organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-Ammonium cis-2-carb­­oxy­cyclo­hexane-1-carboxyl­ate

aFaculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 5 December 2010; accepted 10 December 2010; online 18 December 2010)

In the structure of the title compound, NH4+·C8H11O4, the carboxyl and carboxyl­ate groups of the cation adopt C—C—C—O torsion angles of 174.9 (2) and −145.4 (2)°, respectively, with the alicyclic ring. The ammonium H atoms of the cations give a total of five hydrogen-bonding associations with carboxyl­ate O-atom acceptors of the anion which, together with a carboxyl O—H⋯Ocarboxyl­ate inter­action give sheet structures which lie in the (101) planes.

Related literature

For the structure of the isomeric racemic ammonium salt of trans-cyclo­hexane-1,2-dicarb­oxy­lic acid (TCDA), see: Stibrany et al. (2004[Stibrany, R. T., Schugar, H. J. & Potenza, J. A. (2004). Acta Cryst. E60, o1012-o1014.]). For the structures of rac-cis-CDA, rac-trans-CDA and (+)-trans-CDA, see: Benedetti et al. (1970[Benedetti, E., Pedone, C. & Allegra, G. (1970). J. Phys. Chem. 74, 512-516.]); Benedetti, Corradini, Pedone & Post (1969[Benedetti, E., Corradini, P., Pedone, C. & Post, B. (1969). J. Am. Chem. Soc. 91, 4072-4074.]); Benedetti, Corradini & Pedone (1969[Benedetti, E., Corradini, P. & Pedone, C. (1969). J. Am. Chem. Soc. 91, 4075-4077.]); Rizal & Ng (2008[Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, o992.]). The cis,trans-isomer exists as an essentially unresolvable racemate, see: Eliel (1962[Eliel, E. L. (1962). Stereochemistry of Carbon Compounds, pp. 211-215. New York: McGraw-Hill.]). For hydrogen-bond motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • NH4+·C8H11O4

  • Mr = 189.21

  • Monoclinic, P 21 /c

  • a = 15.4908 (13) Å

  • b = 5.3475 (3) Å

  • c = 12.1716 (9) Å

  • β = 109.795 (9)°

  • V = 948.68 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 200 K

  • 0.30 × 0.22 × 0.10 mm

Data collection
  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.86, Tmax = 0.98

  • 5997 measured reflections

  • 1862 independent reflections

  • 1313 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.141

  • S = 0.99

  • 1862 reflections

  • 138 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O11 0.90 (3) 2.22 (3) 3.012 (3) 146 (3)
N1—H1A⋯O12 0.90 (3) 2.44 (3) 3.237 (3) 147 (3)
N1—H1B⋯O12i 0.91 (4) 1.96 (4) 2.835 (3) 161 (4)
N1—H1C⋯O11ii 0.97 (2) 1.85 (3) 2.811 (3) 168 (2)
N1—H1D⋯O12iii 0.99 (3) 1.86 (3) 2.842 (3) 174 (3)
O22—H22⋯O11iv 0.88 (4) 1.76 (4) 2.619 (3) 165 (5)
Symmetry codes: (i) x, y-1, z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y+2, -z+1; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Cyclohexane-1,2-dicarboxylic acid (CDA) is of interest conformationally since the cis,cis- (or trans,trans)- configurational isomers (the trans form) may be resolved while the cis,trans-isomer exists as an essentially unresolvable racemate (Eliel, 1962). The structures of both racemic-trans-CDA (TCDA) (Benedetti, Corradini, Pedrone & Post, 1969; Rizal & Ng, 2008), and (+)-trans-CDA (Benedetti, Corradini, Pedrone & Post, 1969) are known as well as that of racemic-cis-CDA (CCDA) (Benedetti et al., 1970). Our reaction of cyclohexane-1,2-dicarboxylic anhydride in 50% ethanol/water with an ammoniacal solution gave, after evaporation, crystals which were found to have a monoclinic unit cell which was very similar to that previously reported for the roon-temperature structure of ammonium trans-2-carboxycyclohexanecarboxylate (Stibrany et al., 2004) [a = 15.712 (7), b = 6.141 (3), c = 10.464 (5) Å, β = 104.96 (4)°, V = 975.5 (8) Å3, Z = 4, space group P21/c], suggesting either a crystal polymorph or the configurational cis-isomeric salt. The compound has been confirmed as the racemic cis-salt of CDA, NH4+ C8H11O4- (I) and the structure is reported here.

With (I) (Fig. 1) the ammonium cations give five hydrogen-bonding interactions with carboxylate O-atom acceptors of the anion (Table 1), including a three-centre asymmetric cyclic N—H···O,O' association [graph set R21(4) (Etter et al., (1990)]. The two-dimensional sheet structures generated extend along the (101) planes in the unit cell (Fig. 2) with the ammonium ions lying close to these planes and providing the linkages within the sheets (Fig. 3), together with strong carboxylic acid O—H···Ocarboxyl hydrogen bonds. This and all other features of the hydrogen bonding in (I), including the centrosymmetric cyclic R24(8) heteromolecular motifs, are similar to those of the trans-CDA ammonium salt (Stibrany et al., 2004) but conformationally, the anions differ although not in a major way. Comparative carboxylic acid and carboxylate groups defined by torsion angles C1–C2–C21–O22 [174.9 (2)°] and C2–C1–C11–O11 [-145.4 (2)°] in (I) compare with -166.66 (19) and 137.3 (2)° respectively for the trans salt but are more comparable with -178.8 (5) and 152.9 (2)° for the rac-cis-CDA acid (Benedetti et al., 1970).

Related literature top

For the structure of the isomeric racemic ammonium salt of trans-cyclohexane-1,2-dicarboxylic acid (TCDA), see: Stibrany et al. (2004). For the structures of rac-cis-CDA, rac-trans-CDA and (+)-trans-CDA, see: Benedetti et al. (1970); Benedetti, Corradini, Pedone & Post (1969); Benedetti, Corradini & Pedone (1969); Rizal & Ng (2008). The cis,trans-isomer exists as an essentially unresolvable racemate, see: Eliel (1962). For hydrogen-bond motifs, see: Etter et al. (1990) .

Experimental top

The title compound was synthesized by reacting 1 mmol of cyclohexane-1,2-dicarboxylic anhydride with 50 ml of an 5M ammoniacal 1:1 ethanol–water solution. The solution was allowed evaporate to moist dryness at room temperature over several months, finally giving colourless poorly formed plates of (I) from which a specimen was cleaved for the X-ray analysis.

Refinement top

Hydrogen atoms involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H-atoms were included in the refinement at calculated positions [C–H = 0.96–0.97 Å and with Uiso(H) = 1.2Ueq(C), using a riding-model approximation.

Structure description top

Cyclohexane-1,2-dicarboxylic acid (CDA) is of interest conformationally since the cis,cis- (or trans,trans)- configurational isomers (the trans form) may be resolved while the cis,trans-isomer exists as an essentially unresolvable racemate (Eliel, 1962). The structures of both racemic-trans-CDA (TCDA) (Benedetti, Corradini, Pedrone & Post, 1969; Rizal & Ng, 2008), and (+)-trans-CDA (Benedetti, Corradini, Pedrone & Post, 1969) are known as well as that of racemic-cis-CDA (CCDA) (Benedetti et al., 1970). Our reaction of cyclohexane-1,2-dicarboxylic anhydride in 50% ethanol/water with an ammoniacal solution gave, after evaporation, crystals which were found to have a monoclinic unit cell which was very similar to that previously reported for the roon-temperature structure of ammonium trans-2-carboxycyclohexanecarboxylate (Stibrany et al., 2004) [a = 15.712 (7), b = 6.141 (3), c = 10.464 (5) Å, β = 104.96 (4)°, V = 975.5 (8) Å3, Z = 4, space group P21/c], suggesting either a crystal polymorph or the configurational cis-isomeric salt. The compound has been confirmed as the racemic cis-salt of CDA, NH4+ C8H11O4- (I) and the structure is reported here.

With (I) (Fig. 1) the ammonium cations give five hydrogen-bonding interactions with carboxylate O-atom acceptors of the anion (Table 1), including a three-centre asymmetric cyclic N—H···O,O' association [graph set R21(4) (Etter et al., (1990)]. The two-dimensional sheet structures generated extend along the (101) planes in the unit cell (Fig. 2) with the ammonium ions lying close to these planes and providing the linkages within the sheets (Fig. 3), together with strong carboxylic acid O—H···Ocarboxyl hydrogen bonds. This and all other features of the hydrogen bonding in (I), including the centrosymmetric cyclic R24(8) heteromolecular motifs, are similar to those of the trans-CDA ammonium salt (Stibrany et al., 2004) but conformationally, the anions differ although not in a major way. Comparative carboxylic acid and carboxylate groups defined by torsion angles C1–C2–C21–O22 [174.9 (2)°] and C2–C1–C11–O11 [-145.4 (2)°] in (I) compare with -166.66 (19) and 137.3 (2)° respectively for the trans salt but are more comparable with -178.8 (5) and 152.9 (2)° for the rac-cis-CDA acid (Benedetti et al., 1970).

For the structure of the isomeric racemic ammonium salt of trans-cyclohexane-1,2-dicarboxylic acid (TCDA), see: Stibrany et al. (2004). For the structures of rac-cis-CDA, rac-trans-CDA and (+)-trans-CDA, see: Benedetti et al. (1970); Benedetti, Corradini, Pedone & Post (1969); Benedetti, Corradini & Pedone (1969); Rizal & Ng (2008). The cis,trans-isomer exists as an essentially unresolvable racemate, see: Eliel (1962). For hydrogen-bond motifs, see: Etter et al. (1990) .

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom naming scheme for the ammonium cation the CDA anion in (I). Inter-species hydrogen bonds are shown as dashed lines and displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. The two-dimensional hydrogen-bonded sheet structures in (I) which extend down the (101) planes in the unit cell, showing hydrogen-bonding interactions as dashed lines. Non-associative H atoms are omitted. For symmetry codes, see Table 1.
[Figure 3] Fig. 3. A portion of the sheet structure in (I) viewed down the a axis of the unit cell.
rac-Ammonium cis-2-carboxycyclohexane-1-carboxylate top
Crystal data top
NH4+·C8H11O4F(000) = 408
Mr = 189.21Dx = 1.325 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2294 reflections
a = 15.4908 (13) Åθ = 3.4–28.6°
b = 5.3475 (3) ŵ = 0.11 mm1
c = 12.1716 (9) ÅT = 200 K
β = 109.795 (9)°Plate, colourless
V = 948.68 (13) Å30.30 × 0.22 × 0.10 mm
Z = 4
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
1862 independent reflections
Radiation source: Enhance (Mo) X-ray source1313 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.4°
ω scansh = 1912
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 66
Tmin = 0.86, Tmax = 0.98l = 1515
5997 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0838P)2]
where P = (Fo2 + 2Fc2)/3
1862 reflections(Δ/σ)max < 0.001
138 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
NH4+·C8H11O4V = 948.68 (13) Å3
Mr = 189.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.4908 (13) ŵ = 0.11 mm1
b = 5.3475 (3) ÅT = 200 K
c = 12.1716 (9) Å0.30 × 0.22 × 0.10 mm
β = 109.795 (9)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
1862 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1313 reflections with I > 2σ(I)
Tmin = 0.86, Tmax = 0.98Rint = 0.046
5997 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.44 e Å3
1862 reflectionsΔρmin = 0.22 e Å3
138 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.13732 (12)0.9964 (3)0.33214 (13)0.0306 (5)
O120.08448 (12)1.2330 (3)0.44276 (14)0.0329 (6)
O210.16061 (13)0.7624 (3)0.59854 (14)0.0368 (6)
O220.20622 (15)0.9149 (4)0.77916 (15)0.0450 (7)
C10.24584 (16)1.1450 (4)0.51309 (18)0.0243 (7)
C20.24599 (17)1.1538 (4)0.63967 (18)0.0242 (7)
C30.34336 (18)1.1894 (4)0.7268 (2)0.0323 (8)
C40.40930 (18)0.9929 (5)0.7113 (2)0.0345 (8)
C50.41077 (18)0.9927 (5)0.5871 (2)0.0383 (9)
C60.31483 (17)0.9528 (5)0.4989 (2)0.0302 (8)
C110.14981 (17)1.1222 (4)0.42428 (19)0.0253 (7)
C210.20048 (16)0.9222 (4)0.66831 (19)0.0245 (7)
N10.01140 (18)0.6903 (5)0.3749 (2)0.0320 (8)
H10.268701.308500.498900.0290*
H20.209601.299200.646400.0290*
H220.192 (3)0.764 (8)0.796 (3)0.088 (13)*
H310.365401.354300.716100.0390*
H320.341801.180000.805600.0390*
H410.470501.026500.765200.0410*
H420.390800.829200.729600.0410*
H510.451000.860700.578600.0460*
H520.434901.150900.571300.0460*
H610.293900.786000.508600.0360*
H620.317400.964800.420500.0360*
H1A0.016 (2)0.832 (6)0.363 (3)0.057 (10)*
H1B0.031 (3)0.566 (7)0.402 (3)0.071 (11)*
H1C0.057 (2)0.647 (5)0.300 (2)0.044 (8)*
H1D0.038 (2)0.728 (6)0.436 (3)0.072 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0415 (11)0.0289 (9)0.0191 (8)0.0057 (8)0.0071 (7)0.0059 (7)
O120.0338 (11)0.0378 (10)0.0264 (9)0.0104 (8)0.0093 (7)0.0021 (7)
O210.0556 (13)0.0292 (9)0.0254 (9)0.0167 (9)0.0134 (8)0.0038 (7)
O220.0814 (16)0.0360 (11)0.0207 (9)0.0190 (11)0.0215 (9)0.0004 (8)
C10.0336 (14)0.0186 (11)0.0232 (12)0.0030 (10)0.0130 (10)0.0004 (9)
C20.0328 (14)0.0171 (11)0.0227 (11)0.0002 (10)0.0094 (10)0.0009 (9)
C30.0398 (16)0.0259 (13)0.0288 (13)0.0043 (11)0.0086 (11)0.0033 (10)
C40.0258 (14)0.0362 (14)0.0349 (14)0.0010 (12)0.0017 (11)0.0002 (11)
C50.0302 (15)0.0431 (16)0.0434 (16)0.0057 (13)0.0148 (12)0.0011 (12)
C60.0367 (15)0.0315 (14)0.0260 (13)0.0026 (11)0.0153 (11)0.0003 (10)
C110.0386 (15)0.0173 (11)0.0225 (12)0.0017 (11)0.0137 (10)0.0037 (9)
C210.0301 (13)0.0216 (11)0.0212 (12)0.0020 (10)0.0081 (10)0.0016 (9)
N10.0373 (14)0.0327 (13)0.0244 (12)0.0003 (11)0.0085 (10)0.0038 (10)
Geometric parameters (Å, º) top
O11—C111.265 (3)C3—C41.521 (4)
O12—C111.257 (3)C4—C51.520 (3)
O21—C211.216 (3)C5—C61.525 (4)
O22—C211.322 (3)C1—H10.9800
O22—H220.88 (4)C2—H20.9800
N1—H1D0.99 (3)C3—H310.9700
N1—H1B0.91 (4)C3—H320.9700
N1—H1C0.97 (2)C4—H410.9700
N1—H1A0.90 (3)C4—H420.9700
C1—C111.519 (3)C5—H520.9700
C1—C21.541 (3)C5—H510.9700
C1—C61.534 (4)C6—H610.9700
C2—C31.534 (4)C6—H620.9700
C2—C211.523 (3)
C21—O22—H22109 (2)C6—C1—H1106.00
H1B—N1—H1C112 (3)C1—C2—H2108.00
H1C—N1—H1D114 (3)C3—C2—H2108.00
H1B—N1—H1D108 (3)C21—C2—H2108.00
H1A—N1—H1D107 (3)H31—C3—H32108.00
H1A—N1—H1B110 (3)C2—C3—H31109.00
H1A—N1—H1C106 (3)C2—C3—H32109.00
C6—C1—C11114.70 (18)C4—C3—H31109.00
C2—C1—C6111.59 (18)C4—C3—H32109.00
C2—C1—C11112.6 (2)C3—C4—H42109.00
C1—C2—C3111.3 (2)C5—C4—H41109.00
C1—C2—C21111.10 (18)C3—C4—H41109.00
C3—C2—C21111.46 (18)H41—C4—H42108.00
C2—C3—C4111.90 (19)C5—C4—H42109.00
C3—C4—C5111.2 (2)C6—C5—H51109.00
C4—C5—C6111.2 (2)C4—C5—H52109.00
C1—C6—C5112.2 (2)C4—C5—H51109.00
O11—C11—O12121.2 (2)C6—C5—H52109.00
O11—C11—C1119.5 (2)H51—C5—H52108.00
O12—C11—C1119.25 (19)H61—C6—H62108.00
O21—C21—O22122.3 (2)C1—C6—H61109.00
O21—C21—C2125.2 (2)C1—C6—H62109.00
O22—C21—C2112.41 (19)C5—C6—H61109.00
C11—C1—H1106.00C5—C6—H62109.00
C2—C1—H1106.00
C6—C1—C2—C352.1 (2)C1—C2—C3—C454.1 (2)
C6—C1—C2—C2172.7 (3)C21—C2—C3—C470.6 (3)
C11—C1—C2—C3177.29 (17)C1—C2—C21—O217.1 (4)
C11—C1—C2—C2157.9 (2)C1—C2—C21—O22174.9 (2)
C2—C1—C6—C553.0 (3)C3—C2—C21—O21131.9 (3)
C11—C1—C6—C5177.5 (2)C3—C2—C21—O2250.1 (3)
C2—C1—C11—O11145.4 (2)C2—C3—C4—C556.3 (3)
C2—C1—C11—O1236.0 (3)C3—C4—C5—C656.4 (3)
C6—C1—C11—O1116.4 (3)C4—C5—C6—C155.1 (3)
C6—C1—C11—O12165.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O110.90 (3)2.22 (3)3.012 (3)146 (3)
N1—H1A···O120.90 (3)2.44 (3)3.237 (3)147 (3)
N1—H1B···O12i0.91 (4)1.96 (4)2.835 (3)161 (4)
N1—H1C···O11ii0.97 (2)1.85 (3)2.811 (3)168 (2)
N1—H1D···O12iii0.99 (3)1.86 (3)2.842 (3)174 (3)
O22—H22···O11iv0.88 (4)1.76 (4)2.619 (3)165 (5)
C2—H2···O21v0.982.603.485 (3)150
C3—H32···O220.972.462.827 (4)102
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z+1/2; (iii) x, y+2, z+1; (iv) x, y+3/2, z+1/2; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formulaNH4+·C8H11O4
Mr189.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)15.4908 (13), 5.3475 (3), 12.1716 (9)
β (°) 109.795 (9)
V3)948.68 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.22 × 0.10
Data collection
DiffractometerOxford Diffraction Gemini-S CCD-detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.86, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
5997, 1862, 1313
Rint0.046
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.141, 0.99
No. of reflections1862
No. of parameters138
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.22

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O110.90 (3)2.22 (3)3.012 (3)146 (3)
N1—H1A···O120.90 (3)2.44 (3)3.237 (3)147 (3)
N1—H1B···O12i0.91 (4)1.96 (4)2.835 (3)161 (4)
N1—H1C···O11ii0.97 (2)1.85 (3)2.811 (3)168 (2)
N1—H1D···O12iii0.99 (3)1.86 (3)2.842 (3)174 (3)
O22—H22···O11iv0.88 (4)1.76 (4)2.619 (3)165 (5)
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z+1/2; (iii) x, y+2, z+1; (iv) x, y+3/2, z+1/2.
 

Acknowledgements

The authors acknowledge financial support from the Australian Research Council, the Faculty of Science and Technology and the University Library, Queensland University of Technology and the School of Biomolecular and Physical Sciences, Griffith University.

References

First citationBenedetti, E., Corradini, P. & Pedone, C. (1969). J. Am. Chem. Soc. 91, 4075–4077.  CSD CrossRef CAS Web of Science Google Scholar
First citationBenedetti, E., Corradini, P., Pedone, C. & Post, B. (1969). J. Am. Chem. Soc. 91, 4072–4074.  CSD CrossRef CAS Web of Science Google Scholar
First citationBenedetti, E., Pedone, C. & Allegra, G. (1970). J. Phys. Chem. 74, 512–516.  CSD CrossRef CAS Web of Science Google Scholar
First citationEliel, E. L. (1962). Stereochemistry of Carbon Compounds, pp. 211–215. New York: McGraw-Hill.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, o992.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStibrany, R. T., Schugar, H. J. & Potenza, J. A. (2004). Acta Cryst. E60, o1012–o1014.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds