metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(tri-2-pyridyl­amine)­nickel(II) bis­­(perchlorate)

aSchool of Materials Science & Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210046, People's Republic of China
*Correspondence e-mail: iamswang@njupt.edu.cn

(Received 30 November 2010; accepted 9 December 2010; online 15 December 2010)

In the title compound, [Ni(C15H12N4)2](ClO4)2, the NiII atom lies on an inversion center and is octa­hedrally coordinated by the N atoms of two tridentate tri-2-pyridyl­amine ligands. The two perchlorate anions are disordered over two sites with a refined occupancy ratio of 0.528 (19):0.472 (19).

Related literature

For background to luminescent coordination compounds, see: Liu et al. (1997[Liu, W., Hassan, A. & Wang, S. (1997). Organometallics, 16, 4257-4259.]). For related complexes, including the synthesis of 2,2′,2′′-tpa (tpa is tri-2-pyridylamine), see: Yang et al. (1999[Yang, W., Schmider, H., Wu, Q., Zhang, Y. & Wang, S. (1999). Inorg. Chem. 39, 2397-2404.]). For information on the use of 2,2′,2′′-tpa as a bidentate ligand, see: Wang et al. (2009[Wang, S., Ding, X., He, W. & Huang, W. (2009). Acta Cryst. E65, m1424.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C15H12N4)2](ClO4)2

  • Mr = 754.18

  • Monoclinic, P 21 /n

  • a = 8.360 (4) Å

  • b = 17.570 (8) Å

  • c = 11.165 (5) Å

  • β = 99.542 (5)°

  • V = 1617.3 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 296 K

  • 0.22 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.861, Tmax = 0.920

  • 14055 measured reflections

  • 3895 independent reflections

  • 2611 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.096

  • S = 1.03

  • 3895 reflections

  • 269 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Luminescent organic and coordination compounds have been an active research area for decades because of their various potential applications in materials sciences. It has been demonstrated that 2,2'-dipyridylamine can produce a bright blue luminescence when deprotonated and bound to either an aluminium ion or a boron center (Liu et al., 1997). However, many of the previously reported aluminium or boron compounds based on 2,2'-dipyridylamine are not stable enough for electroluminescent devices. The neutral tripodal ligand 2,2',2''-tripyridylamine and its derivatives with Zn(II), Cd(II) and Hg(II) have been investigated for their optical properties (Yang et al., 1999). However, its complexes with d8 metal(II) remain unkown. By using the 2,2',2''-tripyridylamine ligand, we report here the synthesis and crystal structure of the title compound, bis(2,2',2''-tripyridylamine)nickel(II) bis(perchlorate), (I).

The structure of (I) consists of monomeric [Ni(2,2',2''-tpa)2]2+ cations and associated ClO4- anions. The Ni atom lies on an inversion center. As shown in Fig. 1, the Ni center is six-coordinate with an octahedral geometry. In principle, 2,2',2''-tpa can function not only as a tridentate chelating ligand but also as a bidentate chelating ligand where only two pyridyl groups bind to the same central atom (Wang et al., 2009). In the title compound, each 2,2',2''-tpa ligand functions as a tridentate ligand, chelating to the nickel center. The two perchlorate anions are disordered over two sites with a refined occupancy ratio of 0.528 (19) : 0.472 (19).

Related literature top

For background to luminescent coordination compounds, see: Liu et al. (1997). For related complexes, including the synthesis of 2,2',2''-tpa, see: Yang et al. (1999). For information on the use of 2,2',2''-tpa as a bidentate ligand, see: Wang et al. (2009).

Experimental top

The ligand, 2,2',2''-tpa was synthesized according to the procedure described in the literature (Yang et al. (1999)).

A solution of 2,2',2''-tpa (62.11 mg, 0.2 mmol) in acetonitrile (5 ml) was added dropwise to a solution of Ni(ClO4)2.6H2O (36.58 mg, 0.1 mmol) in acetonitrile (2 ml). The mixture was stirred at room temperature for 5 min and then filtered. Light purple crystals of (I) suitable for X-ray analysis were obtained by slow diffusion of filtrate.

Refinement top

The two perchlorate anions are disordered over two sites with a refined occupancy ratio of 0.528 (19) : 0.472 (19). Aromatic H atoms were placed in calculated positions with C—H = 0.93 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Structure description top

Luminescent organic and coordination compounds have been an active research area for decades because of their various potential applications in materials sciences. It has been demonstrated that 2,2'-dipyridylamine can produce a bright blue luminescence when deprotonated and bound to either an aluminium ion or a boron center (Liu et al., 1997). However, many of the previously reported aluminium or boron compounds based on 2,2'-dipyridylamine are not stable enough for electroluminescent devices. The neutral tripodal ligand 2,2',2''-tripyridylamine and its derivatives with Zn(II), Cd(II) and Hg(II) have been investigated for their optical properties (Yang et al., 1999). However, its complexes with d8 metal(II) remain unkown. By using the 2,2',2''-tripyridylamine ligand, we report here the synthesis and crystal structure of the title compound, bis(2,2',2''-tripyridylamine)nickel(II) bis(perchlorate), (I).

The structure of (I) consists of monomeric [Ni(2,2',2''-tpa)2]2+ cations and associated ClO4- anions. The Ni atom lies on an inversion center. As shown in Fig. 1, the Ni center is six-coordinate with an octahedral geometry. In principle, 2,2',2''-tpa can function not only as a tridentate chelating ligand but also as a bidentate chelating ligand where only two pyridyl groups bind to the same central atom (Wang et al., 2009). In the title compound, each 2,2',2''-tpa ligand functions as a tridentate ligand, chelating to the nickel center. The two perchlorate anions are disordered over two sites with a refined occupancy ratio of 0.528 (19) : 0.472 (19).

For background to luminescent coordination compounds, see: Liu et al. (1997). For related complexes, including the synthesis of 2,2',2''-tpa, see: Yang et al. (1999). For information on the use of 2,2',2''-tpa as a bidentate ligand, see: Wang et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), shown with 30% probability displacement ellipsoids. The disordered perchlorate anions and H atoms have been omitted for clarity. Unlabeled atoms are related to labeled atoms by inversion symmetry.
Bis(tri-2-pyridylamine)nickel(II) bis(perchlorate) top
Crystal data top
[Ni(C15H12N4)2](ClO4)2F(000) = 772
Mr = 754.18Dx = 1.549 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7662 reflections
a = 8.360 (4) Åθ = 2.2–27.9°
b = 17.570 (8) ŵ = 0.83 mm1
c = 11.165 (5) ÅT = 296 K
β = 99.542 (5)°Block, purple
V = 1617.3 (13) Å30.22 × 0.15 × 0.10 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3895 independent reflections
Radiation source: fine-focus sealed tube2611 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 8.366 pixels mm-1θmax = 28.4°, θmin = 2.3°
phi and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2323
Tmin = 0.861, Tmax = 0.920l = 1414
14055 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0415P)2 + 0.1545P]
where P = (Fo2 + 2Fc2)/3
3895 reflections(Δ/σ)max = 0.001
269 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Ni(C15H12N4)2](ClO4)2V = 1617.3 (13) Å3
Mr = 754.18Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.360 (4) ŵ = 0.83 mm1
b = 17.570 (8) ÅT = 296 K
c = 11.165 (5) Å0.22 × 0.15 × 0.10 mm
β = 99.542 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3895 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2611 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.920Rint = 0.040
14055 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.03Δρmax = 0.25 e Å3
3895 reflectionsΔρmin = 0.26 e Å3
269 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.00000.00000.00000.03843 (14)
N10.1260 (2)0.05805 (10)0.21770 (15)0.0415 (4)
N20.1529 (2)0.09211 (10)0.00942 (15)0.0425 (4)
N30.1341 (2)0.04164 (10)0.16286 (16)0.0425 (5)
N40.1399 (2)0.05822 (10)0.10841 (16)0.0428 (4)
C10.1923 (3)0.10685 (12)0.11845 (19)0.0398 (5)
C20.2910 (3)0.16666 (13)0.1379 (2)0.0491 (6)
H20.31800.17510.21430.059*
C30.3487 (3)0.21360 (14)0.0420 (2)0.0588 (7)
H30.41480.25480.05280.071*
C40.3080 (3)0.19915 (13)0.0696 (2)0.0546 (6)
H40.34560.23050.13540.066*
C50.2114 (3)0.13810 (13)0.0829 (2)0.0496 (6)
H50.18520.12810.15910.060*
C60.0476 (3)0.06409 (12)0.24704 (19)0.0414 (5)
C70.1176 (3)0.09311 (14)0.3578 (2)0.0547 (6)
H70.05420.10760.41500.066*
C80.2834 (4)0.10013 (15)0.3818 (2)0.0647 (7)
H80.33390.11970.45590.078*
C90.3738 (3)0.07818 (14)0.2965 (2)0.0577 (7)
H90.48610.08320.31100.069*
C100.2954 (3)0.04864 (14)0.1890 (2)0.0533 (6)
H100.35720.03270.13170.064*
C110.1900 (3)0.13045 (13)0.0929 (2)0.0492 (6)
H110.16120.15830.02900.059*
C120.2822 (3)0.16462 (14)0.1682 (2)0.0575 (7)
H120.31560.21490.15520.069*
C130.3246 (3)0.12403 (16)0.2624 (2)0.0627 (7)
H130.38860.14610.31360.075*
C140.2716 (3)0.05020 (14)0.2809 (2)0.0527 (6)
H140.29700.02190.34560.063*
C150.1808 (3)0.01931 (12)0.20188 (19)0.0402 (5)
Cl10.2377 (6)0.3455 (4)0.0694 (3)0.0463 (11)0.472 (19)
O10.1538 (19)0.3916 (9)0.1111 (12)0.128 (5)0.472 (19)
O20.224 (3)0.2727 (6)0.1240 (8)0.153 (7)0.472 (19)
O30.3932 (15)0.3751 (8)0.1296 (13)0.129 (4)0.472 (19)
O40.214 (2)0.3370 (9)0.0534 (9)0.140 (6)0.472 (19)
Cl1'0.2323 (10)0.3362 (6)0.0668 (6)0.095 (2)0.528 (19)
O1'0.1418 (16)0.4114 (7)0.0767 (15)0.133 (5)0.528 (19)
O2'0.1138 (18)0.2869 (8)0.0907 (17)0.169 (5)0.528 (19)
O3'0.3760 (15)0.3273 (15)0.1348 (13)0.205 (9)0.528 (19)
O4'0.2693 (18)0.3279 (7)0.0504 (11)0.109 (4)0.528 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0488 (3)0.0391 (2)0.0291 (2)0.00336 (19)0.01177 (17)0.00443 (17)
N10.0529 (12)0.0401 (10)0.0331 (10)0.0029 (9)0.0114 (9)0.0027 (8)
N20.0543 (12)0.0416 (10)0.0319 (10)0.0059 (9)0.0082 (8)0.0038 (8)
N30.0476 (12)0.0456 (11)0.0343 (10)0.0033 (9)0.0069 (9)0.0043 (8)
N40.0525 (12)0.0421 (10)0.0355 (10)0.0008 (9)0.0125 (9)0.0026 (8)
C10.0457 (13)0.0387 (12)0.0355 (11)0.0002 (10)0.0079 (10)0.0066 (9)
C20.0524 (15)0.0475 (13)0.0496 (14)0.0036 (11)0.0149 (12)0.0110 (11)
C30.0608 (17)0.0466 (14)0.0683 (17)0.0154 (12)0.0091 (14)0.0037 (13)
C40.0587 (16)0.0474 (14)0.0553 (15)0.0077 (12)0.0022 (13)0.0065 (12)
C50.0603 (16)0.0517 (14)0.0369 (13)0.0048 (12)0.0080 (11)0.0005 (11)
C60.0542 (15)0.0386 (12)0.0321 (11)0.0019 (10)0.0092 (10)0.0034 (9)
C70.0695 (18)0.0591 (15)0.0352 (13)0.0035 (13)0.0073 (12)0.0110 (11)
C80.075 (2)0.0696 (18)0.0440 (15)0.0041 (15)0.0063 (14)0.0125 (13)
C90.0534 (16)0.0610 (16)0.0549 (16)0.0016 (13)0.0021 (13)0.0030 (13)
C100.0530 (16)0.0580 (15)0.0489 (14)0.0027 (12)0.0082 (12)0.0058 (12)
C110.0578 (16)0.0439 (13)0.0462 (14)0.0016 (11)0.0095 (12)0.0046 (11)
C120.0610 (17)0.0502 (14)0.0608 (17)0.0084 (13)0.0091 (13)0.0075 (13)
C130.0621 (17)0.0682 (18)0.0627 (17)0.0046 (14)0.0242 (14)0.0156 (14)
C140.0595 (16)0.0600 (16)0.0426 (14)0.0065 (13)0.0199 (12)0.0062 (11)
C150.0434 (13)0.0465 (13)0.0317 (11)0.0049 (10)0.0095 (10)0.0010 (9)
Cl10.046 (2)0.072 (2)0.0231 (16)0.0105 (14)0.0106 (12)0.0077 (12)
O10.158 (8)0.140 (10)0.099 (5)0.080 (7)0.058 (6)0.001 (6)
O20.31 (2)0.084 (6)0.070 (5)0.006 (9)0.037 (8)0.018 (4)
O30.095 (6)0.186 (10)0.100 (6)0.052 (7)0.000 (4)0.031 (6)
O40.195 (12)0.199 (9)0.023 (4)0.091 (8)0.013 (5)0.005 (4)
Cl1'0.109 (4)0.101 (3)0.075 (3)0.037 (3)0.014 (3)0.020 (2)
O1'0.107 (5)0.070 (5)0.211 (13)0.027 (4)0.004 (6)0.036 (6)
O2'0.169 (9)0.122 (7)0.251 (13)0.007 (7)0.139 (9)0.013 (7)
O3'0.086 (8)0.36 (3)0.148 (8)0.120 (11)0.033 (7)0.089 (13)
O4'0.144 (8)0.120 (6)0.080 (6)0.018 (6)0.068 (6)0.032 (4)
Geometric parameters (Å, º) top
Ni1—N22.0755 (19)C7—C81.373 (4)
Ni1—N2i2.0755 (19)C7—H70.9300
Ni1—N42.0851 (18)C8—C91.367 (4)
Ni1—N4i2.0851 (18)C8—H80.9300
Ni1—N3i2.1029 (19)C9—C101.370 (3)
Ni1—N32.1029 (19)C9—H90.9300
N1—C151.436 (3)C10—H100.9300
N1—C11.437 (3)C11—C121.370 (3)
N1—C61.438 (3)C11—H110.9300
N2—C51.337 (3)C12—C131.366 (4)
N2—C11.338 (3)C12—H120.9300
N3—C61.337 (3)C13—C141.375 (3)
N3—C101.337 (3)C13—H130.9300
N4—C151.339 (3)C14—C151.368 (3)
N4—C111.339 (3)C14—H140.9300
C1—C21.375 (3)Cl1—O11.212 (13)
C2—C31.374 (3)Cl1—O41.361 (11)
C2—H20.9300Cl1—O21.430 (13)
C3—C41.369 (3)Cl1—O31.457 (12)
C3—H30.9300Cl1'—O3'1.320 (11)
C4—C51.366 (3)Cl1'—O2'1.375 (14)
C4—H40.9300Cl1'—O4'1.401 (11)
C5—H50.9300Cl1'—O1'1.537 (15)
C6—C71.375 (3)
N2—Ni1—N2i180.0N3—C6—C7122.9 (2)
N2—Ni1—N486.78 (7)N3—C6—N1117.46 (18)
N2i—Ni1—N493.22 (7)C7—C6—N1119.7 (2)
N2—Ni1—N4i93.22 (7)C8—C7—C6118.3 (2)
N2i—Ni1—N4i86.78 (7)C8—C7—H7120.9
N4—Ni1—N4i180.0C6—C7—H7120.9
N2—Ni1—N3i94.05 (7)C9—C8—C7119.7 (2)
N2i—Ni1—N3i85.95 (7)C9—C8—H8120.1
N4—Ni1—N3i93.52 (8)C7—C8—H8120.1
N4i—Ni1—N3i86.48 (8)C8—C9—C10118.5 (3)
N2—Ni1—N385.95 (7)C8—C9—H9120.7
N2i—Ni1—N394.05 (7)C10—C9—H9120.7
N4—Ni1—N386.48 (8)N3—C10—C9123.0 (2)
N4i—Ni1—N393.52 (8)N3—C10—H10118.5
N3i—Ni1—N3180.0C9—C10—H10118.5
C15—N1—C1113.30 (17)N4—C11—C12122.2 (2)
C15—N1—C6112.77 (17)N4—C11—H11118.9
C1—N1—C6112.15 (17)C12—C11—H11118.9
C5—N2—C1118.06 (19)C13—C12—C11119.2 (2)
C5—N2—Ni1125.59 (15)C13—C12—H12120.4
C1—N2—Ni1116.34 (14)C11—C12—H12120.4
C6—N3—C10117.54 (19)C12—C13—C14119.3 (2)
C6—N3—Ni1115.96 (15)C12—C13—H13120.3
C10—N3—Ni1126.49 (15)C14—C13—H13120.3
C15—N4—C11118.01 (19)C15—C14—C13118.5 (2)
C15—N4—Ni1116.26 (15)C15—C14—H14120.8
C11—N4—Ni1125.72 (15)C13—C14—H14120.8
N2—C1—C2122.4 (2)N4—C15—C14122.8 (2)
N2—C1—N1117.66 (18)N4—C15—N1117.50 (18)
C2—C1—N1119.90 (19)C14—C15—N1119.74 (19)
C3—C2—C1118.5 (2)O1—Cl1—O4117.6 (10)
C3—C2—H2120.7O1—Cl1—O2109.8 (9)
C1—C2—H2120.7O4—Cl1—O2108.8 (9)
C4—C3—C2119.3 (2)O1—Cl1—O396.5 (10)
C4—C3—H3120.3O4—Cl1—O3118.3 (10)
C2—C3—H3120.3O2—Cl1—O3104.7 (9)
C5—C4—C3119.0 (2)O3'—Cl1'—O2'115.5 (11)
C5—C4—H4120.5O3'—Cl1'—O4'101.8 (10)
C3—C4—H4120.5O2'—Cl1'—O4'113.2 (9)
N2—C5—C4122.6 (2)O3'—Cl1'—O1'118.1 (12)
N2—C5—H5118.7O2'—Cl1'—O1'98.6 (8)
C4—C5—H5118.7O4'—Cl1'—O1'110.1 (9)
N4—Ni1—N2—C5138.49 (19)C2—C3—C4—C50.3 (4)
N4i—Ni1—N2—C541.51 (19)C1—N2—C5—C40.4 (3)
N3i—Ni1—N2—C545.18 (19)Ni1—N2—C5—C4178.09 (17)
N3—Ni1—N2—C5134.82 (19)C3—C4—C5—N20.9 (4)
N4—Ni1—N2—C142.98 (16)C10—N3—C6—C70.4 (3)
N4i—Ni1—N2—C1137.02 (16)Ni1—N3—C6—C7179.54 (18)
N3i—Ni1—N2—C1136.29 (16)C10—N3—C6—N1178.68 (19)
N3—Ni1—N2—C143.71 (16)Ni1—N3—C6—N10.4 (2)
N2—Ni1—N3—C644.10 (16)C15—N1—C6—N365.0 (2)
N2i—Ni1—N3—C6135.90 (16)C1—N1—C6—N364.4 (2)
N4—Ni1—N3—C642.92 (16)C15—N1—C6—C7115.9 (2)
N4i—Ni1—N3—C6137.08 (16)C1—N1—C6—C7114.8 (2)
N2—Ni1—N3—C10134.9 (2)N3—C6—C7—C80.9 (4)
N2i—Ni1—N3—C1045.1 (2)N1—C6—C7—C8178.2 (2)
N4—Ni1—N3—C10138.1 (2)C6—C7—C8—C90.2 (4)
N4i—Ni1—N3—C1041.9 (2)C7—C8—C9—C100.8 (4)
N2—Ni1—N4—C1543.27 (16)C6—N3—C10—C90.7 (3)
N2i—Ni1—N4—C15136.73 (16)Ni1—N3—C10—C9178.30 (18)
N3i—Ni1—N4—C15137.13 (16)C8—C9—C10—N31.3 (4)
N3—Ni1—N4—C1542.87 (16)C15—N4—C11—C120.8 (3)
N2—Ni1—N4—C11137.4 (2)Ni1—N4—C11—C12179.82 (18)
N2i—Ni1—N4—C1142.6 (2)N4—C11—C12—C130.1 (4)
N3i—Ni1—N4—C1143.5 (2)C11—C12—C13—C141.0 (4)
N3—Ni1—N4—C11136.5 (2)C12—C13—C14—C151.5 (4)
C5—N2—C1—C20.6 (3)C11—N4—C15—C140.3 (3)
Ni1—N2—C1—C2179.22 (17)Ni1—N4—C15—C14179.77 (18)
C5—N2—C1—N1178.7 (2)C11—N4—C15—N1179.87 (19)
Ni1—N2—C1—N10.1 (3)Ni1—N4—C15—N10.4 (3)
C15—N1—C1—N264.0 (3)C13—C14—C15—N40.8 (4)
C6—N1—C1—N265.1 (2)C13—C14—C15—N1179.0 (2)
C15—N1—C1—C2116.7 (2)C1—N1—C15—N463.5 (3)
C6—N1—C1—C2114.2 (2)C6—N1—C15—N465.3 (2)
N2—C1—C2—C31.1 (3)C1—N1—C15—C14116.3 (2)
N1—C1—C2—C3178.2 (2)C6—N1—C15—C14115.0 (2)
C1—C2—C3—C40.6 (4)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C15H12N4)2](ClO4)2
Mr754.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.360 (4), 17.570 (8), 11.165 (5)
β (°) 99.542 (5)
V3)1617.3 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.22 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.861, 0.920
No. of measured, independent and
observed [I > 2σ(I)] reflections
14055, 3895, 2611
Rint0.040
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.096, 1.03
No. of reflections3895
No. of parameters269
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.26

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by NY208044, BK2010527 and in part by the National Basic Research Program of China (2009CB930601).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, W., Hassan, A. & Wang, S. (1997). Organometallics, 16, 4257–4259.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S., Ding, X., He, W. & Huang, W. (2009). Acta Cryst. E65, m1424.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYang, W., Schmider, H., Wu, Q., Zhang, Y. & Wang, S. (1999). Inorg. Chem. 39, 2397–2404.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds