organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-(4-Chloro­phen­yl)-2-iso­butyl­imidazo[2,1-b][1,3,4]thia­diazole

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Mangalore University, Mangalore, Karnataka, India
*Correspondence e-mail: hkfun@usm.my

(Received 14 December 2010; accepted 15 December 2010; online 24 December 2010)

In the title compound, C14H14ClN3S, the imidazo[2,1-b][1,3,4]thia­diazole system is essentially planar, with a maximum deviation of 0.006 (2) Å. The dihedral angle between the imidazo[2,1-b][1,3,4]thia­diazole and chloro­phenyl rings is 5.07 (8)°. In the crystal, there are no classical hydrogen bonds but stabilization is provided by weak ππ [centroid–centroid distance = 3.5697 (11) Å] and C—H⋯π inter­actions.

Related literature

For applications of imidazo [2,1-b]-1,3,4-thia­diazole derivatives, see: Terzioglu & Gursoy (2003[Terzioglu, N. & Gursoy, A. (2003). Eur. J. Med. Chem. 38, 781-786.]); Kolavi et al. (2006[Kolavi, G., Hegde, V., Khan, I. & Gadad, P. (2006). Bioorg. Med. Chem. 14, 3069-3080.]); Gadad et al. (2000[Gadad, A. K., Mahajanshetti, C. S., Nimbalkar, S. & Raichurkar, A. (2000). Eur. J. Med. Chem. 35, 853-857.]); Andotra et al. (1997[Andotra, C. S., Langer, T. & Kotha, A. (1997). J. Indian Chem. Soc. 74, 125-127.]); Khazi et al. (1996[Khazi, I. A. M., Mahajanshetti, C. S., Gadad, A. K., Tamalli, A. D. & Sultanpur, C. M. (1996). Arzneim. Forsch. Drug. Res. 46, 949-952.]); Andreani et al. (1982[Andreani, A., Bonazzi, D., Rambaldi, M., Fabbri, G. & Rainsford, K. D. (1982). Eur. J. Med. Chem. 17, 271-274.],1987[Andreani, A., Rambaldi, M., Mascellani, G. & Rugarli, P. (1987). Eur. J. Med. Chem. 22, 19-22.],1991[Andreani, A., Rambaldi, M., Locatelli, A. & Andreani, F. (1991). Collect. Czech. Chem. Commun. 56, 2436-2447.]); Eberle & Robert (1977[Eberle, M. K. & Robert, E. M. (1977). US Patent No. 4 054 665.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14ClN3S

  • Mr = 291.79

  • Monoclinic, P 21 /n

  • a = 5.7552 (1) Å

  • b = 26.4052 (5) Å

  • c = 9.7662 (2) Å

  • β = 101.388 (1)°

  • V = 1454.92 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 296 K

  • 0.47 × 0.31 × 0.28 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009)[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] Tmin = 0.835, Tmax = 0.897

  • 12320 measured reflections

  • 3353 independent reflections

  • 2646 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.135

  • S = 1.05

  • 3353 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11BCg3i 0.97 2.70 3.544 (2) 145
Symmetry code: (i) -x+2, -y, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Imidazo [2,1-b]-1,3,4-thiadiazole derivatives are found to be biologically active compounds possessing anticancer (Terzioglu, 2003), antitubercular (Kolavi et al., 2006), antibacterial (Gadad et al., 2000), antifungal (Andotra et al., 1997), anticonvulsant, analgesic (Khazi et al., 1996), anti-inflammatory (Andreani et al., 1982), diuretic (Andreani et al., 1991) and herbicidal activities (Andreani et al., 1991). Moreover 1,3,4-thiadiazoles have many interesting biological activities, for example, 2-amino-5-(trifluoromethylphenyl alkyl)-1,3,4 thidadiazoles are used in the treatment of insomnia and anxiety (Eberle & Robert, 1977).

The asymmetric unit of the title compound is shown in Fig. 1. The imidazo[2,1-b] [1,3,4]thiadiazole (S1/N1–N3/C7–C10) ring is essentially planar, with a maximum deviation of 0.006 (2) Å for atom N3. The dihedral angle between the imidazo[2,1-b][1,3,4]thiadiazole (S1/N1–N3/C7–C10) ring and the chlorophenyl ring (C1–C6) is 5.07 (8)°.

In the crystal structure (Fig. 2), there are no classical hydrogen bonds but stabilization is provided by weak ππ interactions between the imidazole rings (N1–N2/C7–C8/C10) [centroid-to-centroid (2-x, -y, 2-z) distance = 3.5697 (11) Å]. Furthermore, the crystal structure is stabilized by C—H···π interactions (Table 1), involving the (C1–C6)(centroid Cg3) ring.

Related literature top

For applications of imidazo [2,1-b]-1,3,4-thiadiazole derivatives, see: Terzioglu & Gursoy (2003); Kolavi et al. (2006); Gadad et al. (2000); Andotra et al. (1997); Khazi et al. (1996); Andreani et al. (1982,1987,1991); Eberle & Robert (1977).

Experimental top

5-Isobutyl-1,3,4-thiadiazole-2-amine( 1 equivalent) and 4-chlorophenacyl bromide (1 equivalent) are refluxed with ethanol for 4 hrs. The solvent was then distilled off and the reaction mass was poured onto crushed ice. The resulting solid, 6-(4-chlorophenyl)-2-isobutylimidazo[2,1-b] [1,3,4]thiadiazole, that separated out was filtered and dried. The compound was recrystallized using ethanol and DMF mixture. M.pt. 121–126 °C.

Refinement top

All the H atoms were positioned geometrically [C–H = 0.93–0.97 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C).

Structure description top

Imidazo [2,1-b]-1,3,4-thiadiazole derivatives are found to be biologically active compounds possessing anticancer (Terzioglu, 2003), antitubercular (Kolavi et al., 2006), antibacterial (Gadad et al., 2000), antifungal (Andotra et al., 1997), anticonvulsant, analgesic (Khazi et al., 1996), anti-inflammatory (Andreani et al., 1982), diuretic (Andreani et al., 1991) and herbicidal activities (Andreani et al., 1991). Moreover 1,3,4-thiadiazoles have many interesting biological activities, for example, 2-amino-5-(trifluoromethylphenyl alkyl)-1,3,4 thidadiazoles are used in the treatment of insomnia and anxiety (Eberle & Robert, 1977).

The asymmetric unit of the title compound is shown in Fig. 1. The imidazo[2,1-b] [1,3,4]thiadiazole (S1/N1–N3/C7–C10) ring is essentially planar, with a maximum deviation of 0.006 (2) Å for atom N3. The dihedral angle between the imidazo[2,1-b][1,3,4]thiadiazole (S1/N1–N3/C7–C10) ring and the chlorophenyl ring (C1–C6) is 5.07 (8)°.

In the crystal structure (Fig. 2), there are no classical hydrogen bonds but stabilization is provided by weak ππ interactions between the imidazole rings (N1–N2/C7–C8/C10) [centroid-to-centroid (2-x, -y, 2-z) distance = 3.5697 (11) Å]. Furthermore, the crystal structure is stabilized by C—H···π interactions (Table 1), involving the (C1–C6)(centroid Cg3) ring.

For applications of imidazo [2,1-b]-1,3,4-thiadiazole derivatives, see: Terzioglu & Gursoy (2003); Kolavi et al. (2006); Gadad et al. (2000); Andotra et al. (1997); Khazi et al. (1996); Andreani et al. (1982,1987,1991); Eberle & Robert (1977).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound (I).
6-(4-Chlorophenyl)-2-isobutylimidazo[2,1-b][1,3,4]thiadiazole top
Crystal data top
C14H14ClN3SF(000) = 608
Mr = 291.79Dx = 1.332 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5357 reflections
a = 5.7552 (1) Åθ = 2.3–28.5°
b = 26.4052 (5) ŵ = 0.40 mm1
c = 9.7662 (2) ÅT = 296 K
β = 101.388 (1)°Block, colourless
V = 1454.92 (5) Å30.47 × 0.31 × 0.28 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3353 independent reflections
Radiation source: fine-focus sealed tube2646 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 67
Tmin = 0.835, Tmax = 0.897k = 2334
12320 measured reflectionsl = 1210
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0605P)2 + 0.4615P]
where P = (Fo2 + 2Fc2)/3
3353 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C14H14ClN3SV = 1454.92 (5) Å3
Mr = 291.79Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.7552 (1) ŵ = 0.40 mm1
b = 26.4052 (5) ÅT = 296 K
c = 9.7662 (2) Å0.47 × 0.31 × 0.28 mm
β = 101.388 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3353 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2646 reflections with I > 2σ(I)
Tmin = 0.835, Tmax = 0.897Rint = 0.023
12320 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
3353 reflectionsΔρmin = 0.32 e Å3
172 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.79047 (16)0.15309 (3)0.31411 (7)0.0936 (3)
S10.87829 (9)0.11339 (2)0.99277 (7)0.0661 (2)
N10.8370 (3)0.03334 (6)0.79472 (18)0.0536 (4)
N21.1813 (3)0.05331 (6)0.93125 (17)0.0517 (4)
N31.3144 (3)0.08204 (7)1.03504 (19)0.0609 (5)
C10.7404 (4)0.04026 (8)0.5763 (2)0.0544 (5)
H1A0.62300.01820.59310.065*
C20.6859 (4)0.07545 (8)0.4702 (2)0.0610 (5)
H2A0.53470.07670.41470.073*
C30.8587 (4)0.10854 (8)0.4479 (2)0.0617 (5)
C41.0837 (4)0.10677 (9)0.5281 (3)0.0686 (6)
H4A1.19910.12940.51160.082*
C51.1370 (4)0.07123 (8)0.6331 (2)0.0613 (5)
H5A1.28890.07010.68770.074*
C60.9657 (3)0.03694 (7)0.65853 (19)0.0471 (4)
C71.0177 (3)0.00199 (7)0.76767 (19)0.0468 (4)
C80.9462 (3)0.06335 (7)0.8937 (2)0.0507 (4)
C91.1782 (4)0.11490 (8)1.0758 (2)0.0578 (5)
C101.2301 (3)0.01388 (8)0.8507 (2)0.0544 (5)
H10A1.37600.00150.85220.065*
C111.2613 (5)0.15173 (9)1.1910 (2)0.0731 (6)
H11A1.42910.14611.22610.088*
H11B1.17950.14451.26660.088*
C121.2254 (5)0.20690 (10)1.1527 (3)0.0813 (7)
H12A1.05880.21181.10820.098*
C131.2777 (9)0.23946 (14)1.2842 (4)0.1384 (16)
H13A1.17480.22971.34590.208*
H13B1.25160.27451.25910.208*
H13C1.43970.23471.33030.208*
C141.3764 (8)0.22228 (13)1.0505 (4)0.1297 (15)
H14A1.34000.20110.96910.195*
H14B1.54070.21851.09300.195*
H14C1.34480.25701.02400.195*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1320 (7)0.0746 (4)0.0756 (4)0.0014 (4)0.0239 (4)0.0144 (3)
S10.0529 (3)0.0606 (3)0.0842 (4)0.0008 (2)0.0124 (3)0.0096 (3)
N10.0371 (8)0.0555 (10)0.0668 (10)0.0018 (7)0.0068 (7)0.0014 (8)
N20.0405 (8)0.0511 (9)0.0604 (9)0.0010 (7)0.0024 (7)0.0085 (7)
N30.0512 (9)0.0583 (10)0.0671 (11)0.0053 (8)0.0031 (8)0.0042 (8)
C10.0496 (10)0.0545 (11)0.0571 (11)0.0090 (8)0.0055 (8)0.0064 (9)
C20.0614 (12)0.0627 (13)0.0556 (11)0.0045 (10)0.0034 (9)0.0072 (10)
C30.0819 (15)0.0540 (12)0.0523 (11)0.0005 (10)0.0207 (10)0.0066 (9)
C40.0682 (14)0.0641 (14)0.0796 (15)0.0138 (11)0.0292 (12)0.0028 (11)
C50.0460 (10)0.0638 (13)0.0753 (14)0.0076 (9)0.0149 (10)0.0042 (11)
C60.0441 (9)0.0481 (10)0.0503 (10)0.0030 (7)0.0122 (7)0.0138 (8)
C70.0386 (9)0.0475 (10)0.0541 (10)0.0027 (7)0.0088 (7)0.0129 (8)
C80.0392 (9)0.0492 (10)0.0637 (11)0.0002 (8)0.0103 (8)0.0074 (9)
C90.0599 (11)0.0516 (11)0.0594 (12)0.0095 (9)0.0055 (9)0.0108 (9)
C100.0398 (9)0.0570 (11)0.0650 (12)0.0078 (8)0.0069 (8)0.0076 (9)
C110.0872 (17)0.0662 (14)0.0625 (13)0.0168 (12)0.0068 (12)0.0047 (11)
C120.0844 (17)0.0661 (15)0.0928 (18)0.0077 (13)0.0157 (14)0.0147 (13)
C130.193 (4)0.103 (3)0.133 (3)0.032 (3)0.066 (3)0.052 (2)
C140.208 (4)0.088 (2)0.104 (2)0.059 (2)0.055 (3)0.0064 (18)
Geometric parameters (Å, º) top
Cl1—C31.744 (2)C5—H5A0.9300
S1—C81.727 (2)C6—C71.468 (3)
S1—C91.757 (2)C7—C101.363 (3)
N1—C81.311 (3)C9—C111.492 (3)
N1—C71.395 (2)C10—H10A0.9300
N2—C81.356 (2)C11—C121.508 (3)
N2—C101.367 (3)C11—H11A0.9700
N2—N31.372 (2)C11—H11B0.9700
N3—C91.284 (3)C12—C141.503 (4)
C1—C21.381 (3)C12—C131.525 (4)
C1—C61.387 (3)C12—H12A0.9800
C1—H1A0.9300C13—H13A0.9600
C2—C31.373 (3)C13—H13B0.9600
C2—H2A0.9300C13—H13C0.9600
C3—C41.376 (3)C14—H14A0.9600
C4—C51.379 (3)C14—H14B0.9600
C4—H4A0.9300C14—H14C0.9600
C5—C61.397 (3)
C8—S1—C988.02 (10)N3—C9—C11123.3 (2)
C8—N1—C7103.40 (15)N3—C9—S1116.48 (16)
C8—N2—C10107.48 (16)C11—C9—S1120.14 (18)
C8—N2—N3118.26 (17)C7—C10—N2104.82 (16)
C10—N2—N3134.26 (16)C7—C10—H10A127.6
C9—N3—N2108.46 (16)N2—C10—H10A127.6
C2—C1—C6121.66 (19)C9—C11—C12115.8 (2)
C2—C1—H1A119.2C9—C11—H11A108.3
C6—C1—H1A119.2C12—C11—H11A108.3
C3—C2—C1118.9 (2)C9—C11—H11B108.3
C3—C2—H2A120.6C12—C11—H11B108.3
C1—C2—H2A120.6H11A—C11—H11B107.4
C2—C3—C4121.2 (2)C14—C12—C11110.9 (3)
C2—C3—Cl1118.99 (18)C14—C12—C13111.3 (3)
C4—C3—Cl1119.80 (18)C11—C12—C13110.0 (3)
C3—C4—C5119.5 (2)C14—C12—H12A108.2
C3—C4—H4A120.2C11—C12—H12A108.2
C5—C4—H4A120.2C13—C12—H12A108.2
C4—C5—C6120.8 (2)C12—C13—H13A109.5
C4—C5—H5A119.6C12—C13—H13B109.5
C6—C5—H5A119.6H13A—C13—H13B109.5
C1—C6—C5117.93 (19)C12—C13—H13C109.5
C1—C6—C7119.84 (17)H13A—C13—H13C109.5
C5—C6—C7122.23 (17)H13B—C13—H13C109.5
C10—C7—N1111.42 (17)C12—C14—H14A109.5
C10—C7—C6128.53 (17)C12—C14—H14B109.5
N1—C7—C6120.03 (15)H14A—C14—H14B109.5
N1—C8—N2112.88 (17)C12—C14—H14C109.5
N1—C8—S1138.34 (15)H14A—C14—H14C109.5
N2—C8—S1108.78 (14)H14B—C14—H14C109.5
C8—N2—N3—C90.8 (2)C7—N1—C8—S1179.56 (18)
C10—N2—N3—C9179.7 (2)C10—N2—C8—N10.2 (2)
C6—C1—C2—C31.3 (3)N3—N2—C8—N1179.44 (16)
C1—C2—C3—C40.7 (3)C10—N2—C8—S1179.60 (13)
C1—C2—C3—Cl1179.91 (16)N3—N2—C8—S10.8 (2)
C2—C3—C4—C50.2 (3)C9—S1—C8—N1179.9 (2)
Cl1—C3—C4—C5179.57 (17)C9—S1—C8—N20.42 (14)
C3—C4—C5—C60.3 (3)N2—N3—C9—C11178.09 (18)
C2—C1—C6—C51.4 (3)N2—N3—C9—S10.4 (2)
C2—C1—C6—C7178.29 (18)C8—S1—C9—N30.01 (17)
C4—C5—C6—C10.9 (3)C8—S1—C9—C11177.76 (18)
C4—C5—C6—C7178.82 (19)N1—C7—C10—N20.1 (2)
C8—N1—C7—C100.0 (2)C6—C7—C10—N2178.64 (17)
C8—N1—C7—C6178.69 (16)C8—N2—C10—C70.1 (2)
C1—C6—C7—C10174.21 (19)N3—N2—C10—C7179.36 (19)
C5—C6—C7—C105.5 (3)N3—C9—C11—C12122.0 (3)
C1—C6—C7—N14.2 (3)S1—C9—C11—C1260.4 (3)
C5—C6—C7—N1176.07 (17)C9—C11—C12—C1466.3 (3)
C7—N1—C8—N20.1 (2)C9—C11—C12—C13170.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11B···Cg3i0.972.703.544 (2)145
Symmetry code: (i) x+2, y, z+2.

Experimental details

Crystal data
Chemical formulaC14H14ClN3S
Mr291.79
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)5.7552 (1), 26.4052 (5), 9.7662 (2)
β (°) 101.388 (1)
V3)1454.92 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.47 × 0.31 × 0.28
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.835, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
12320, 3353, 2646
Rint0.023
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.135, 1.05
No. of reflections3353
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.32

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C11—H11B···Cg3i0.972.703.544 (2)145
Symmetry code: (i) x+2, y, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAndotra, C. S., Langer, T. & Kotha, A. (1997). J. Indian Chem. Soc. 74, 125–127.  CAS Google Scholar
First citationAndreani, A., Bonazzi, D., Rambaldi, M., Fabbri, G. & Rainsford, K. D. (1982). Eur. J. Med. Chem. 17, 271–274.  CAS Google Scholar
First citationAndreani, A., Rambaldi, M., Locatelli, A. & Andreani, F. (1991). Collect. Czech. Chem. Commun. 56, 2436–2447.  CrossRef CAS Google Scholar
First citationAndreani, A., Rambaldi, M., Mascellani, G. & Rugarli, P. (1987). Eur. J. Med. Chem. 22, 19–22.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEberle, M. K. & Robert, E. M. (1977). US Patent No. 4 054 665.  Google Scholar
First citationGadad, A. K., Mahajanshetti, C. S., Nimbalkar, S. & Raichurkar, A. (2000). Eur. J. Med. Chem. 35, 853–857.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhazi, I. A. M., Mahajanshetti, C. S., Gadad, A. K., Tamalli, A. D. & Sultanpur, C. M. (1996). Arzneim. Forsch. Drug. Res. 46, 949–952.  CAS Google Scholar
First citationKolavi, G., Hegde, V., Khan, I. & Gadad, P. (2006). Bioorg. Med. Chem. 14, 3069–3080.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTerzioglu, N. & Gursoy, A. (2003). Eur. J. Med. Chem. 38, 781–786.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds