1.524 (2)
C14—H14A0.9900C14'—H14C0.9900
C14—H14B0.9900C14'—H14D0.9900
C15—C161.5271 (19)C15'—C16'1.522 (2)
C15—H15A0.9900C15'—H15C0.9900
C15—H15B0.9900C15'—H15D0.9900
C16—N51.4764 (17)C16'—N5'1.4715 (18)
C16—H16A0.9900C16'—H16C0.9900
C16—H16B0.9900C16'—H16D0.9900
N5—H5N0.901 (15)N5'—H5'N0.905 (17)
C2—N1—C6119.31 (9)C2'—N1'—C6'118.98 (9)
N1—C2—C3122.14 (10)N1'—C2'—C3'122.03 (10)
N1—C2—C7114.37 (9)N1'—C2'—C7'115.63 (9)
C3—C2—C7123.29 (10)C3'—C2'—C7'122.28 (10)
C2—C3—C4118.36 (12)C4'—C3'—C2'118.40 (10)
C2—C3—H3120.8C4'—C3'—H3'120.8
C4—C3—H3120.8C2'—C3'—H3'120.8
C5—C4—C3119.79 (11)C5'—C4'—C3'119.90 (11)
C5—C4—H4120.1C5'—C4'—H4'120.1
C3—C4—H4120.1C3'—C4'—H4'120.1
C4—C5—C6118.44 (11)C4'—C5'—C6'118.32 (10)
C4—C5—H5120.8C4'—C5'—H5'120.8
C6—C5—H5120.8C6'—C5'—H5'120.8
N1—C6—C5121.89 (11)N1'—C6'—C5'122.36 (10)
N1—C6—C12114.35 (9)N1'—C6'—C12'115.19 (9)
C5—C6—C12123.73 (10)C5'—C6'—C12'122.38 (9)
N3—C7—N2111.31 (9)N2'—C7'—N3'110.01 (9)
N3—C7—C8108.63 (9)N2'—C7'—C8'109.07 (9)
N2—C7—C8107.05 (9)N3'—C7'—C8'107.73 (9)
N3—C7—C2109.88 (9)N2'—C7'—C2'108.77 (9)
N2—C7—C2112.93 (9)N3'—C7'—C2'114.13 (9)
C8—C7—C2106.82 (9)C8'—C7'—C2'106.99 (9)
C7—C8—H8A109.5C7'—C8'—H8'1109.5
C7—C8—H8B109.5C7'—C8'—H8'2109.5
H8A—C8—H8B109.5H8'1—C8'—H8'2109.5
C7—C8—H8C109.5C7'—C8'—H8'3109.5
H8A—C8—H8C109.5H8'1—C8'—H8'3109.5
H8B—C8—H8C109.5H8'2—C8'—H8'3109.5
C9—N2—C7112.79 (9)C7'—N2'—C9'112.56 (9)
C9—N2—H2N108.2 (9)C7'—N2'—H2'N106.5 (9)
C7—N2—H2N109.7 (9)C9'—N2'—H2'N108.0 (9)
N2—C9—C10108.94 (10)N2'—C9'—C10'113.59 (10)
N2—C9—H9A109.9N2'—C9'—H9'1108.8
C10—C9—H9A109.9C10'—C9'—H9'1108.8
N2—C9—H9B109.9N2'—C9'—H9'2108.8
C10—C9—H9B109.9C10'—C9'—H9'2108.8
H9A—C9—H9B108.3H9'1—C9'—H9'2107.7
C9—C10—C11108.86 (10)C9'—C10'—C11'109.20 (9)
C9—C10—H10A109.9C9'—C10'—H10C109.8
C11—C10—H10A109.9C11'—C10'—H10C109.8
C9—C10—H10B109.9C9'—C10'—H10D109.8
C11—C10—H10B109.9C11'—C10'—H10D109.8
H10A—C10—H10B108.3H10C—C10'—H10D108.3
N3—C11—C10112.98 (10)N3'—C11'—C10'108.81 (9)
N3—C11—H11A109.0N3'—C11'—H11C109.9
C10—C11—H11A109.0C10'—C11'—H11C109.9
N3—C11—H11B109.0N3'—C11'—H11D109.9
C10—C11—H11B109.0C10'—C11'—H11D109.9
H11A—C11—H11B107.8H11C—C11'—H11D108.3
C7—N3—C11112.97 (10)C11'—N3'—C7'112.85 (9)
C7—N3—H3N106.7 (9)C11'—N3'—H3'N111.1 (9)
C11—N3—H3N107.8 (9)C7'—N3'—H3'N109.3 (9)
N4—C12—N5111.38 (9)N4'—C12'—N5'111.85 (9)
N4—C12—C13108.09 (9)N4'—C12'—C13'107.93 (9)
N5—C12—C13107.68 (10)N5'—C12'—C13'107.19 (9)
N4—C12—C6110.20 (9)N4'—C12'—C6'110.29 (9)
N5—C12—C6111.44 (9)N5'—C12'—C6'111.41 (8)
C13—C12—C6107.89 (10)C13'—C12'—C6'107.99 (9)
C12—C13—H13A109.5C12'—C13'—H13D109.5
C12—C13—H13B109.5C12'—C13'—H13E109.5
H13A—C13—H13B109.5H13D—C13'—H13E109.5
C12—C13—H13C109.5C12'—C13'—H13F109.5
H13A—C13—H13C109.5H13D—C13'—H13F109.5
H13B—C13—H13C109.5H13E—C13'—H13F109.5
C12—N4—C14113.55 (9)C12'—N4'—C14'112.71 (9)
C12—N4—H4N106.1 (10)C12'—N4'—H4'N107.1 (9)
C14—N4—H4N109.3 (10)C14'—N4'—H4'N109.8 (9)
N4—C14—C15113.43 (11)N4'—C14'—C15'113.76 (11)
N4—C14—H14A108.9N4'—C14'—H14C108.8
C15—C14—H14A108.9C15'—C14'—H14C108.8
N4—C14—H14B108.9N4'—C14'—H14D108.8
C15—C14—H14B108.9C15'—C14'—H14D108.8
H14A—C14—H14B107.7H14C—C14'—H14D107.7
C14—C15—C16109.68 (11)C16'—C15'—C14'109.76 (11)
C14—C15—H15A109.7C16'—C15'—H15C109.7
C16—C15—H15A109.7C14'—C15'—H15C109.7
C14—C15—H15B109.7C16'—C15'—H15D109.7
C16—C15—H15B109.7C14'—C15'—H15D109.7
H15A—C15—H15B108.2H15C—C15'—H15D108.2
N5—C16—C15109.18 (10)N5'—C16'—C15'109.26 (10)
N5—C16—H16A109.8N5'—C16'—H16C109.8
C15—C16—H16A109.8C15'—C16'—H16C109.8
N5—C16—H16B109.8N5'—C16'—H16D109.8
C15—C16—H16B109.8C15'—C16'—H16D109.8
H16A—C16—H16B108.3H16C—C16'—H16D108.3
C16—N5—C12112.33 (9)C16'—N5'—C12'112.71 (10)
C16—N5—H5N106.5 (9)C16'—N5'—H5'N106.6 (10)
C12—N5—H5N106.9 (9)C12'—N5'—H5'N103.9 (10)
C6—N1—C2—C30.52 (17)C6'—N1'—C2'—C3'1.46 (16)
C6—N1—C2—C7175.43 (9)C6'—N1'—C2'—C7'178.67 (9)
N1—C2—C3—C42.3 (2)N1'—C2'—C3'—C4'1.42 (17)
C7—C2—C3—C4176.79 (12)C7'—C2'—C3'—C4'178.44 (10)
C2—C3—C4—C51.6 (2)C2'—C3'—C4'—C5'0.30 (18)
C3—C4—C5—C60.8 (2)C3'—C4'—C5'—C6'0.70 (18)
C2—N1—C6—C52.05 (17)C2'—N1'—C6'—C5'0.39 (16)
C2—N1—C6—C12179.94 (9)C2'—N1'—C6'—C12'177.37 (9)
C4—C5—C6—N12.68 (19)C4'—C5'—C6'—N1'0.68 (17)
C4—C5—C6—C12179.50 (12)C4'—C5'—C6'—C12'176.09 (10)
N1—C2—C7—N3169.79 (9)N1'—C2'—C7'—N2'159.75 (9)
C3—C2—C7—N315.36 (15)C3'—C2'—C7'—N2'23.05 (14)
N1—C2—C7—N244.86 (13)N1'—C2'—C7'—N3'36.50 (13)
C3—C2—C7—N2140.29 (12)C3'—C2'—C7'—N3'146.30 (11)
N1—C2—C7—C872.55 (12)N1'—C2'—C7'—C8'82.56 (12)
C3—C2—C7—C8102.30 (13)C3'—C2'—C7'—C8'94.63 (12)
N3—C7—N2—C956.72 (12)N3'—C7'—N2'—C9'53.26 (12)
C8—C7—N2—C9175.30 (9)C8'—C7'—N2'—C9'171.21 (10)
C2—C7—N2—C967.42 (12)C2'—C7'—N2'—C9'72.43 (12)
C7—N2—C9—C1060.40 (12)C7'—N2'—C9'—C10'51.37 (13)
N2—C9—C10—C1157.28 (13)N2'—C9'—C10'—C11'51.67 (13)
C9—C10—C11—N353.72 (13)C9'—C10'—C11'—N3'55.04 (12)
N2—C7—N3—C1150.79 (12)C10'—C11'—N3'—C7'61.18 (11)
C8—C7—N3—C11168.41 (9)N2'—C7'—N3'—C11'59.80 (11)
C2—C7—N3—C1175.06 (11)C8'—C7'—N3'—C11'178.57 (9)
C10—C11—N3—C750.98 (13)C2'—C7'—N3'—C11'62.78 (12)
N1—C6—C12—N4161.87 (9)N1'—C6'—C12'—N4'151.51 (9)
C5—C6—C12—N420.16 (16)C5'—C6'—C12'—N4'31.51 (15)
N1—C6—C12—N537.69 (13)N1'—C6'—C12'—N5'26.68 (13)
C5—C6—C12—N5144.34 (12)C5'—C6'—C12'—N5'156.34 (10)
N1—C6—C12—C1380.32 (12)N1'—C6'—C12'—C13'90.77 (11)
C5—C6—C12—C1397.65 (13)C5'—C6'—C12'—C13'86.21 (13)
N5—C12—N4—C1451.19 (13)N5'—C12'—N4'—C14'50.94 (13)
C13—C12—N4—C14169.29 (11)C13'—C12'—N4'—C14'168.61 (10)
C6—C12—N4—C1473.03 (13)C6'—C12'—N4'—C14'73.64 (12)
C12—N4—C14—C1550.09 (15)C12'—N4'—C14'—C15'50.04 (13)
N4—C14—C15—C1651.80 (15)N4'—C14'—C15'—C16'52.01 (14)
C14—C15—C16—N555.64 (15)C14'—C15'—C16'—N5'55.21 (14)
C15—C16—N5—C1259.44 (14)C15'—C16'—N5'—C12'58.90 (13)
N4—C12—N5—C1656.92 (12)N4'—C12'—N5'—C16'56.78 (12)
C13—C12—N5—C16175.27 (9)C13'—C12'—N5'—C16'174.89 (9)
C6—C12—N5—C1666.59 (12)C6'—C12'—N5'—C16'67.17 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N5i0.893 (16)2.596 (15)3.3984 (16)149.9 (12)
N4—H4N···N4ii0.908 (16)2.623 (16)3.4716 (16)155.8 (13)
N3—H3N···N5iii0.873 (15)2.418 (15)3.2662 (17)164.2 (12)
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H25N5
Mr275.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)18.715 (4), 7.512 (2), 22.730 (5)
β (°) 102.07 (3)
V3)3124.9 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.40 × 0.32 × 0.30
Data collection
DiffractometerStoe IPDS II two-circle
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
41522, 5758, 4924
Rint0.050
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.35
No. of reflections5758
No. of parameters394
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.18

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N5i0.893 (16)2.596 (15)3.3984 (16)149.9 (12)
N4—H4N···N4'ii0.908 (16)2.623 (16)3.4716 (16)155.8 (13)
N3'—H3'N···N5'iii0.873 (15)2.418 (15)3.2662 (17)164.2 (12)
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

We gratefully thank Professor Dr Ernst Egert for his support.

References

First citationBurnet, S., Hall, A. K., Hall, J. M., Harrowfield, J. M., Koutsantonis, G. A., Sanford, V., Sauter, D., Skelton, B. W. & White, A. H. (2003). Supramol. Chem. 15, 291–312.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationThalladi, V. R., Boese, R. & Weiss, C.-H. (2000). Angew. Chem. Int. Ed. 39, 918–922.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds