organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 5′-(2-hy­dr­oxy­phen­yl)-4′,5′,6′,7′-tetra­hydro­spiro­[2H-1-benzo­pyran-2,7′-1,2,4-triazolo[1,5-a]pyrimidine]-3-carboxyl­ate

aFaculty of Pharmacy, Comenius University, Odbojarov 10, SK-83232 Bratislava, Slovakia
*Correspondence e-mail: kettmann@fpharm.uniba.sk

(Received 29 October 2010; accepted 2 December 2010; online 11 December 2010)

There are two crystallographically independent mol­ecules in the asymmetric unit of the title compound, C21H18N4O4. The substituted benzopyran portion of one of the independent mol­ecules exhibits disorder [occupancy 0.5248 (18):0.4752 (18)], which was modelled by using two sets of atomic positions and restraints on the chemically equivalent bond lengths and angles. The central, partially saturated pyrimidine rings of both independent mol­ecules were found to assume unsymmetrical half-chair conformations. The hy­droxy­phenyl substituent occupies an equatorial position in both mol­ecules, and is rotated by 55.6 (1)° from the mean plane of the pyrimidine ring in one independent mol­ecule, and by 53.4 (1)° in the other. In the crystal, there are two types of inter­molecular hydrogen bond present: reciprocal N—H⋯N inter­actions join the two crystallographically independent mol­ecules into a dimer and O—H⋯N inter­actions link the dimers into sheets in the ab plane.

Related literature

For our work on the preparation of novel pyrazolo­pyridines and oxygen-bridged pyrazolo-, tetra­zolo-, benzimidazo- and thia­zolopyrimidines, see: Světlík et al. (2010[Světlík, J., Veizerová, L., Mayer, T. U. & Catarinella, M. (2010). Bioorg. Med. Chem. Lett. 20, 4073-4076.]). For the synthesis of the title compound, see: Světlík & Kettmann (2011[Světlík, J. & Kettmann, V. (2011). Tetrahedron Lett. Accepted. (Reference code: TETL-D-10-02804R1)]). For biological aspects of Biginelli compounds in general, see: Kappe (2000[Kappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043-1052.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18N4O4

  • Mr = 390.39

  • Monoclinic, P 21 /c

  • a = 19.337 (6) Å

  • b = 14.824 (5) Å

  • c = 13.932 (5) Å

  • β = 97.94 (1)°

  • V = 3955 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Siemens P4 diffractometer

  • 12311 measured reflections

  • 10237 independent reflections

  • 5854 reflections with I > 2σ(I)

  • Rint = 0.050

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.134

  • S = 1.01

  • 10237 reflections

  • 645 parameters

  • 90 restraints

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯N7 0.86 2.21 3.0156 (19) 156
O4—H4C⋯N2i 0.82 2.12 2.9152 (17) 163
N8—H8A⋯N3 0.86 2.10 2.9168 (19) 159
O8—H8B⋯N6ii 0.82 2.09 2.8898 (19) 164
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: XSCANS (Siemens, 1994[Siemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, products of the Biginelli-like reaction have attracted much attention due to their significant pharmacological activities (Kappe, 2000). Our recent contribution to this subject concerns preparation of novel pyrazolopyridines and oxygen-bridged pyrazolo-, tetrazolo-, benzimidazo- and thiazolopyrimidines (Světlík et al., 2010). Quite recently, we were interested in the behaviour of 3-amino-1,2,4-triazole in related cyclizations while varying the structure of the aldehydic component (Světlík & Kettmann, 2011). As the structure of the product from the cyclocondensation of salicylaldehyde, methyl acetoacetate and the above amine was more complex, we decided to verify the most probable structure (I) (based on NMR) by using a single-crystal X-ray analysis. Another aim of this work was to obtain complete structural data indispensable for studying structure-activity relationships.

The structure determination (Fig.1) confirmed the spectroscopic assignments, i.e. (I) is indeed the correct structure of the compound. The asymmetric unit of the structure comprises two molecules (A and B) of (I). Moreover, the methoxycarbonylbenzopyran moiety of molecule B is disordered between two well defined positions (denoted by unprimed and primed atomic symbols) with approximately equal occupancies. The disordered sites differ in (i) ca 20°-rotation of the substituted benzopyran ring about an axis passing through the spiro (C26) atom and perpendicular to the mean plane of the ring and (ii) the conformation of the ester group.

As mentioned above, from the pharmacological viewpoint the most important aspect of the molecular structure (Fig.1) concerns three-dimensional disposition of the key functional (pharmacophoric) elements (hydrophobic groups and heteroatoms able to form hydrogen bonds) which can be expressed in terms of the conformationl parameters of the molecule. Thus, the conformation of the central pyrimidine ring in both molecules can best be described as an unsymmetrical half-chair. The hydroxyphenyl ring occupies an equatorial position on C3 and is inclined at an angle of 55.6 (1)° to the mean plane of the heterocycle. The corresponding dihedral angle in molecule B is 53.4 (1)°. As to the conformation of the ester group, its carbonyl bond is oriented anti (with respect to the neighbouring double bond of the benzopyran moiety) in molecule A and the unprimed sites of molecule B while the orientation is syn for the primed isomer.

In the crystal, there are two types of intermolecular hydrogen bond present: reciprocal N–H···N interactions join the two crystallographically independent molecules into a dimer (Figure 1) and an O–H···N interaction links the dimers into a two-dimensional sheet in the ab plane.

Related literature top

For our work on the preparation of novel pyrazolopyridines and oxygen-bridged pyrazolo-, tetrazolo-, benzimidazo- and thiazolopyrimidines, see: Světlík et al. (2010). For the synthesis of the title compound, see: Světlík & Kettmann (2011). For biological aspects of Biginelli compounds in general, see: Kappe ( 2000).

Experimental top

Synthesis of the title compound, (I), is described elsewhere (Světlík & Kettmann, 2011). In short, to a solution of 3-amino-1,2,4-triazole (0.35 g, 4.0 mmol) in ethanol (20 ml) were added salicylaldehyde (8.0 mmol) and methyl acetoacetate (0.44 ml, 4.0 mmol). The mixture contained 4 drops of concentrated HCl and was refluxed for 20 h. After cooling the solution was left to crystallize. The crude product was finally recrystallized from acetonitrile (51% yield; m.p. 511–512 K).

Refinement top

H atoms were treated as riding atoms with distances C—H = 0.93 Å (CHarom), 0.97 Å (CH2), 0.98 Å (CH), 0.96 Å (CH3), N—H = 0.86 Å and O—H = 0.82 Å; Uiso of the H atoms were set to 1.2 (1.5 for the methyl H atoms) times Ueq of the parent atom. The disorder of the methoxycarbonylbenzopyran fragment of molecule B was modelled by resolving the atomic positions into two components and using a total of 90 restraints on equivalent bond distances and angles [use of the SAME instruction in SHELXL97 (Sheldrick, 2008)]. This resulted in a model with (refined) occupancies of the unprimed and primed sites of 47.5 (3) and 52.5 (3)%, respectively, and a reasonable geometry for both isomers.

Structure description top

In recent years, products of the Biginelli-like reaction have attracted much attention due to their significant pharmacological activities (Kappe, 2000). Our recent contribution to this subject concerns preparation of novel pyrazolopyridines and oxygen-bridged pyrazolo-, tetrazolo-, benzimidazo- and thiazolopyrimidines (Světlík et al., 2010). Quite recently, we were interested in the behaviour of 3-amino-1,2,4-triazole in related cyclizations while varying the structure of the aldehydic component (Světlík & Kettmann, 2011). As the structure of the product from the cyclocondensation of salicylaldehyde, methyl acetoacetate and the above amine was more complex, we decided to verify the most probable structure (I) (based on NMR) by using a single-crystal X-ray analysis. Another aim of this work was to obtain complete structural data indispensable for studying structure-activity relationships.

The structure determination (Fig.1) confirmed the spectroscopic assignments, i.e. (I) is indeed the correct structure of the compound. The asymmetric unit of the structure comprises two molecules (A and B) of (I). Moreover, the methoxycarbonylbenzopyran moiety of molecule B is disordered between two well defined positions (denoted by unprimed and primed atomic symbols) with approximately equal occupancies. The disordered sites differ in (i) ca 20°-rotation of the substituted benzopyran ring about an axis passing through the spiro (C26) atom and perpendicular to the mean plane of the ring and (ii) the conformation of the ester group.

As mentioned above, from the pharmacological viewpoint the most important aspect of the molecular structure (Fig.1) concerns three-dimensional disposition of the key functional (pharmacophoric) elements (hydrophobic groups and heteroatoms able to form hydrogen bonds) which can be expressed in terms of the conformationl parameters of the molecule. Thus, the conformation of the central pyrimidine ring in both molecules can best be described as an unsymmetrical half-chair. The hydroxyphenyl ring occupies an equatorial position on C3 and is inclined at an angle of 55.6 (1)° to the mean plane of the heterocycle. The corresponding dihedral angle in molecule B is 53.4 (1)°. As to the conformation of the ester group, its carbonyl bond is oriented anti (with respect to the neighbouring double bond of the benzopyran moiety) in molecule A and the unprimed sites of molecule B while the orientation is syn for the primed isomer.

In the crystal, there are two types of intermolecular hydrogen bond present: reciprocal N–H···N interactions join the two crystallographically independent molecules into a dimer (Figure 1) and an O–H···N interaction links the dimers into a two-dimensional sheet in the ab plane.

For our work on the preparation of novel pyrazolopyridines and oxygen-bridged pyrazolo-, tetrazolo-, benzimidazo- and thiazolopyrimidines, see: Světlík et al. (2010). For the synthesis of the title compound, see: Světlík & Kettmann (2011). For biological aspects of Biginelli compounds in general, see: Kappe ( 2000).

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS (Siemens, 1994); data reduction: XSCANS (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot of the two independent molecules of (I) with the labelling scheme for the non-H atoms, which are drawn as 35% probability ellipsoids. The minor disorder component of molecule B is omitted for clarity. Hydrogen bonds are illustrated by dashed lines.
Methyl 5'-(2-hydroxyphenyl)-4',5',6',7'-tetrahydrospiro[2H-1-benzopyran-2,7'- 1,2,4-triazolo[1,5-a]pyrimidine]-3-carboxylate top
Crystal data top
C21H18N4O4F(000) = 1632
Mr = 390.39Dx = 1.311 Mg m3
Monoclinic, P21/cMelting point: 511 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 19.337 (6) ÅCell parameters from 20 reflections
b = 14.824 (5) Åθ = 7–18°
c = 13.932 (5) ŵ = 0.09 mm1
β = 97.94 (1)°T = 296 K
V = 3955 (2) Å3Prism, colourless
Z = 80.30 × 0.25 × 0.20 mm
Data collection top
Siemens P4
diffractometer
Rint = 0.050
Radiation source: fine-focus sealed tubeθmax = 28.8°, θmin = 1.1°
Graphite monochromatorh = 2626
ω/2θ scansk = 201
12311 measured reflectionsl = 118
10237 independent reflections3 standard reflections every 97 reflections
5854 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.3383P]
where P = (Fo2 + 2Fc2)/3
10237 reflections(Δ/σ)max = 0.001
645 parametersΔρmax = 0.16 e Å3
90 restraintsΔρmin = 0.20 e Å3
Crystal data top
C21H18N4O4V = 3955 (2) Å3
Mr = 390.39Z = 8
Monoclinic, P21/cMo Kα radiation
a = 19.337 (6) ŵ = 0.09 mm1
b = 14.824 (5) ÅT = 296 K
c = 13.932 (5) Å0.30 × 0.25 × 0.20 mm
β = 97.94 (1)°
Data collection top
Siemens P4
diffractometer
Rint = 0.050
12311 measured reflections3 standard reflections every 97 reflections
10237 independent reflections intensity decay: none
5854 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.05390 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.01Δρmax = 0.16 e Å3
10237 reflectionsΔρmin = 0.20 e Å3
645 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.89134 (6)0.49569 (8)0.23684 (9)0.0380 (3)
N20.87417 (6)0.41939 (8)0.28645 (9)0.0413 (3)
C10.81119 (8)0.43874 (10)0.30354 (11)0.0423 (4)
H10.78570.39930.33690.051*
N30.78455 (6)0.52028 (8)0.26983 (10)0.0413 (3)
C20.83683 (7)0.55417 (10)0.22834 (10)0.0362 (3)
N40.84032 (6)0.63458 (8)0.18381 (10)0.0430 (3)
H40.80370.66690.16710.052*
C30.90931 (8)0.66378 (10)0.16555 (11)0.0394 (3)
H30.93730.67890.22750.047*
C40.94364 (8)0.58371 (10)0.12003 (11)0.0403 (3)
H4A0.91540.56720.05960.048*
H4B0.98920.60180.10540.048*
C50.95183 (8)0.50135 (10)0.18751 (11)0.0402 (3)
O11.00884 (5)0.51615 (8)0.26455 (8)0.0508 (3)
C61.07550 (9)0.49704 (15)0.24576 (13)0.0616 (5)
C71.12993 (10)0.5448 (2)0.29503 (16)0.0905 (8)
H71.12170.59060.33780.109*
C81.19812 (12)0.5235 (3)0.27976 (19)0.1107 (10)
H81.23560.55570.31210.133*
C91.20987 (12)0.4559 (3)0.2179 (2)0.1105 (10)
H91.25550.44210.20910.133*
C101.15617 (11)0.4082 (2)0.16873 (17)0.0901 (8)
H101.16540.36260.12650.108*
C111.08687 (10)0.42749 (15)0.18141 (14)0.0654 (5)
C121.02669 (10)0.38182 (13)0.13138 (13)0.0586 (5)
H121.03260.32920.09710.070*
C130.96249 (9)0.41406 (11)0.13359 (12)0.0492 (4)
C140.89967 (11)0.37507 (14)0.07541 (14)0.0644 (5)
O20.84434 (8)0.41265 (11)0.05622 (11)0.0803 (4)
O30.91120 (9)0.28860 (11)0.04917 (13)0.0974 (5)
C150.85174 (15)0.2483 (2)0.0140 (2)0.1287 (12)
H15A0.81140.24780.01930.193*
H15B0.86320.18760.03000.193*
H15C0.84190.28320.07230.193*
C160.90575 (8)0.74627 (10)0.09945 (11)0.0411 (4)
C170.96473 (9)0.80048 (10)0.10207 (12)0.0447 (4)
C180.96418 (10)0.87454 (12)0.04036 (13)0.0570 (5)
H181.00340.91130.04310.068*
C190.90558 (11)0.89336 (13)0.02473 (14)0.0644 (5)
H190.90590.94200.06680.077*
C200.84611 (10)0.84041 (13)0.02812 (14)0.0625 (5)
H200.80650.85360.07160.075*
C210.84671 (9)0.76719 (12)0.03459 (13)0.0533 (4)
H210.80690.73170.03310.064*
O41.02225 (6)0.77752 (8)0.16686 (9)0.0573 (3)
H4C1.05190.81720.16780.086*
N50.60625 (7)0.76363 (8)0.24160 (10)0.0455 (3)
N60.61876 (7)0.83878 (9)0.18647 (11)0.0535 (4)
C220.67762 (9)0.81715 (12)0.15613 (14)0.0556 (5)
H220.69940.85510.11640.067*
N70.70520 (7)0.73559 (9)0.18622 (12)0.0558 (4)
C230.65830 (8)0.70369 (11)0.23847 (13)0.0465 (4)
N80.65829 (7)0.62390 (9)0.28501 (11)0.0540 (4)
H8A0.69550.59160.29640.065*
C240.59260 (8)0.59469 (10)0.31523 (12)0.0430 (4)
H240.56010.57910.25730.052*
C250.56262 (9)0.67436 (10)0.36544 (13)0.0490 (4)
H25A0.59470.69140.42230.059*
H25B0.51880.65690.38650.059*
C260.55051 (10)0.75491 (12)0.29647 (15)0.0603 (5)
O50.48981 (18)0.7585 (2)0.2439 (3)0.0514 (8)0.4752 (18)
C270.4300 (3)0.7844 (4)0.2838 (5)0.0515 (14)0.4752 (18)
C280.3677 (2)0.7475 (4)0.2439 (4)0.0598 (12)0.4752 (18)
H280.36550.70490.19460.072*0.4752 (18)
C290.3078 (6)0.7763 (12)0.2797 (15)0.068 (3)0.4752 (18)
H290.26480.75200.25420.081*0.4752 (18)
C300.31096 (19)0.8398 (3)0.3519 (3)0.0635 (12)0.4752 (18)
H300.27030.85870.37460.076*0.4752 (18)
C310.37280 (18)0.8745 (3)0.3897 (3)0.0590 (10)0.4752 (18)
H310.37430.91810.43790.071*0.4752 (18)
C320.4350 (4)0.8469 (7)0.3585 (6)0.0531 (18)0.4752 (18)
C330.50333 (18)0.8820 (3)0.3960 (3)0.0523 (9)0.4752 (18)
H330.50730.93130.43770.063*0.4752 (18)
C340.5608 (2)0.8434 (3)0.3703 (4)0.0513 (10)0.4752 (18)
C350.6308 (7)0.8748 (16)0.409 (3)0.075 (7)0.4752 (18)
O60.68391 (16)0.8315 (2)0.4169 (2)0.0679 (8)0.4752 (18)
O70.63054 (16)0.9545 (2)0.4629 (2)0.0733 (9)0.4752 (18)
C360.6950 (2)0.9830 (4)0.5187 (4)0.0913 (17)0.4752 (18)
H36A0.73150.98230.47850.137*0.4752 (18)
H36B0.70680.94260.57240.137*0.4752 (18)
H36C0.68971.04300.54250.137*0.4752 (18)
O5'0.49251 (17)0.7216 (2)0.2109 (3)0.0570 (8)0.5248 (18)
C27'0.42271 (17)0.7236 (2)0.2215 (3)0.0531 (9)0.5248 (18)
C28'0.37876 (18)0.6636 (3)0.1708 (3)0.0663 (10)0.5248 (18)
H28'0.39570.62090.13120.080*0.5248 (18)
C29'0.3080 (2)0.6672 (3)0.1793 (3)0.0753 (12)0.5248 (18)
H29'0.27750.62610.14540.090*0.5248 (18)
C30'0.2826 (2)0.7305 (3)0.2368 (4)0.0707 (12)0.5248 (18)
H30'0.23540.73090.24350.085*0.5248 (18)
C31'0.3258 (5)0.7922 (11)0.2837 (14)0.065 (3)0.5248 (18)
H31'0.30800.83670.32060.079*0.5248 (18)
C32'0.3977 (3)0.7896 (4)0.2773 (4)0.0529 (12)0.5248 (18)
C33'0.4482 (4)0.8512 (6)0.3314 (6)0.0536 (17)0.5248 (18)
H33'0.43240.90020.36380.064*0.5248 (18)
C34'0.5176 (2)0.8370 (2)0.3345 (3)0.0510 (9)0.5248 (18)
C35'0.5655 (2)0.8960 (3)0.3948 (3)0.0578 (10)0.5248 (18)
O6'0.55115 (14)0.96768 (19)0.4274 (2)0.0794 (9)0.5248 (18)
O7'0.6326 (4)0.8630 (9)0.4186 (13)0.056 (2)0.5248 (18)
C36'0.6826 (2)0.9153 (3)0.4829 (4)0.0819 (13)0.5248 (18)
H36D0.68330.97620.45960.123*0.5248 (18)
H36E0.72820.88910.48490.123*0.5248 (18)
H36F0.66940.91520.54680.123*0.5248 (18)
C370.60185 (8)0.51266 (10)0.38106 (12)0.0428 (4)
C380.54356 (9)0.45826 (11)0.38742 (12)0.0469 (4)
C390.55036 (10)0.38129 (12)0.44557 (13)0.0575 (5)
H390.51190.34450.44940.069*
C400.61396 (12)0.36000 (14)0.49714 (14)0.0676 (5)
H400.61800.30890.53620.081*
C410.67168 (11)0.41263 (14)0.49217 (15)0.0685 (5)
H410.71470.39690.52660.082*
C420.66511 (9)0.48984 (12)0.43498 (13)0.0561 (4)
H420.70380.52680.43290.067*
O80.48171 (6)0.48419 (8)0.33605 (9)0.0604 (3)
H8B0.45760.43950.32110.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0396 (7)0.0328 (6)0.0429 (7)0.0076 (5)0.0102 (5)0.0032 (5)
N20.0468 (7)0.0324 (7)0.0455 (7)0.0047 (5)0.0086 (6)0.0056 (6)
C10.0433 (9)0.0342 (8)0.0501 (9)0.0004 (7)0.0092 (7)0.0036 (7)
N30.0371 (7)0.0351 (7)0.0530 (8)0.0039 (5)0.0111 (6)0.0048 (6)
C20.0329 (7)0.0349 (8)0.0413 (8)0.0050 (6)0.0066 (6)0.0001 (6)
N40.0377 (7)0.0358 (7)0.0571 (8)0.0074 (5)0.0123 (6)0.0100 (6)
C30.0385 (8)0.0373 (8)0.0436 (8)0.0020 (6)0.0103 (7)0.0042 (7)
C40.0372 (8)0.0425 (8)0.0423 (8)0.0055 (7)0.0098 (7)0.0050 (7)
C50.0351 (8)0.0438 (9)0.0419 (8)0.0063 (6)0.0060 (6)0.0004 (7)
O10.0399 (6)0.0646 (8)0.0467 (6)0.0063 (5)0.0021 (5)0.0030 (6)
C60.0411 (10)0.0908 (15)0.0516 (10)0.0061 (9)0.0013 (8)0.0124 (10)
C70.0531 (13)0.145 (2)0.0712 (14)0.0062 (14)0.0014 (11)0.0063 (15)
C80.0517 (14)0.197 (3)0.0796 (17)0.0094 (17)0.0031 (12)0.006 (2)
C90.0477 (13)0.198 (3)0.0851 (18)0.0209 (17)0.0068 (13)0.011 (2)
C100.0572 (13)0.139 (2)0.0760 (15)0.0342 (14)0.0150 (12)0.0160 (15)
C110.0517 (11)0.0894 (15)0.0566 (11)0.0265 (11)0.0124 (9)0.0150 (11)
C120.0631 (12)0.0615 (11)0.0540 (10)0.0215 (9)0.0186 (9)0.0037 (9)
C130.0525 (10)0.0483 (10)0.0492 (10)0.0102 (8)0.0147 (8)0.0012 (8)
C140.0759 (14)0.0581 (12)0.0602 (12)0.0013 (11)0.0132 (10)0.0172 (10)
O20.0715 (10)0.0787 (10)0.0844 (10)0.0002 (8)0.0118 (8)0.0185 (8)
O30.1045 (12)0.0776 (11)0.1106 (13)0.0004 (9)0.0168 (10)0.0445 (10)
C150.125 (2)0.109 (2)0.150 (3)0.0275 (18)0.010 (2)0.076 (2)
C160.0443 (9)0.0376 (8)0.0429 (8)0.0013 (7)0.0115 (7)0.0029 (7)
C170.0519 (10)0.0372 (8)0.0454 (9)0.0023 (7)0.0081 (7)0.0010 (7)
C180.0695 (12)0.0413 (9)0.0606 (11)0.0124 (8)0.0102 (9)0.0083 (8)
C190.0812 (14)0.0485 (10)0.0623 (12)0.0019 (10)0.0056 (10)0.0197 (9)
C200.0663 (12)0.0570 (11)0.0618 (12)0.0059 (9)0.0001 (9)0.0176 (10)
C210.0468 (9)0.0547 (10)0.0579 (11)0.0014 (8)0.0061 (8)0.0130 (9)
O40.0587 (8)0.0490 (7)0.0604 (8)0.0162 (6)0.0047 (6)0.0063 (6)
N50.0439 (7)0.0350 (7)0.0607 (9)0.0095 (6)0.0181 (6)0.0077 (6)
N60.0576 (9)0.0399 (8)0.0666 (9)0.0099 (6)0.0212 (7)0.0152 (7)
C220.0550 (11)0.0438 (10)0.0725 (12)0.0037 (8)0.0249 (9)0.0136 (9)
N70.0452 (8)0.0437 (8)0.0835 (11)0.0089 (6)0.0273 (7)0.0165 (8)
C230.0387 (8)0.0379 (8)0.0662 (11)0.0050 (7)0.0184 (8)0.0050 (8)
N80.0431 (8)0.0401 (7)0.0845 (11)0.0124 (6)0.0287 (7)0.0161 (7)
C240.0399 (8)0.0363 (8)0.0554 (10)0.0022 (6)0.0158 (7)0.0026 (7)
C250.0506 (10)0.0409 (9)0.0593 (10)0.0082 (7)0.0215 (8)0.0052 (8)
C260.0529 (11)0.0502 (11)0.0834 (14)0.0186 (8)0.0295 (10)0.0149 (10)
O50.0439 (17)0.053 (2)0.059 (2)0.0014 (16)0.0131 (14)0.0048 (15)
C270.040 (3)0.049 (3)0.065 (3)0.011 (3)0.008 (3)0.014 (2)
C280.045 (3)0.065 (3)0.069 (3)0.006 (2)0.003 (2)0.012 (2)
C290.049 (5)0.070 (9)0.083 (6)0.007 (5)0.008 (5)0.018 (5)
C300.035 (2)0.075 (3)0.082 (3)0.0120 (19)0.013 (2)0.014 (2)
C310.045 (2)0.061 (2)0.074 (3)0.0140 (18)0.0163 (19)0.007 (2)
C320.046 (3)0.053 (3)0.061 (4)0.012 (3)0.010 (3)0.010 (3)
C330.044 (2)0.047 (2)0.067 (2)0.0093 (17)0.0108 (19)0.0010 (19)
C340.041 (2)0.046 (3)0.068 (3)0.006 (2)0.011 (2)0.001 (2)
C350.066 (9)0.058 (6)0.099 (13)0.008 (4)0.008 (5)0.012 (5)
O60.0509 (18)0.0701 (19)0.081 (2)0.0059 (14)0.0015 (15)0.0098 (16)
O70.0571 (19)0.066 (2)0.093 (2)0.0034 (15)0.0009 (16)0.0188 (17)
C360.075 (3)0.086 (4)0.107 (4)0.014 (3)0.008 (3)0.038 (3)
O5'0.0451 (15)0.054 (2)0.074 (2)0.0078 (14)0.0174 (15)0.0004 (15)
C27'0.044 (2)0.049 (2)0.067 (2)0.0067 (16)0.0115 (17)0.0111 (19)
C28'0.055 (2)0.056 (2)0.088 (3)0.0039 (17)0.008 (2)0.004 (2)
C29'0.060 (2)0.066 (3)0.098 (3)0.005 (2)0.006 (2)0.005 (2)
C30'0.054 (3)0.066 (3)0.092 (4)0.003 (2)0.009 (2)0.010 (3)
C31'0.058 (5)0.053 (5)0.086 (5)0.009 (4)0.011 (5)0.015 (3)
C32'0.040 (3)0.051 (3)0.068 (3)0.007 (3)0.010 (3)0.011 (2)
C33'0.054 (3)0.043 (3)0.066 (4)0.018 (2)0.014 (3)0.007 (3)
C34'0.046 (2)0.0434 (19)0.065 (2)0.0124 (17)0.0159 (19)0.0037 (17)
C35'0.052 (3)0.052 (2)0.071 (3)0.007 (2)0.0130 (19)0.000 (2)
O6'0.0669 (18)0.0638 (17)0.106 (2)0.0106 (14)0.0083 (15)0.0217 (16)
O7'0.049 (4)0.055 (4)0.064 (3)0.008 (2)0.004 (2)0.004 (5)
C36'0.067 (3)0.078 (3)0.096 (3)0.005 (3)0.001 (2)0.012 (3)
C370.0448 (9)0.0348 (8)0.0511 (9)0.0028 (7)0.0149 (7)0.0005 (7)
C380.0538 (10)0.0410 (9)0.0485 (9)0.0034 (7)0.0162 (8)0.0041 (7)
C390.0758 (13)0.0452 (10)0.0545 (11)0.0119 (9)0.0197 (10)0.0040 (8)
C400.0940 (16)0.0537 (11)0.0563 (12)0.0004 (11)0.0146 (11)0.0151 (9)
C410.0742 (13)0.0662 (13)0.0634 (12)0.0109 (11)0.0032 (10)0.0129 (10)
C420.0541 (10)0.0535 (10)0.0613 (11)0.0003 (8)0.0094 (9)0.0067 (9)
O80.0501 (7)0.0514 (7)0.0788 (9)0.0130 (6)0.0049 (6)0.0032 (6)
Geometric parameters (Å, º) top
N1—C21.3573 (18)C24—H240.9800
N1—N21.3895 (17)C25—C261.530 (2)
N1—C51.4385 (19)C25—H25A0.9700
N2—C11.3046 (19)C25—H25B0.9700
C1—N31.3713 (19)C26—O51.296 (4)
C1—H10.9300C26—C34'1.503 (4)
N3—C21.3303 (18)C26—O5'1.598 (4)
C2—N41.3498 (19)C26—C341.663 (6)
N4—C31.4580 (19)O5—C271.405 (6)
N4—H40.8600C27—C281.369 (6)
C3—C161.527 (2)C27—C321.386 (10)
C3—C41.539 (2)C28—C291.390 (11)
C3—H30.9800C28—H280.9300
C4—C51.536 (2)C29—C301.374 (12)
C4—H4A0.9700C29—H290.9300
C4—H4B0.9700C30—C311.341 (5)
C5—O11.4453 (19)C30—H300.9300
C5—C131.524 (2)C31—C321.396 (8)
O1—C61.380 (2)C31—H310.9300
C6—C71.372 (3)C32—C331.448 (10)
C6—C111.403 (3)C33—C341.341 (5)
C7—C81.401 (3)C33—H330.9300
C7—H70.9300C34—C351.463 (13)
C8—C91.360 (4)C35—O61.203 (13)
C8—H80.9300C35—O71.398 (13)
C9—C101.361 (4)O7—C361.438 (5)
C9—H90.9300C36—H36A0.9600
C10—C111.405 (3)C36—H36B0.9600
C10—H100.9300C36—H36C0.9600
C11—C121.440 (3)O5'—C27'1.378 (4)
C12—C131.335 (2)C27'—C28'1.358 (5)
C12—H120.9300C27'—C32'1.379 (7)
C13—C141.481 (3)C28'—C29'1.391 (5)
C14—O21.203 (2)C28'—H28'0.9300
C14—O31.360 (2)C29'—C30'1.368 (6)
O3—C151.474 (3)C29'—H29'0.9300
C15—H15A0.9600C30'—C31'1.345 (10)
C15—H15B0.9600C30'—H30'0.9300
C15—H15C0.9600C31'—C32'1.406 (10)
C16—C211.390 (2)C31'—H31'0.9300
C16—C171.391 (2)C32'—C33'1.467 (10)
C17—O41.375 (2)C33'—C34'1.354 (8)
C17—C181.394 (2)C33'—H33'0.9300
C18—C191.378 (2)C34'—C35'1.454 (6)
C18—H180.9300C35'—O6'1.202 (5)
C19—C201.388 (3)C35'—O7'1.384 (8)
C19—H190.9300O7'—C36'1.448 (8)
C20—C211.392 (2)C36'—H36D0.9600
C20—H200.9300C36'—H36E0.9600
C21—H210.9300C36'—H36F0.9600
O4—H4C0.8200C37—C421.386 (2)
N5—C231.3479 (19)C37—C381.399 (2)
N5—N61.3931 (18)C38—O81.362 (2)
N5—C261.411 (2)C38—C391.395 (2)
N6—C221.308 (2)C39—C401.373 (3)
C22—N71.364 (2)C39—H390.9300
C22—H220.9300C40—C411.371 (3)
N7—C231.326 (2)C40—H400.9300
C23—N81.349 (2)C41—C421.390 (3)
N8—C241.4581 (19)C41—H410.9300
N8—H8A0.8600C42—H420.9300
C24—C371.519 (2)O8—H8B0.8200
C24—C251.527 (2)
C2—N1—N2109.09 (11)C37—C24—H24108.5
C2—N1—C5126.44 (12)C25—C24—H24108.5
N2—N1—C5123.44 (11)C24—C25—C26110.53 (14)
C1—N2—N1101.84 (11)C24—C25—H25A109.5
N2—C1—N3116.56 (13)C26—C25—H25A109.5
N2—C1—H1121.7C24—C25—H25B109.5
N3—C1—H1121.7C26—C25—H25B109.5
C2—N3—C1102.10 (12)H25A—C25—H25B108.1
N3—C2—N4128.49 (13)O5—C26—N5112.9 (2)
N3—C2—N1110.40 (13)O5—C26—C34'76.8 (2)
N4—C2—N1121.10 (13)N5—C26—C34'120.6 (2)
C2—N4—C3116.58 (12)O5—C26—C25115.8 (2)
C2—N4—H4121.7N5—C26—C25110.47 (13)
C3—N4—H4121.7C34'—C26—C25116.5 (2)
N4—C3—C16112.15 (12)N5—C26—O5'97.70 (18)
N4—C3—C4107.46 (12)C34'—C26—O5'103.0 (2)
C16—C3—C4110.81 (12)C25—C26—O5'104.97 (18)
N4—C3—H3108.8O5—C26—C34109.8 (2)
C16—C3—H3108.8N5—C26—C34103.2 (2)
C4—C3—H3108.8C25—C26—C34103.4 (2)
C5—C4—C3112.01 (12)O5'—C26—C34135.8 (2)
C5—C4—H4A109.2C26—O5—C27121.2 (4)
C3—C4—H4A109.2C28—C27—C32122.6 (5)
C5—C4—H4B109.2C28—C27—O5117.1 (5)
C3—C4—H4B109.2C32—C27—O5120.3 (5)
H4A—C4—H4B107.9C27—C28—C29117.5 (7)
N1—C5—O1103.95 (12)C27—C28—H28121.3
N1—C5—C13111.11 (13)C29—C28—H28121.3
O1—C5—C13110.71 (12)C30—C29—C28121.2 (9)
N1—C5—C4108.48 (11)C30—C29—H29119.4
O1—C5—C4109.72 (13)C28—C29—H29119.4
C13—C5—C4112.50 (13)C31—C30—C29119.9 (6)
C6—O1—C5117.69 (13)C31—C30—H30120.1
C7—C6—O1118.12 (19)C29—C30—H30120.1
C7—C6—C11121.48 (19)C30—C31—C32121.7 (5)
O1—C6—C11120.33 (17)C30—C31—H31119.2
C6—C7—C8118.7 (3)C32—C31—H31119.2
C6—C7—H7120.6C27—C32—C31117.1 (7)
C8—C7—H7120.6C27—C32—C33118.5 (6)
C9—C8—C7120.4 (3)C31—C32—C33124.4 (7)
C9—C8—H8119.8C34—C33—C32119.9 (5)
C7—C8—H8119.8C34—C33—H33120.1
C8—C9—C10121.3 (2)C32—C33—H33120.1
C8—C9—H9119.4C33—C34—C35121.6 (8)
C10—C9—H9119.4C33—C34—C26118.0 (4)
C9—C10—C11120.4 (3)C35—C34—C26120.4 (6)
C9—C10—H10119.8O6—C35—O7118.0 (11)
C11—C10—H10119.8O6—C35—C34126.7 (12)
C6—C11—C10117.8 (2)O7—C35—C34113.3 (9)
C6—C11—C12117.85 (16)C35—O7—C36118.0 (6)
C10—C11—C12124.4 (2)C27'—O5'—C26120.7 (3)
C13—C12—C11120.83 (18)C28'—C27'—O5'118.8 (3)
C13—C12—H12119.6C28'—C27'—C32'120.9 (4)
C11—C12—H12119.6O5'—C27'—C32'120.1 (4)
C12—C13—C14122.87 (17)C27'—C28'—C29'118.9 (4)
C12—C13—C5120.33 (16)C27'—C28'—H28'120.5
C14—C13—C5116.38 (14)C29'—C28'—H28'120.5
O2—C14—O3123.40 (19)C30'—C29'—C28'120.8 (4)
O2—C14—C13125.29 (17)C30'—C29'—H29'119.6
O3—C14—C13111.25 (18)C28'—C29'—H29'119.6
C14—O3—C15113.54 (19)C31'—C30'—C29'120.1 (6)
O3—C15—H15A109.5C31'—C30'—H30'119.9
O3—C15—H15B109.5C29'—C30'—H30'119.9
H15A—C15—H15B109.5C30'—C31'—C32'120.2 (9)
O3—C15—H15C109.5C30'—C31'—H31'119.9
H15A—C15—H15C109.5C32'—C31'—H31'119.9
H15B—C15—H15C109.5C27'—C32'—C31'118.9 (7)
C21—C16—C17119.01 (15)C27'—C32'—C33'118.1 (5)
C21—C16—C3122.38 (14)C31'—C32'—C33'123.0 (7)
C17—C16—C3118.57 (14)C34'—C33'—C32'120.5 (7)
O4—C17—C16117.39 (14)C34'—C33'—H33'119.8
O4—C17—C18122.45 (15)C32'—C33'—H33'119.8
C16—C17—C18120.16 (16)C33'—C34'—C35'118.3 (5)
C19—C18—C17120.05 (16)C33'—C34'—C26125.5 (5)
C19—C18—H18120.0C35'—C34'—C26115.1 (3)
C17—C18—H18120.0O6'—C35'—O7'118.6 (5)
C18—C19—C20120.66 (17)O6'—C35'—C34'126.0 (4)
C18—C19—H19119.7O7'—C35'—C34'115.3 (5)
C20—C19—H19119.7C35'—O7'—C36'118.8 (6)
C19—C20—C21118.98 (17)O7'—C36'—H36D109.5
C19—C20—H20120.5O7'—C36'—H36E109.5
C21—C20—H20120.5H36D—C36'—H36E109.5
C16—C21—C20121.12 (17)O7'—C36'—H36F109.5
C16—C21—H21119.4H36D—C36'—H36F109.5
C20—C21—H21119.4H36E—C36'—H36F109.5
C17—O4—H4C109.5C42—C37—C38118.92 (15)
C23—N5—N6108.78 (12)C42—C37—C24122.97 (14)
C23—N5—C26125.94 (14)C38—C37—C24118.11 (14)
N6—N5—C26125.16 (12)O8—C38—C39122.79 (15)
C22—N6—N5101.97 (13)O8—C38—C37117.45 (15)
N6—C22—N7116.03 (15)C39—C38—C37119.76 (16)
N6—C22—H22122.0C40—C39—C38119.85 (17)
N7—C22—H22122.0C40—C39—H39120.1
C23—N7—C22102.52 (13)C38—C39—H39120.1
N7—C23—N5110.68 (14)C41—C40—C39121.29 (18)
N7—C23—N8128.47 (14)C41—C40—H40119.4
N5—C23—N8120.85 (14)C39—C40—H40119.4
C23—N8—C24117.21 (13)C40—C41—C42119.12 (19)
C23—N8—H8A121.4C40—C41—H41120.4
C24—N8—H8A121.4C42—C41—H41120.4
N8—C24—C37112.18 (13)C37—C42—C41121.03 (18)
N8—C24—C25107.67 (13)C37—C42—H42119.5
C37—C24—C25111.29 (13)C41—C42—H42119.5
N8—C24—H24108.5C38—O8—H8B109.5
C2—N1—N2—C10.15 (15)N6—N5—C26—C3456.8 (3)
C5—N1—N2—C1169.24 (13)C24—C25—C26—O589.4 (2)
N1—N2—C1—N30.28 (17)C24—C25—C26—N540.6 (2)
N2—C1—N3—C20.29 (18)C24—C25—C26—C34'177.0 (2)
C1—N3—C2—N4179.00 (15)C24—C25—C26—O5'63.80 (19)
C1—N3—C2—N10.17 (16)C24—C25—C26—C34150.4 (2)
N2—N1—C2—N30.01 (16)N5—C26—O5—C27156.1 (4)
C5—N1—C2—N3168.67 (13)C34'—C26—O5—C2738.2 (4)
N2—N1—C2—N4179.22 (13)C25—C26—O5—C2775.1 (4)
C5—N1—C2—N412.1 (2)O5'—C26—O5—C27145.8 (8)
N3—C2—N4—C3165.60 (15)C34—C26—O5—C2741.5 (5)
N1—C2—N4—C313.5 (2)C26—O5—C27—C28149.3 (4)
C2—N4—C3—C16169.72 (13)C26—O5—C27—C3232.6 (8)
C2—N4—C3—C447.70 (17)C32—C27—C28—C291.2 (14)
N4—C3—C4—C560.47 (16)O5—C27—C28—C29176.8 (12)
C16—C3—C4—C5176.68 (13)C27—C28—C29—C301 (2)
C2—N1—C5—O1114.85 (15)C28—C29—C30—C311 (2)
N2—N1—C5—O177.99 (16)C29—C30—C31—C320.9 (13)
C2—N1—C5—C13126.03 (16)C28—C27—C32—C312.7 (12)
N2—N1—C5—C1341.12 (18)O5—C27—C32—C31175.3 (6)
C2—N1—C5—C41.9 (2)C28—C27—C32—C33180.0 (6)
N2—N1—C5—C4165.28 (13)O5—C27—C32—C332.0 (11)
C3—C4—C5—N137.65 (17)C30—C31—C32—C272.5 (11)
C3—C4—C5—O175.30 (15)C30—C31—C32—C33179.6 (6)
C3—C4—C5—C13160.98 (13)C27—C32—C33—C3411.3 (11)
N1—C5—O1—C6160.34 (14)C31—C32—C33—C34171.6 (7)
C13—C5—O1—C640.94 (19)C32—C33—C34—C35178 (2)
C4—C5—O1—C683.81 (17)C32—C33—C34—C260.6 (7)
C5—O1—C6—C7151.29 (18)O5—C26—C34—C3326.3 (5)
C5—O1—C6—C1131.8 (2)N5—C26—C34—C33147.0 (3)
O1—C6—C7—C8177.3 (2)C34'—C26—C34—C3320.4 (3)
C11—C6—C7—C80.4 (3)C25—C26—C34—C3397.9 (4)
C6—C7—C8—C90.7 (4)O5'—C26—C34—C3331.0 (5)
C7—C8—C9—C100.7 (5)O5—C26—C34—C35156 (2)
C8—C9—C10—C110.5 (4)N5—C26—C34—C3536 (2)
C7—C6—C11—C100.1 (3)C34'—C26—C34—C35162 (2)
O1—C6—C11—C10176.96 (18)C25—C26—C34—C3579 (2)
C7—C6—C11—C12178.9 (2)O5'—C26—C34—C35152 (2)
O1—C6—C11—C124.2 (3)C33—C34—C35—O6155 (3)
C9—C10—C11—C60.1 (3)C26—C34—C35—O622 (5)
C9—C10—C11—C12178.9 (2)C33—C34—C35—O78 (4)
C6—C11—C12—C1310.9 (3)C26—C34—C35—O7174.6 (17)
C10—C11—C12—C13167.8 (2)O6—C35—O7—C364 (4)
C11—C12—C13—C14173.58 (17)C34—C35—O7—C36169.2 (17)
C11—C12—C13—C51.4 (3)O5—C26—O5'—C27'36.4 (5)
N1—C5—C13—C12141.31 (16)N5—C26—O5'—C27'164.3 (3)
O1—C5—C13—C1226.3 (2)C34'—C26—O5'—C27'40.4 (3)
C4—C5—C13—C1296.84 (18)C25—C26—O5'—C27'82.0 (3)
N1—C5—C13—C1445.98 (19)C34—C26—O5'—C27'46.3 (5)
O1—C5—C13—C14160.96 (14)C26—O5'—C27'—C28'152.5 (3)
C4—C5—C13—C1475.87 (18)C26—O5'—C27'—C32'32.1 (5)
C12—C13—C14—O2161.1 (2)O5'—C27'—C28'—C29'178.2 (4)
C5—C13—C14—O211.4 (3)C32'—C27'—C28'—C29'2.7 (6)
C12—C13—C14—O321.6 (3)C27'—C28'—C29'—C30'0.6 (6)
C5—C13—C14—O3165.94 (16)C28'—C29'—C30'—C31'2.1 (13)
O2—C14—O3—C156.1 (3)C29'—C30'—C31'—C32'3 (2)
C13—C14—O3—C15176.5 (2)C28'—C27'—C32'—C31'2.1 (12)
N4—C3—C16—C2124.5 (2)O5'—C27'—C32'—C31'177.5 (11)
C4—C3—C16—C2195.55 (18)C28'—C27'—C32'—C33'179.0 (5)
N4—C3—C16—C17157.78 (14)O5'—C27'—C32'—C33'5.6 (7)
C4—C3—C16—C1782.13 (17)C30'—C31'—C32'—C27'1 (2)
C21—C16—C17—O4179.75 (15)C30'—C31'—C32'—C33'176.1 (12)
C3—C16—C17—O42.0 (2)C27'—C32'—C33'—C34'7.0 (9)
C21—C16—C17—C180.0 (2)C31'—C32'—C33'—C34'169.7 (12)
C3—C16—C17—C18177.78 (15)C32'—C33'—C34'—C35'175.5 (5)
O4—C17—C18—C19178.58 (17)C32'—C33'—C34'—C268.1 (9)
C16—C17—C18—C191.2 (3)O5—C26—C34'—C33'26.7 (5)
C17—C18—C19—C201.5 (3)N5—C26—C34'—C33'135.8 (5)
C18—C19—C20—C210.7 (3)C25—C26—C34'—C33'85.8 (5)
C17—C16—C21—C200.8 (3)O5'—C26—C34'—C33'28.5 (5)
C3—C16—C21—C20176.86 (16)C34—C26—C34'—C33'159.0 (7)
C19—C20—C21—C160.5 (3)O5—C26—C34'—C35'165.5 (3)
C23—N5—N6—C220.57 (19)N5—C26—C34'—C35'56.5 (4)
C26—N5—N6—C22175.70 (17)C25—C26—C34'—C35'82.0 (3)
N5—N6—C22—N70.3 (2)O5'—C26—C34'—C35'163.7 (3)
N6—C22—N7—C231.1 (2)C34—C26—C34'—C35'8.7 (4)
C22—N7—C23—N51.4 (2)C33'—C34'—C35'—O6'16.3 (7)
C22—N7—C23—N8178.95 (19)C26—C34'—C35'—O6'175.0 (4)
N6—N5—C23—N71.3 (2)C33'—C34'—C35'—O7'161.1 (11)
C26—N5—C23—N7174.92 (17)C26—C34'—C35'—O7'7.6 (11)
N6—N5—C23—N8179.02 (16)O6'—C35'—O7'—C36'1 (2)
C26—N5—C23—N84.7 (3)C34'—C35'—O7'—C36'176.6 (11)
N7—C23—N8—C24163.94 (18)N8—C24—C37—C4223.0 (2)
N5—C23—N8—C2416.5 (2)C25—C24—C37—C4297.74 (18)
C23—N8—C24—C37170.38 (15)N8—C24—C37—C38157.29 (14)
C23—N8—C24—C2547.6 (2)C25—C24—C37—C3882.00 (18)
N8—C24—C25—C2659.30 (19)C42—C37—C38—O8177.87 (15)
C37—C24—C25—C26177.38 (14)C24—C37—C38—O81.9 (2)
C23—N5—C26—O5122.6 (2)C42—C37—C38—C391.6 (2)
N6—N5—C26—O561.7 (3)C24—C37—C38—C39178.66 (14)
C23—N5—C26—C34'149.5 (2)O8—C38—C39—C40178.60 (16)
N6—N5—C26—C34'26.1 (3)C37—C38—C39—C400.8 (3)
C23—N5—C26—C258.9 (3)C38—C39—C40—C410.6 (3)
N6—N5—C26—C25166.78 (15)C39—C40—C41—C421.1 (3)
C23—N5—C26—O5'100.3 (2)C38—C37—C42—C412.1 (3)
N6—N5—C26—O5'84.0 (2)C24—C37—C42—C41178.11 (16)
C23—N5—C26—C34118.9 (2)C40—C41—C42—C371.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N70.862.213.0156 (19)156
O4—H4C···N2i0.822.122.9152 (17)163
N8—H8A···N30.862.102.9168 (19)159
O8—H8B···N6ii0.822.092.8898 (19)164
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H18N4O4
Mr390.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)19.337 (6), 14.824 (5), 13.932 (5)
β (°) 97.94 (1)
V3)3955 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerSiemens P4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12311, 10237, 5854
Rint0.050
(sin θ/λ)max1)0.677
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.134, 1.01
No. of reflections10237
No. of parameters645
No. of restraints90
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.20

Computer programs: XSCANS (Siemens, 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N70.862.213.0156 (19)156.3
O4—H4C···N2i0.822.122.9152 (17)163.4
N8—H8A···N30.862.102.9168 (19)159.1
O8—H8B···N6ii0.822.092.8898 (19)164.1
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the Grant Agency of the Slovak Republic, project No. 1/0320/11.

References

First citationKappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043–1052.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSvětlík, J. & Kettmann, V. (2011). Tetrahedron Lett. Accepted. (Reference code: TETL-D-10-02804R1)  Google Scholar
First citationSvětlík, J., Veizerová, L., Mayer, T. U. & Catarinella, M. (2010). Bioorg. Med. Chem. Lett. 20, 4073–4076.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds