metal-organic compounds
Bis{(E)-2-[(2-chloro-3-pyridyl)iminomethyl]-6-methoxyphenolato-κ2N,O1}copper(II)
aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: dongwk@126.com
In the title mononuclear copper(II) complex, [Cu(C13H10ClN2O2)2], the CuII ion, lying on an inversion center, is four-coordinated in a trans-CuN2O2 square-planar geometry by two phenolate O and two imino N atoms from two symmetry-related N,O-bidentate Schiff base ligands. The shortest Cu⋯Cu distance is 7.5743 (9) Å. However, there are weak intramolecular electrostatic interactions between the Cu atom and the Cl atom of the ligand, with a Cu⋯Cl distance of 3.3845 (9) Å.
Related literature
For the synthesis and related crystal strcutures, see: Dong et al. (2009, 2010); Ding et al. (2009).
Experimental
Crystal data
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810052414/om2379sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810052414/om2379Isup2.hkl
(E)-2-((2-chloropyridin-3-ylimino)methyl)-6-methoxyphenol (HL) was prepared according to previously reported procedure (Dong et al., 2010; Ding et al., 2009). To a warm pale-yellow ethanol solution (4 ml) of 3-methoxysalicylaldehyde (152.2 mg, 1.00 mmol), colorless ethanol solution (4 ml) of 3-amino-2-chloropyridine (128.6 mg, 1.00 mmol) was added dropwise, and the color of the mixture turned orange. The solution was maintained under reflux for 24 h, and a saffron yellow powder product was obtained. It was filtered off, washed with ethanol and ethanol-hexane (1:4, V/V), respectively, and then dried in vacuo yielding 245.3 mg powder. Yield, 93.38%. m.p. 397–398 K. Anal. Calcd. for C13H11ClN2O2 (%): C, 59.44; H, 4.22; N, 10.66. Found: C, 59.40; H, 4.18; N, 10.71.
A pale-blue ethanol solution (3 ml) of CuII acetate monohydrate (2.9 mg, 0.015 mmol) was added dropwise to a pale-yellow acetone solution (3 ml) of HL (7.0 mg, 0.027 mmol) at room temperature. The color of the mixing solution turned to yellow immediately, then turned to brown slowly and the filtrate was allowed to stand at room temperature for about three weeks. The solvent was partially evaporated and obtained green single crystals suit for X-ray crystallographic analysis. Anal. Calcd. for [Cu(L)2] (C26H20Cl2CuN4O4) (%): C, 53.21; H, 3.43; N, 9.55; Cu, 10.83. Found: C, 53.24; H, 3.46; N, 9.50, Cu, 10.79.
H atoms were placed in calculated positions and non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.96 Å (CH3) and 0.93 Å (CH). The isotropic displacement parameters for all H atoms were set equal to 1.2 or 1.5 Ueq of the carrier atom.
The centrosymmetric structure of the title complex is shown in Fig. 1. In the title complex all bond lengths are in normal ranges. The CuII ion, lying on the inversion centre, is four-coordinated in a trans-CuN2O2 square-planar geometry, with two phenolate O and two imino N atoms from two N,O-bidentate Schiff-base ligand (HL) (Dong et al., 2009; Ding et al., 2009). The shortest Cu···Cu distance is 7.5743 (9) Å. However, there are weak intramolecular electrostatic interactions between the Cu and Cl of the ligand, with Cu1··· Cl1 distance of 3.3845 (9) Å.
For the synthesis and related crystal strcutures, see: Dong et al. (2009, 2010); Ding et al. (2009).
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu(C13H10ClN2O2)2] | F(000) = 1196 |
Mr = 586.90 | Dx = 1.515 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 1824 reflections |
a = 21.242 (2) Å | θ = 2.9–25.2° |
b = 7.5743 (9) Å | µ = 1.10 mm−1 |
c = 16.141 (2) Å | T = 298 K |
β = 97.652 (1)° | Block, brown |
V = 2573.9 (5) Å3 | 0.18 × 0.16 × 0.11 mm |
Z = 4 |
Bruker SMART 1000 diffractometer | 2262 independent reflections |
Radiation source: fine-focus sealed tube | 1651 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
φ and ω scans | θmax = 25.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −20→25 |
Tmin = 0.827, Tmax = 0.889 | k = −8→8 |
6295 measured reflections | l = −19→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0306P)2] where P = (Fo2 + 2Fc2)/3 |
2262 reflections | (Δ/σ)max < 0.001 |
170 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
[Cu(C13H10ClN2O2)2] | V = 2573.9 (5) Å3 |
Mr = 586.90 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 21.242 (2) Å | µ = 1.10 mm−1 |
b = 7.5743 (9) Å | T = 298 K |
c = 16.141 (2) Å | 0.18 × 0.16 × 0.11 mm |
β = 97.652 (1)° |
Bruker SMART 1000 diffractometer | 2262 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1651 reflections with I > 2σ(I) |
Tmin = 0.827, Tmax = 0.889 | Rint = 0.034 |
6295 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.24 e Å−3 |
2262 reflections | Δρmin = −0.29 e Å−3 |
170 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.5000 | 0.5000 | 0.0000 | 0.04162 (16) | |
Cl1 | 0.41342 (4) | 0.44977 (10) | 0.15993 (6) | 0.0749 (3) | |
N1 | 0.53184 (10) | 0.3389 (3) | 0.09230 (13) | 0.0415 (5) | |
N2 | 0.40093 (12) | 0.1120 (3) | 0.17745 (16) | 0.0590 (7) | |
O1 | 0.56672 (8) | 0.6625 (2) | 0.03158 (12) | 0.0494 (5) | |
O2 | 0.65231 (10) | 0.9115 (3) | 0.03223 (14) | 0.0662 (6) | |
C1 | 0.58981 (13) | 0.3453 (4) | 0.13165 (17) | 0.0452 (7) | |
H1 | 0.6021 | 0.2534 | 0.1685 | 0.054* | |
C2 | 0.63603 (12) | 0.4787 (4) | 0.12382 (16) | 0.0442 (7) | |
C3 | 0.62132 (12) | 0.6322 (4) | 0.07655 (16) | 0.0426 (7) | |
C4 | 0.67016 (13) | 0.7650 (4) | 0.07845 (18) | 0.0495 (7) | |
C5 | 0.72880 (14) | 0.7374 (4) | 0.12438 (19) | 0.0586 (8) | |
H5 | 0.7603 | 0.8228 | 0.1244 | 0.070* | |
C6 | 0.74167 (15) | 0.5833 (4) | 0.1708 (2) | 0.0642 (9) | |
H6 | 0.7815 | 0.5668 | 0.2015 | 0.077* | |
C7 | 0.69649 (14) | 0.4579 (4) | 0.17153 (18) | 0.0572 (8) | |
H7 | 0.7052 | 0.3568 | 0.2037 | 0.069* | |
C8 | 0.69847 (17) | 1.0482 (4) | 0.0302 (2) | 0.0785 (11) | |
H8A | 0.7120 | 1.0891 | 0.0860 | 0.118* | |
H8B | 0.6801 | 1.1444 | −0.0034 | 0.118* | |
H8C | 0.7344 | 1.0028 | 0.0066 | 0.118* | |
C9 | 0.43771 (13) | 0.2320 (4) | 0.14983 (17) | 0.0476 (7) | |
C10 | 0.49353 (13) | 0.1971 (3) | 0.11672 (16) | 0.0427 (7) | |
C11 | 0.50962 (14) | 0.0223 (4) | 0.10883 (17) | 0.0516 (7) | |
H11 | 0.5457 | −0.0086 | 0.0853 | 0.062* | |
C12 | 0.47121 (16) | −0.1066 (4) | 0.13646 (19) | 0.0637 (9) | |
H12 | 0.4813 | −0.2255 | 0.1321 | 0.076* | |
C13 | 0.41833 (17) | −0.0569 (4) | 0.1702 (2) | 0.0647 (9) | |
H13 | 0.3931 | −0.1446 | 0.1891 | 0.078* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0330 (3) | 0.0411 (3) | 0.0496 (3) | −0.0060 (2) | 0.0010 (2) | 0.0007 (2) |
Cl1 | 0.0740 (6) | 0.0506 (5) | 0.1082 (7) | −0.0009 (4) | 0.0415 (5) | −0.0033 (4) |
N1 | 0.0370 (13) | 0.0402 (13) | 0.0472 (13) | −0.0072 (10) | 0.0046 (11) | −0.0018 (10) |
N2 | 0.0575 (16) | 0.0524 (17) | 0.0704 (18) | −0.0181 (14) | 0.0207 (14) | −0.0051 (14) |
O1 | 0.0380 (11) | 0.0423 (11) | 0.0642 (12) | −0.0088 (9) | −0.0065 (10) | 0.0060 (9) |
O2 | 0.0574 (14) | 0.0533 (13) | 0.0852 (16) | −0.0221 (11) | −0.0004 (12) | 0.0056 (12) |
C1 | 0.0438 (17) | 0.0451 (17) | 0.0461 (17) | −0.0024 (14) | 0.0034 (14) | 0.0014 (13) |
C2 | 0.0347 (15) | 0.0508 (18) | 0.0458 (15) | −0.0041 (14) | 0.0009 (12) | −0.0008 (14) |
C3 | 0.0342 (15) | 0.0491 (17) | 0.0437 (17) | −0.0069 (13) | 0.0028 (14) | −0.0073 (14) |
C4 | 0.0444 (18) | 0.0483 (19) | 0.0557 (19) | −0.0108 (14) | 0.0059 (15) | −0.0065 (15) |
C5 | 0.0393 (18) | 0.065 (2) | 0.070 (2) | −0.0177 (15) | 0.0003 (16) | −0.0121 (17) |
C6 | 0.0391 (19) | 0.077 (2) | 0.072 (2) | −0.0053 (17) | −0.0096 (16) | −0.0098 (19) |
C7 | 0.0467 (19) | 0.063 (2) | 0.0586 (19) | −0.0025 (15) | −0.0063 (15) | 0.0012 (15) |
C8 | 0.082 (3) | 0.060 (2) | 0.095 (3) | −0.0335 (19) | 0.016 (2) | −0.0060 (19) |
C9 | 0.0486 (18) | 0.0405 (17) | 0.0553 (18) | −0.0050 (14) | 0.0125 (15) | −0.0034 (14) |
C10 | 0.0403 (17) | 0.0442 (17) | 0.0425 (16) | −0.0093 (13) | 0.0016 (13) | 0.0005 (13) |
C11 | 0.0503 (18) | 0.0469 (18) | 0.0583 (18) | −0.0059 (15) | 0.0096 (14) | −0.0011 (15) |
C12 | 0.073 (2) | 0.0439 (19) | 0.075 (2) | −0.0104 (17) | 0.0156 (19) | −0.0005 (17) |
C13 | 0.075 (2) | 0.047 (2) | 0.076 (2) | −0.0255 (17) | 0.022 (2) | −0.0016 (16) |
Cu1—O1i | 1.8951 (17) | C4—C5 | 1.378 (4) |
Cu1—O1 | 1.8951 (17) | C5—C6 | 1.395 (4) |
Cu1—N1 | 1.974 (2) | C5—H5 | 0.9300 |
Cu1—N1i | 1.974 (2) | C6—C7 | 1.351 (4) |
Cl1—C9 | 1.743 (3) | C6—H6 | 0.9300 |
N1—C1 | 1.309 (3) | C7—H7 | 0.9300 |
N1—C10 | 1.434 (3) | C8—H8A | 0.9600 |
N2—C9 | 1.314 (3) | C8—H8B | 0.9600 |
N2—C13 | 1.341 (4) | C8—H8C | 0.9600 |
O1—C3 | 1.304 (3) | C9—C10 | 1.389 (4) |
O2—C4 | 1.363 (3) | C10—C11 | 1.378 (4) |
O2—C8 | 1.429 (3) | C11—C12 | 1.384 (4) |
C1—C2 | 1.426 (3) | C11—H11 | 0.9300 |
C1—H1 | 0.9300 | C12—C13 | 1.365 (4) |
C2—C3 | 1.403 (4) | C12—H12 | 0.9300 |
C2—C7 | 1.416 (4) | C13—H13 | 0.9300 |
C3—C4 | 1.443 (4) | ||
O1i—Cu1—O1 | 180.00 (14) | C7—C6—C5 | 120.3 (3) |
O1i—Cu1—N1 | 88.30 (8) | C7—C6—H6 | 119.9 |
O1—Cu1—N1 | 91.70 (8) | C5—C6—H6 | 119.9 |
O1i—Cu1—N1i | 91.70 (8) | C6—C7—C2 | 120.8 (3) |
O1—Cu1—N1i | 88.30 (8) | C6—C7—H7 | 119.6 |
N1—Cu1—N1i | 180.00 (16) | C2—C7—H7 | 119.6 |
C1—N1—C10 | 115.2 (2) | O2—C8—H8A | 109.5 |
C1—N1—Cu1 | 123.28 (18) | O2—C8—H8B | 109.5 |
C10—N1—Cu1 | 121.36 (17) | H8A—C8—H8B | 109.5 |
C9—N2—C13 | 116.5 (3) | O2—C8—H8C | 109.5 |
C3—O1—Cu1 | 127.80 (17) | H8A—C8—H8C | 109.5 |
C4—O2—C8 | 117.4 (2) | H8B—C8—H8C | 109.5 |
N1—C1—C2 | 126.7 (3) | N2—C9—C10 | 125.1 (3) |
N1—C1—H1 | 116.7 | N2—C9—Cl1 | 115.2 (2) |
C2—C1—H1 | 116.7 | C10—C9—Cl1 | 119.6 (2) |
C3—C2—C7 | 120.6 (3) | C11—C10—C9 | 117.0 (2) |
C3—C2—C1 | 121.9 (2) | C11—C10—N1 | 122.5 (2) |
C7—C2—C1 | 117.3 (3) | C9—C10—N1 | 120.5 (2) |
O1—C3—C2 | 124.5 (2) | C10—C11—C12 | 119.0 (3) |
O1—C3—C4 | 118.2 (3) | C10—C11—H11 | 120.5 |
C2—C3—C4 | 117.3 (2) | C12—C11—H11 | 120.5 |
O2—C4—C5 | 125.7 (3) | C13—C12—C11 | 119.1 (3) |
O2—C4—C3 | 114.2 (2) | C13—C12—H12 | 120.5 |
C5—C4—C3 | 120.1 (3) | C11—C12—H12 | 120.5 |
C4—C5—C6 | 121.0 (3) | N2—C13—C12 | 123.3 (3) |
C4—C5—H5 | 119.5 | N2—C13—H13 | 118.3 |
C6—C5—H5 | 119.5 | C12—C13—H13 | 118.3 |
O1i—Cu1—N1—C1 | 161.5 (2) | O2—C4—C5—C6 | 178.8 (3) |
O1—Cu1—N1—C1 | −18.5 (2) | C3—C4—C5—C6 | −1.2 (4) |
O1i—Cu1—N1—C10 | −13.9 (2) | C4—C5—C6—C7 | 0.0 (5) |
O1—Cu1—N1—C10 | 166.1 (2) | C5—C6—C7—C2 | 1.5 (5) |
N1—Cu1—O1—C3 | 21.0 (2) | C3—C2—C7—C6 | −1.7 (4) |
N1i—Cu1—O1—C3 | −159.0 (2) | C1—C2—C7—C6 | −176.5 (3) |
C10—N1—C1—C2 | −175.3 (2) | C13—N2—C9—C10 | −2.2 (5) |
Cu1—N1—C1—C2 | 9.1 (4) | C13—N2—C9—Cl1 | 179.7 (2) |
N1—C1—C2—C3 | 6.3 (4) | N2—C9—C10—C11 | 3.2 (4) |
N1—C1—C2—C7 | −179.0 (3) | Cl1—C9—C10—C11 | −178.8 (2) |
Cu1—O1—C3—C2 | −13.0 (4) | N2—C9—C10—N1 | −176.8 (3) |
Cu1—O1—C3—C4 | 167.22 (18) | Cl1—C9—C10—N1 | 1.2 (4) |
C7—C2—C3—O1 | −179.3 (2) | C1—N1—C10—C11 | −60.3 (3) |
C1—C2—C3—O1 | −4.8 (4) | Cu1—N1—C10—C11 | 115.4 (3) |
C7—C2—C3—C4 | 0.4 (4) | C1—N1—C10—C9 | 119.7 (3) |
C1—C2—C3—C4 | 175.0 (2) | Cu1—N1—C10—C9 | −64.6 (3) |
C8—O2—C4—C5 | 0.7 (4) | C9—C10—C11—C12 | −2.2 (4) |
C8—O2—C4—C3 | −179.2 (2) | N1—C10—C11—C12 | 177.8 (2) |
O1—C3—C4—O2 | 0.7 (4) | C10—C11—C12—C13 | 0.4 (5) |
C2—C3—C4—O2 | −179.0 (2) | C9—N2—C13—C12 | 0.2 (5) |
O1—C3—C4—C5 | −179.2 (2) | C11—C12—C13—N2 | 0.6 (5) |
C2—C3—C4—C5 | 1.0 (4) |
Symmetry code: (i) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C13H10ClN2O2)2] |
Mr | 586.90 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 298 |
a, b, c (Å) | 21.242 (2), 7.5743 (9), 16.141 (2) |
β (°) | 97.652 (1) |
V (Å3) | 2573.9 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.10 |
Crystal size (mm) | 0.18 × 0.16 × 0.11 |
Data collection | |
Diffractometer | Bruker SMART 1000 |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.827, 0.889 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6295, 2262, 1651 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.075, 1.01 |
No. of reflections | 2262 |
No. of parameters | 170 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.29 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
This work was supported by the Foundation of the Education Department of Gansu Province (0904–11), which is gratefully acknowledged.
References
Ding, Y.-J., Tong, J.-F., Dong, W.-K., Sun, Y.-X. & Yao, J. (2009). Acta Cryst. E65, m1013. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dong, W.-K., Sun, Y.-X., Zhao, C.-Y., Dong, X.-Y. & Xu, L. (2010). Polyhedron, 29, 2087–2097. Web of Science CSD CrossRef CAS Google Scholar
Dong, W.-K., Tong, J.-F., An, L.-L., Wu, J.-C. & Yao, J. (2009). Acta Cryst. E65, m945. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The centrosymmetric structure of the title complex is shown in Fig. 1. In the title complex all bond lengths are in normal ranges. The CuII ion, lying on the inversion centre, is four-coordinated in a trans-CuN2O2 square-planar geometry, with two phenolate O and two imino N atoms from two N,O-bidentate Schiff-base ligand (HL) (Dong et al., 2009; Ding et al., 2009). The shortest Cu···Cu distance is 7.5743 (9) Å. However, there are weak intramolecular electrostatic interactions between the Cu and Cl of the ligand, with Cu1··· Cl1 distance of 3.3845 (9) Å.