metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bromidotricarbon­yl[2-phenyl-5-(pyridin-2-yl-κN)-1,3,4-oxa­diazole-κN4]rhenium(I) di­chloro­methane monosolvate

aCollege of Sciences, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, People's Republic of China, bSchool of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130000, People's Republic of China, and cSchool of Chemical Engineering & Technology, Harbin Institute of Technology, Harbin 150001, People's Republic of China
*Correspondence e-mail: lfshi2003@163.com

(Received 29 November 2010; accepted 14 December 2010; online 18 December 2010)

In the title rhenium(I) complex, [ReBr(C13H9N3O)(CO)3]·CH2Cl2, the dichloro­methane solvent mol­ecule is disordered over two positions with an occupancy ratio of 0.81 (15):0.19 (15). The ReI atom is coordinated by two N atoms from a 2-phenyl-5-(pyridin-2-yl-κN)-1,3,4-oxadiazole (L) ligand, three C atoms from three carbonyl groups and a Br atom in a distorted octa­hedral geometry. The three rings in L are almost coplanar (a mean plane fitted through all non-H atoms of this ligand has an r.m.s. deviation of 0.063 Å), and the carbonyl ligands are coordinated in a fac arrangement.

Related literature

For background to organic light emitting diodes, see: Li et al. (2005[Li, J., Liu, D., Li, Y., Lee, C.-S., Kwong, H.-L. & Lee, S. (2005). Chem. Mater. 17, 1208-1212.]); Wong et al. (2005[Wong, K.-T., Chen, Y.-M., Lin, Y.-T., Su, H.-C. & Wu, C.-C. (2005). Org. Lett. 7, 5361-5364.]). For phospho­rescent materials, see: Kim et al. (2006[Kim, T.-H., Lee, H.-K., Park, O., Chin, B.-D., Lee, S.-H. & Kim, J.-K. (2006). Adv. Funct. Mater. 16, 611-617.]); Lee et al. (2005[Lee, S. K., Hwang, D.-H., Jung, B.-J., Cho, N. S., Lee, J., Lee, J.-D. & Shim, H.-K. (2005). Adv. Funct. Mater. 15, 1647-1655.]); Bernhard et al. (2002[Bernhard, S., Gao, X., Malliaras, G. G. & Abruna, H. D. (2002). Adv. Mater. 14, 433-436.]). For the use of ReI complexes as phospho­rescent materials, see: Gong et al. (1998[Gong, X., Ng, P.-K. & Chan, W.-K. (1998). Adv. Mater. 10, 1337-1340.]); Li et al. (2001[Li, Y., Liu, Y., Guo, J., Wu, F., Tian, W., Li, B. & Wang, Y. (2001). Synth. Met. 118, 175-179.]); Rajendran et al. (2000[Rajendran, T., Manimaran, B., Lee, F.-Y., Lee, G.-H., Peng, S.-M., Wang, C.-C. & Lu, K.-L. (2000). Inorg. Chem. 39, 2016-2017.]); Zhang et al. (2009[Zhang, L.-M., Li, B. & Su, Z.-M. (2009). Langmuir, 25, 2068-2074.]). For the synthetic procecure, see: Demko & Sharpless (2001[Demko, Z.-P. & Sharpless, K.-B. (2001). J. Org. Chem. 66, 7945-7950.]).

[Scheme 1]

Experimental

Crystal data
  • [ReBr(C13H9N3O)(CO)3]·CH2Cl2

  • Mr = 658.30

  • Monoclinic, C 2/c

  • a = 12.492 (3) Å

  • b = 19.513 (4) Å

  • c = 16.835 (3) Å

  • β = 99.45 (3)°

  • V = 4047.9 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 8.27 mm−1

  • T = 293 K

  • 0.20 × 0.16 × 0.11 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.229, Tmax = 0.409

  • 19615 measured reflections

  • 4631 independent reflections

  • 3992 reflections with I > 2σ(I)

  • Rint = 0.104

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.107

  • S = 1.07

  • 4631 reflections

  • 276 parameters

  • 36 restraints

  • H-atom parameters constrained

  • Δρmax = 2.88 e Å−3

  • Δρmin = −1.44 e Å−3

Table 1
Selected bond lengths (Å)

Re1—C1 1.884 (7)
Re1—C3 1.893 (7)
Re1—C2 1.920 (7)
Re1—N2 2.173 (4)
Re1—N1 2.228 (4)
Re1—Br1 2.6228 (11)

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Interest in next generation displays and lighting technologies has stimulated research on organic light-emitting materials (Li et al., 2005; Wong et al., 2005), especially phosphorescent materials (Kim et al., 2006; Lee et al., 2005). As a result, transition metal phosphorescent complexes (Bernhard et al., 2002) have been studied intensively throughout the world. In order to further explore novel phosphorescent materials, several researchers paid attention to ReI complexes (Gong et al., 1998; Li et al., 2001), of which the d6 electronic configuration is identical to that of the corresponding Os(II) and Ir(III) systems. Therefore, it is pressing to explore new ReI complexes served as luminescent materials. In this article, we report the successful synthesis of a novel ReI complex which contains the oxadiazole ligand of 2-phenyl-5-(pyridin-2-yl)-1,3,4-oxadiazole, and characterized its structure by single-crystal X-ray diffraction analysis. Its luminescent property will be further studied in the coming research.

The structure of complex [Re(CO)3(L)Br].CH2Cl2, is shown in Figure 1. One molecule of solvent dichloromethane is present in the asymmetric unit. This was refined as disordered over two positions, with occupancies of 0.81 (15):0.19 (15).. The coordination geometry at the Re atom is a distorted octahedron with the three CO ligands arranged in a fac-fashion. The distances of C(1), C(2), and C(3) to Re(1) are 1.884 (7), 1.920 (7), and 1.893 (7)Å, respectively, and the Re—N bonds distances are 2.228 (4) and 2.173 (4)Å. The CO ligands are linearly coordinated for the bond angles of O—C—Re are 174.8 (6), 177.5 (7) and 177.4 (7)°, respectively, which are close to 180°. Furthermore, the bond angles between adjacent CO carbon atoms are 87.9 (3), 89.1 (3) and 89.8 (3)°, respectively, which are close to 90°, but the bond angle between the coordinated nitrogen atoms of ligand is 73.71 (17)°, which is much less than 90°. All other bond distances and angles are comparable to those found for the related ReI complexes (Rajendran et al., 2000).

Furthermore, a kind of inter-molecular face-to-face stacking present in the molecular structure of [Re(CO)3(L)Br].CH2Cl2: the 1,3,4-oxadiazole moiety in one molecule is almost parallel to the other one from another complex , and the approximate distance between the two closest atoms (N2—N3) is only 3.376°. Thus a bonded dual-molecule structure is constructed in the complex molecule which is believed a rigid one and will prevent geometric relaxation effectively (Zhang et al., 2009). Such rigid structure is promised possessing excellent luminescent properties.

Related literature top

For background to organic light emitting diodes, see: Li et al. (2005); Wong et al. (2005). For phosphorescent materials, see: Kim et al. (2006); Lee et al. (2005); Bernhard et al. (2002). For the use of ReI complexes as phosphorescent materials, see: Gong et al. (1998); Li et al. (2001); Rajendran et al. (2000); Zhang et al. (2009). For the synthetic procecure, see: Demko & Sharpless (2001).

Experimental top

The oxadiazole ligand was synthesized as follows: 5-(2-pyridyl)tetrazole (Demko et al., 2001)(1.48 g, 10 mmol), pyridine (25 ml) and benzoyl chloride (1.41 g, 10 mmol) were added to a 50 ml round bottom flask and refluxed for 72 h. The crude product was then purified by column chromatography. Yield 1.61 g (59.6%). IR (KBr pellet): 3055 (w), 1616 (w), 1547 (s), 1481 (s), 1452 (vs), 1387 (s), 1146 (m), 1072 (m), 1024 (w), 793 (s), 715 (vs) cm-1. [Re(CO)3(L)Br] was synthesized according to the following procedure: L (0.05 g, 0.210 mmol) and Re(CO)5Br (0.08 g, 0.200 mmol) were refluxed in 15 ml of toluene for 6 h. After the mixture was cooled to RT, the solvent was removed in a water bath under reduced pressure. The resulting yellow solid was purified by silica gel column chromatography with acetic acid ethyl ester and dichloromethane (v/v = 10:1). Yellow single crystals of complexes 2 suitable for X-ray diffraction studies were grown from slow evaporation of a CH2Cl2 solution.

Refinement top

One molecule of solvent dichloromethane is present in the asymmetric unit. This was refined as disordered over two positions, with occupancies of 0.81 (15):0.19 (15). H atoms were identified from a difference map and refined using Uiso(H) = 1.2Ueq(C) and constrained C-H distances.

Structure description top

Interest in next generation displays and lighting technologies has stimulated research on organic light-emitting materials (Li et al., 2005; Wong et al., 2005), especially phosphorescent materials (Kim et al., 2006; Lee et al., 2005). As a result, transition metal phosphorescent complexes (Bernhard et al., 2002) have been studied intensively throughout the world. In order to further explore novel phosphorescent materials, several researchers paid attention to ReI complexes (Gong et al., 1998; Li et al., 2001), of which the d6 electronic configuration is identical to that of the corresponding Os(II) and Ir(III) systems. Therefore, it is pressing to explore new ReI complexes served as luminescent materials. In this article, we report the successful synthesis of a novel ReI complex which contains the oxadiazole ligand of 2-phenyl-5-(pyridin-2-yl)-1,3,4-oxadiazole, and characterized its structure by single-crystal X-ray diffraction analysis. Its luminescent property will be further studied in the coming research.

The structure of complex [Re(CO)3(L)Br].CH2Cl2, is shown in Figure 1. One molecule of solvent dichloromethane is present in the asymmetric unit. This was refined as disordered over two positions, with occupancies of 0.81 (15):0.19 (15).. The coordination geometry at the Re atom is a distorted octahedron with the three CO ligands arranged in a fac-fashion. The distances of C(1), C(2), and C(3) to Re(1) are 1.884 (7), 1.920 (7), and 1.893 (7)Å, respectively, and the Re—N bonds distances are 2.228 (4) and 2.173 (4)Å. The CO ligands are linearly coordinated for the bond angles of O—C—Re are 174.8 (6), 177.5 (7) and 177.4 (7)°, respectively, which are close to 180°. Furthermore, the bond angles between adjacent CO carbon atoms are 87.9 (3), 89.1 (3) and 89.8 (3)°, respectively, which are close to 90°, but the bond angle between the coordinated nitrogen atoms of ligand is 73.71 (17)°, which is much less than 90°. All other bond distances and angles are comparable to those found for the related ReI complexes (Rajendran et al., 2000).

Furthermore, a kind of inter-molecular face-to-face stacking present in the molecular structure of [Re(CO)3(L)Br].CH2Cl2: the 1,3,4-oxadiazole moiety in one molecule is almost parallel to the other one from another complex , and the approximate distance between the two closest atoms (N2—N3) is only 3.376°. Thus a bonded dual-molecule structure is constructed in the complex molecule which is believed a rigid one and will prevent geometric relaxation effectively (Zhang et al., 2009). Such rigid structure is promised possessing excellent luminescent properties.

For background to organic light emitting diodes, see: Li et al. (2005); Wong et al. (2005). For phosphorescent materials, see: Kim et al. (2006); Lee et al. (2005); Bernhard et al. (2002). For the use of ReI complexes as phosphorescent materials, see: Gong et al. (1998); Li et al. (2001); Rajendran et al. (2000); Zhang et al. (2009). For the synthetic procecure, see: Demko & Sharpless (2001).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of [Re(CO)3(L)Br].CH2Cl2, displacement ellipsoids are drawn at the 30% probability level. The disordered dichloromethane molecule is omitted. (arbitrary spheres for the H atoms).
Bromidotricarbonyl[2-phenyl-5-(pyridin-2-yl-κN)-1,3,4-oxadiazole- κN4]rhenium(I) dichloromethane monosolvate top
Crystal data top
[ReBr(C13H9N3O)(CO)3]·CH2Cl2F(000) = 2480
Mr = 658.30Dx = 2.160 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4631 reflections
a = 12.492 (3) Åθ = 2.3–27.5°
b = 19.513 (4) ŵ = 8.27 mm1
c = 16.835 (3) ÅT = 293 K
β = 99.45 (3)°Block, yellow
V = 4047.9 (15) Å30.20 × 0.16 × 0.11 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
4631 independent reflections
Radiation source: fine-focus sealed tube3992 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.104
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1615
Tmin = 0.229, Tmax = 0.409k = 2525
19615 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0507P)2 + 6.9046P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
4631 reflectionsΔρmax = 2.88 e Å3
276 parametersΔρmin = 1.44 e Å3
36 restraintsExtinction correction: SHELXS97(Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00089 (8)
Crystal data top
[ReBr(C13H9N3O)(CO)3]·CH2Cl2V = 4047.9 (15) Å3
Mr = 658.30Z = 8
Monoclinic, C2/cMo Kα radiation
a = 12.492 (3) ŵ = 8.27 mm1
b = 19.513 (4) ÅT = 293 K
c = 16.835 (3) Å0.20 × 0.16 × 0.11 mm
β = 99.45 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4631 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3992 reflections with I > 2σ(I)
Tmin = 0.229, Tmax = 0.409Rint = 0.104
19615 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04236 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.07Δρmax = 2.88 e Å3
4631 reflectionsΔρmin = 1.44 e Å3
276 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Re10.763878 (16)0.394333 (9)0.240070 (14)0.03250 (12)
Br10.62778 (5)0.40803 (3)0.10476 (4)0.04074 (16)
O10.9100 (4)0.3751 (3)0.4011 (3)0.0696 (16)
O20.8889 (5)0.2798 (3)0.1726 (4)0.0808 (18)
O30.6198 (4)0.2847 (3)0.2967 (4)0.0825 (19)
O40.8670 (3)0.59195 (17)0.1890 (3)0.0314 (8)
N10.6852 (3)0.4871 (2)0.2817 (3)0.0314 (9)
N20.8475 (3)0.4820 (2)0.1993 (3)0.0309 (9)
N30.9313 (3)0.4917 (2)0.1559 (3)0.0335 (10)
C10.8579 (5)0.3847 (3)0.3391 (4)0.0444 (15)
C20.8427 (5)0.3231 (3)0.1961 (5)0.0508 (16)
C30.6735 (5)0.3274 (4)0.2764 (4)0.0527 (16)
C40.6067 (4)0.4881 (3)0.3268 (4)0.0384 (12)
H40.57840.44640.34030.046*
C50.5655 (5)0.5467 (3)0.3545 (4)0.0468 (14)
H50.51230.54460.38710.056*
C60.6049 (5)0.6097 (3)0.3328 (4)0.0445 (15)
H60.57790.65040.35050.053*
C70.6850 (5)0.6109 (3)0.2844 (4)0.0396 (14)
H70.71130.65200.26730.047*
C80.7239 (4)0.5490 (3)0.2628 (3)0.0308 (11)
C90.8113 (4)0.5412 (2)0.2168 (3)0.0297 (10)
C100.9406 (4)0.5585 (2)0.1511 (3)0.0304 (10)
C111.0160 (4)0.5964 (2)0.1110 (3)0.0320 (11)
C121.0231 (5)0.6674 (3)0.1184 (4)0.0441 (14)
H120.97950.69120.14870.053*
C131.0960 (5)0.7015 (3)0.0798 (5)0.0534 (16)
H131.10240.74880.08490.064*
C141.1604 (5)0.6663 (4)0.0334 (4)0.0516 (16)
H141.20890.69010.00730.062*
C151.1523 (5)0.5966 (3)0.0260 (4)0.0442 (15)
H151.19480.57320.00560.053*
C161.0816 (4)0.5609 (3)0.0651 (3)0.0342 (11)
H161.07740.51340.06110.041*
Cl10.6313 (10)0.7067 (5)0.0785 (8)0.115 (3)0.810 (15)
Cl20.6782 (3)0.57172 (14)0.0268 (2)0.0650 (12)0.810 (15)
C170.6743 (17)0.6573 (6)0.0037 (9)0.102 (5)0.810 (15)
H17A0.74600.67220.00370.123*0.810 (15)
H17B0.62540.66440.04660.123*0.810 (15)
Cl1'0.666 (5)0.7100 (17)0.087 (3)0.121 (16)0.190 (15)
Cl2'0.715 (4)0.591 (3)0.0034 (16)0.201 (18)0.190 (15)
C17'0.660 (9)0.681 (3)0.017 (5)0.102 (5)0.19
H17C0.69510.71130.01620.123*0.190 (15)
H17D0.58350.67990.00670.123*0.190 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.03620 (16)0.02314 (14)0.0399 (2)0.00311 (6)0.01139 (11)0.00443 (7)
Br10.0422 (3)0.0423 (3)0.0395 (4)0.0007 (2)0.0119 (2)0.0024 (2)
O10.086 (3)0.054 (3)0.061 (4)0.020 (3)0.013 (3)0.018 (3)
O20.089 (4)0.043 (3)0.115 (5)0.024 (3)0.032 (3)0.016 (3)
O30.079 (3)0.072 (4)0.100 (5)0.041 (3)0.026 (3)0.025 (3)
O40.0387 (18)0.0246 (15)0.034 (2)0.0016 (14)0.0167 (16)0.0007 (15)
N10.037 (2)0.027 (2)0.031 (2)0.0016 (16)0.0096 (18)0.0030 (18)
N20.0291 (19)0.025 (2)0.041 (3)0.0015 (16)0.0141 (17)0.0053 (18)
N30.033 (2)0.026 (2)0.043 (3)0.0001 (16)0.0143 (18)0.0019 (19)
C10.046 (3)0.028 (2)0.058 (5)0.009 (2)0.005 (3)0.000 (3)
C20.055 (3)0.035 (3)0.065 (5)0.006 (3)0.016 (3)0.001 (3)
C30.054 (3)0.055 (4)0.050 (4)0.006 (3)0.009 (3)0.004 (3)
C40.038 (3)0.042 (3)0.037 (3)0.007 (2)0.014 (2)0.006 (2)
C50.046 (3)0.056 (4)0.042 (4)0.003 (3)0.021 (3)0.003 (3)
C60.045 (3)0.043 (3)0.049 (4)0.003 (2)0.019 (3)0.009 (3)
C70.045 (3)0.029 (3)0.047 (4)0.001 (2)0.015 (3)0.004 (2)
C80.032 (2)0.029 (2)0.033 (3)0.0020 (18)0.011 (2)0.0009 (19)
C90.038 (2)0.022 (2)0.030 (3)0.0014 (18)0.009 (2)0.0001 (19)
C100.033 (2)0.029 (2)0.031 (3)0.0012 (19)0.008 (2)0.001 (2)
C110.039 (3)0.028 (2)0.032 (3)0.0015 (19)0.012 (2)0.001 (2)
C120.055 (3)0.025 (2)0.057 (4)0.001 (2)0.023 (3)0.004 (2)
C130.060 (4)0.031 (3)0.072 (5)0.013 (3)0.018 (3)0.004 (3)
C140.057 (3)0.053 (4)0.049 (4)0.014 (3)0.021 (3)0.010 (3)
C150.041 (3)0.057 (4)0.039 (4)0.005 (3)0.020 (3)0.005 (3)
C160.043 (3)0.030 (2)0.032 (3)0.006 (2)0.012 (2)0.004 (2)
Cl10.143 (5)0.073 (4)0.129 (7)0.003 (3)0.029 (5)0.024 (3)
Cl20.087 (2)0.0521 (17)0.053 (2)0.0020 (11)0.0019 (14)0.0019 (11)
C170.209 (15)0.038 (7)0.074 (9)0.007 (9)0.064 (9)0.010 (6)
Cl1'0.24 (5)0.034 (8)0.084 (13)0.008 (15)0.01 (2)0.005 (8)
Cl2'0.24 (3)0.32 (4)0.044 (12)0.11 (3)0.014 (16)0.036 (18)
C17'0.209 (15)0.038 (7)0.074 (9)0.007 (9)0.064 (9)0.010 (6)
Geometric parameters (Å, º) top
Re1—C11.884 (7)C7—H70.9300
Re1—C31.893 (7)C8—C91.446 (7)
Re1—C21.920 (7)C10—C111.448 (7)
Re1—N22.173 (4)C11—C121.391 (7)
Re1—N12.228 (4)C11—C161.399 (7)
Re1—Br12.6228 (11)C12—C131.374 (9)
O1—C11.152 (8)C12—H120.9300
O2—C21.132 (8)C13—C141.392 (10)
O3—C31.157 (8)C13—H130.9300
O4—C91.337 (6)C14—C151.368 (9)
O4—C101.369 (6)C14—H140.9300
N1—C41.335 (7)C15—C161.375 (8)
N1—C81.357 (6)C15—H150.9300
N2—C91.293 (6)C16—H160.9300
N2—N31.385 (6)Cl1—C171.739 (19)
N3—C101.314 (6)Cl2—C171.713 (12)
C4—C51.367 (9)C17—H17A0.9700
C4—H40.9300C17—H17B0.9700
C5—C61.395 (8)Cl1'—C17'1.30 (9)
C5—H50.9300Cl2'—C17'1.90 (6)
C6—C71.391 (9)C17'—H17C0.9700
C6—H60.9300C17'—H17D0.9700
C7—C81.373 (7)
C1—Re1—C387.9 (3)N1—C8—C9111.2 (4)
C1—Re1—C289.1 (3)C7—C8—C9124.4 (5)
C3—Re1—C289.8 (3)N2—C9—O4111.2 (4)
C1—Re1—N295.5 (2)N2—C9—C8122.6 (4)
C3—Re1—N2171.3 (2)O4—C9—C8126.2 (4)
C2—Re1—N298.3 (2)N3—C10—O4111.8 (4)
C1—Re1—N192.7 (2)N3—C10—C11127.4 (5)
C3—Re1—N198.1 (3)O4—C10—C11120.8 (4)
C2—Re1—N1171.9 (2)C12—C11—C16120.5 (5)
N2—Re1—N173.71 (17)C12—C11—C10120.3 (5)
C1—Re1—Br1178.2 (2)C16—C11—C10119.2 (4)
C3—Re1—Br190.9 (2)C13—C12—C11118.6 (6)
C2—Re1—Br192.2 (2)C13—C12—H12120.7
N2—Re1—Br185.55 (12)C11—C12—H12120.7
N1—Re1—Br186.19 (11)C12—C13—C14121.0 (6)
C9—O4—C10103.8 (4)C12—C13—H13119.5
C4—N1—C8116.3 (5)C14—C13—H13119.5
C4—N1—Re1126.4 (4)C15—C14—C13120.0 (6)
C8—N1—Re1117.2 (3)C15—C14—H14120.0
C9—N2—N3108.7 (4)C13—C14—H14120.0
C9—N2—Re1115.3 (3)C14—C15—C16120.3 (6)
N3—N2—Re1135.9 (3)C14—C15—H15119.9
C10—N3—N2104.5 (4)C16—C15—H15119.9
O1—C1—Re1174.8 (6)C15—C16—C11119.6 (5)
O2—C2—Re1177.5 (7)C15—C16—H16120.2
O3—C3—Re1177.4 (7)C11—C16—H16120.2
N1—C4—C5123.9 (5)Cl1—C17—Cl2112.2 (9)
N1—C4—H4118.0Cl1—C17—H17A109.2
C5—C4—H4118.0Cl2—C17—H17A109.2
C4—C5—C6118.7 (6)Cl1—C17—H17B109.2
C4—C5—H5120.6Cl2—C17—H17B109.2
C6—C5—H5120.6H17A—C17—H17B107.9
C7—C6—C5119.1 (5)Cl1'—C17'—Cl2'123 (5)
C7—C6—H6120.5Cl1'—C17'—H17C106.7
C5—C6—H6120.5Cl2'—C17'—H17C106.7
C8—C7—C6117.4 (5)Cl1'—C17'—H17D106.7
C8—C7—H7121.3Cl2'—C17'—H17D106.7
C6—C7—H7121.3H17C—C17'—H17D106.6
N1—C8—C7124.4 (5)
C1—Re1—N1—C481.4 (5)C8—N1—C4—C50.4 (8)
C3—Re1—N1—C46.9 (5)Re1—N1—C4—C5176.1 (4)
C2—Re1—N1—C4176.2 (15)N1—C4—C5—C61.9 (10)
N2—Re1—N1—C4176.3 (5)C4—C5—C6—C70.5 (10)
Br1—Re1—N1—C497.2 (4)C5—C6—C7—C82.2 (10)
C1—Re1—N1—C895.2 (4)C4—N1—C8—C72.6 (8)
C3—Re1—N1—C8176.6 (4)Re1—N1—C8—C7179.5 (4)
C2—Re1—N1—C87.3 (18)C4—N1—C8—C9177.6 (5)
N2—Re1—N1—C80.2 (3)Re1—N1—C8—C90.7 (6)
Br1—Re1—N1—C886.3 (4)C6—C7—C8—N13.9 (9)
C1—Re1—N2—C992.4 (4)C6—C7—C8—C9176.3 (6)
C3—Re1—N2—C920.2 (18)N3—N2—C9—O41.1 (6)
C2—Re1—N2—C9177.7 (4)Re1—N2—C9—O4179.6 (3)
N1—Re1—N2—C91.2 (4)N3—N2—C9—C8179.4 (5)
Br1—Re1—N2—C986.1 (4)Re1—N2—C9—C82.2 (7)
C1—Re1—N2—N389.7 (5)C10—O4—C9—N21.0 (6)
C3—Re1—N2—N3157.6 (15)C10—O4—C9—C8179.2 (5)
C2—Re1—N2—N30.2 (6)N1—C8—C9—N21.9 (8)
N1—Re1—N2—N3179.1 (5)C7—C8—C9—N2178.3 (5)
Br1—Re1—N2—N391.8 (5)N1—C8—C9—O4179.9 (4)
C9—N2—N3—C100.8 (6)C7—C8—C9—O40.3 (9)
Re1—N2—N3—C10178.7 (4)N2—N3—C10—O40.1 (6)
C3—Re1—C1—O10 (7)N2—N3—C10—C11179.4 (5)
C2—Re1—C1—O190 (7)C9—O4—C10—N30.5 (6)
N2—Re1—C1—O1172 (7)C9—O4—C10—C11178.8 (5)
N1—Re1—C1—O198 (7)N3—C10—C11—C12173.4 (6)
Br1—Re1—C1—O147 (11)O4—C10—C11—C127.4 (8)
C1—Re1—C2—O247 (14)N3—C10—C11—C166.4 (8)
C3—Re1—C2—O241 (14)O4—C10—C11—C16172.8 (5)
N2—Re1—C2—O2142 (14)C16—C11—C12—C130.1 (9)
N1—Re1—C2—O2150 (13)C10—C11—C12—C13179.6 (6)
Br1—Re1—C2—O2132 (14)C11—C12—C13—C140.9 (10)
C1—Re1—C3—O3103 (14)C12—C13—C14—C150.5 (11)
C2—Re1—C3—O313 (14)C13—C14—C15—C160.7 (10)
N2—Re1—C3—O3144 (13)C14—C15—C16—C111.5 (9)
N1—Re1—C3—O3165 (14)C12—C11—C16—C151.1 (8)
Br1—Re1—C3—O379 (14)C10—C11—C16—C15179.1 (5)

Experimental details

Crystal data
Chemical formula[ReBr(C13H9N3O)(CO)3]·CH2Cl2
Mr658.30
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)12.492 (3), 19.513 (4), 16.835 (3)
β (°) 99.45 (3)
V3)4047.9 (15)
Z8
Radiation typeMo Kα
µ (mm1)8.27
Crystal size (mm)0.20 × 0.16 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.229, 0.409
No. of measured, independent and
observed [I > 2σ(I)] reflections
19615, 4631, 3992
Rint0.104
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.107, 1.07
No. of reflections4631
No. of parameters276
No. of restraints36
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.88, 1.44

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Re1—C11.884 (7)Re1—N22.173 (4)
Re1—C31.893 (7)Re1—N12.228 (4)
Re1—C21.920 (7)Re1—Br12.6228 (11)
 

Acknowledgements

This work was supported by the Zhejiang A & F University Science Foundation (2009FR068).

References

First citationBernhard, S., Gao, X., Malliaras, G. G. & Abruna, H. D. (2002). Adv. Mater. 14, 433–436.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDemko, Z.-P. & Sharpless, K.-B. (2001). J. Org. Chem. 66, 7945–7950.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGong, X., Ng, P.-K. & Chan, W.-K. (1998). Adv. Mater. 10, 1337–1340.  CrossRef CAS Google Scholar
First citationKim, T.-H., Lee, H.-K., Park, O., Chin, B.-D., Lee, S.-H. & Kim, J.-K. (2006). Adv. Funct. Mater. 16, 611–617.  Web of Science CrossRef CAS Google Scholar
First citationLee, S. K., Hwang, D.-H., Jung, B.-J., Cho, N. S., Lee, J., Lee, J.-D. & Shim, H.-K. (2005). Adv. Funct. Mater. 15, 1647–1655.  Web of Science CrossRef CAS Google Scholar
First citationLi, Y., Liu, Y., Guo, J., Wu, F., Tian, W., Li, B. & Wang, Y. (2001). Synth. Met. 118, 175–179.  Web of Science CrossRef CAS Google Scholar
First citationLi, J., Liu, D., Li, Y., Lee, C.-S., Kwong, H.-L. & Lee, S. (2005). Chem. Mater. 17, 1208–1212.  Web of Science CrossRef CAS Google Scholar
First citationRajendran, T., Manimaran, B., Lee, F.-Y., Lee, G.-H., Peng, S.-M., Wang, C.-C. & Lu, K.-L. (2000). Inorg. Chem. 39, 2016–2017.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWong, K.-T., Chen, Y.-M., Lin, Y.-T., Su, H.-C. & Wu, C.-C. (2005). Org. Lett. 7, 5361–5364.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, L.-M., Li, B. & Su, Z.-M. (2009). Langmuir, 25, 2068–2074.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds