metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{(E)-2-[(2-chloro-3-pyrid­yl)imino­meth­yl]-6-meth­­oxy­phenolato-κ2N,O1}copper(II)

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: dongwk@126.com

(Received 11 November 2010; accepted 14 December 2010; online 18 December 2010)

In the title mononuclear copper(II) complex, [Cu(C13H10ClN2O2)2], the CuII ion, lying on an inversion center, is four-coordinated in a trans-CuN2O2 square-planar geometry by two phenolate O and two imino N atoms from two symmetry-related N,O-bidentate Schiff base ligands. The shortest Cu⋯Cu distance is 7.5743 (9) Å. However, there are weak intra­molecular electrostatic inter­actions between the Cu atom and the Cl atom of the ligand, with a Cu⋯Cl distance of 3.3845 (9) Å.

Related literature

For the synthesis and related crystal strcutures, see: Dong et al. (2009[Dong, W.-K., Tong, J.-F., An, L.-L., Wu, J.-C. & Yao, J. (2009). Acta Cryst. E65, m945.], 2010[Dong, W.-K., Sun, Y.-X., Zhao, C.-Y., Dong, X.-Y. & Xu, L. (2010). Polyhedron, 29, 2087-2097.]); Ding et al. (2009[Ding, Y.-J., Tong, J.-F., Dong, W.-K., Sun, Y.-X. & Yao, J. (2009). Acta Cryst. E65, m1013.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C13H10ClN2O2)2]

  • Mr = 586.90

  • Monoclinic, C 2/c

  • a = 21.242 (2) Å

  • b = 7.5743 (9) Å

  • c = 16.141 (2) Å

  • β = 97.652 (1)°

  • V = 2573.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.10 mm−1

  • T = 298 K

  • 0.18 × 0.16 × 0.11 mm

Data collection
  • Siemens SMART 1000 CCE diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.827, Tmax = 0.889

  • 6295 measured reflections

  • 2262 independent reflections

  • 1651 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.075

  • S = 1.01

  • 2262 reflections

  • 170 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The centrosymmetric structure of the title complex is shown in Fig. 1. In the title complex all bond lengths are in normal ranges. The CuII ion, lying on the inversion centre, is four-coordinated in a trans-CuN2O2 square-planar geometry, with two phenolate O and two imino N atoms from two N,O-bidentate Schiff-base ligand (HL) (Dong et al., 2009; Ding et al., 2009). The shortest Cu···Cu distance is 7.5743 (9) Å. However, there are weak intramolecular electrostatic interactions between the Cu and Cl of the ligand, with Cu1··· Cl1 distance of 3.3845 (9) Å.

Related literature top

For the synthesis and related crystal strcutures, see: Dong et al. (2009, 2010); Ding et al. (2009).

Experimental top

(E)-2-((2-chloropyridin-3-ylimino)methyl)-6-methoxyphenol (HL) was prepared according to previously reported procedure (Dong et al., 2010; Ding et al., 2009). To a warm pale-yellow ethanol solution (4 ml) of 3-methoxysalicylaldehyde (152.2 mg, 1.00 mmol), colorless ethanol solution (4 ml) of 3-amino-2-chloropyridine (128.6 mg, 1.00 mmol) was added dropwise, and the color of the mixture turned orange. The solution was maintained under reflux for 24 h, and a saffron yellow powder product was obtained. It was filtered off, washed with ethanol and ethanol-hexane (1:4, V/V), respectively, and then dried in vacuo yielding 245.3 mg powder. Yield, 93.38%. m.p. 397–398 K. Anal. Calcd. for C13H11ClN2O2 (%): C, 59.44; H, 4.22; N, 10.66. Found: C, 59.40; H, 4.18; N, 10.71.

A pale-blue ethanol solution (3 ml) of CuII acetate monohydrate (2.9 mg, 0.015 mmol) was added dropwise to a pale-yellow acetone solution (3 ml) of HL (7.0 mg, 0.027 mmol) at room temperature. The color of the mixing solution turned to yellow immediately, then turned to brown slowly and the filtrate was allowed to stand at room temperature for about three weeks. The solvent was partially evaporated and obtained green single crystals suit for X-ray crystallographic analysis. Anal. Calcd. for [Cu(L)2] (C26H20Cl2CuN4O4) (%): C, 53.21; H, 3.43; N, 9.55; Cu, 10.83. Found: C, 53.24; H, 3.46; N, 9.50, Cu, 10.79.

Refinement top

H atoms were placed in calculated positions and non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.96 Å (CH3) and 0.93 Å (CH). The isotropic displacement parameters for all H atoms were set equal to 1.2 or 1.5 Ueq of the carrier atom.

Structure description top

The centrosymmetric structure of the title complex is shown in Fig. 1. In the title complex all bond lengths are in normal ranges. The CuII ion, lying on the inversion centre, is four-coordinated in a trans-CuN2O2 square-planar geometry, with two phenolate O and two imino N atoms from two N,O-bidentate Schiff-base ligand (HL) (Dong et al., 2009; Ding et al., 2009). The shortest Cu···Cu distance is 7.5743 (9) Å. However, there are weak intramolecular electrostatic interactions between the Cu and Cl of the ligand, with Cu1··· Cl1 distance of 3.3845 (9) Å.

For the synthesis and related crystal strcutures, see: Dong et al. (2009, 2010); Ding et al. (2009).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with the atom numbering scheme [Symmetry code: #1 = -x + 1,-y + 1,-z]. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
Bis{(E)-2-[(2-chloro-3-pyridyl)iminomethyl]-6-methoxyphenolato- κ2N,O1}copper(II) top
Crystal data top
[Cu(C13H10ClN2O2)2]F(000) = 1196
Mr = 586.90Dx = 1.515 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1824 reflections
a = 21.242 (2) Åθ = 2.9–25.2°
b = 7.5743 (9) ŵ = 1.10 mm1
c = 16.141 (2) ÅT = 298 K
β = 97.652 (1)°Block, brown
V = 2573.9 (5) Å30.18 × 0.16 × 0.11 mm
Z = 4
Data collection top
Bruker SMART 1000
diffractometer
2262 independent reflections
Radiation source: fine-focus sealed tube1651 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2025
Tmin = 0.827, Tmax = 0.889k = 88
6295 measured reflectionsl = 1917
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0306P)2]
where P = (Fo2 + 2Fc2)/3
2262 reflections(Δ/σ)max < 0.001
170 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Cu(C13H10ClN2O2)2]V = 2573.9 (5) Å3
Mr = 586.90Z = 4
Monoclinic, C2/cMo Kα radiation
a = 21.242 (2) ŵ = 1.10 mm1
b = 7.5743 (9) ÅT = 298 K
c = 16.141 (2) Å0.18 × 0.16 × 0.11 mm
β = 97.652 (1)°
Data collection top
Bruker SMART 1000
diffractometer
2262 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1651 reflections with I > 2σ(I)
Tmin = 0.827, Tmax = 0.889Rint = 0.034
6295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.01Δρmax = 0.24 e Å3
2262 reflectionsΔρmin = 0.29 e Å3
170 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.00000.04162 (16)
Cl10.41342 (4)0.44977 (10)0.15993 (6)0.0749 (3)
N10.53184 (10)0.3389 (3)0.09230 (13)0.0415 (5)
N20.40093 (12)0.1120 (3)0.17745 (16)0.0590 (7)
O10.56672 (8)0.6625 (2)0.03158 (12)0.0494 (5)
O20.65231 (10)0.9115 (3)0.03223 (14)0.0662 (6)
C10.58981 (13)0.3453 (4)0.13165 (17)0.0452 (7)
H10.60210.25340.16850.054*
C20.63603 (12)0.4787 (4)0.12382 (16)0.0442 (7)
C30.62132 (12)0.6322 (4)0.07655 (16)0.0426 (7)
C40.67016 (13)0.7650 (4)0.07845 (18)0.0495 (7)
C50.72880 (14)0.7374 (4)0.12438 (19)0.0586 (8)
H50.76030.82280.12440.070*
C60.74167 (15)0.5833 (4)0.1708 (2)0.0642 (9)
H60.78150.56680.20150.077*
C70.69649 (14)0.4579 (4)0.17153 (18)0.0572 (8)
H70.70520.35680.20370.069*
C80.69847 (17)1.0482 (4)0.0302 (2)0.0785 (11)
H8A0.71201.08910.08600.118*
H8B0.68011.14440.00340.118*
H8C0.73441.00280.00660.118*
C90.43771 (13)0.2320 (4)0.14983 (17)0.0476 (7)
C100.49353 (13)0.1971 (3)0.11672 (16)0.0427 (7)
C110.50962 (14)0.0223 (4)0.10883 (17)0.0516 (7)
H110.54570.00860.08530.062*
C120.47121 (16)0.1066 (4)0.13646 (19)0.0637 (9)
H120.48130.22550.13210.076*
C130.41833 (17)0.0569 (4)0.1702 (2)0.0647 (9)
H130.39310.14460.18910.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0330 (3)0.0411 (3)0.0496 (3)0.0060 (2)0.0010 (2)0.0007 (2)
Cl10.0740 (6)0.0506 (5)0.1082 (7)0.0009 (4)0.0415 (5)0.0033 (4)
N10.0370 (13)0.0402 (13)0.0472 (13)0.0072 (10)0.0046 (11)0.0018 (10)
N20.0575 (16)0.0524 (17)0.0704 (18)0.0181 (14)0.0207 (14)0.0051 (14)
O10.0380 (11)0.0423 (11)0.0642 (12)0.0088 (9)0.0065 (10)0.0060 (9)
O20.0574 (14)0.0533 (13)0.0852 (16)0.0221 (11)0.0004 (12)0.0056 (12)
C10.0438 (17)0.0451 (17)0.0461 (17)0.0024 (14)0.0034 (14)0.0014 (13)
C20.0347 (15)0.0508 (18)0.0458 (15)0.0041 (14)0.0009 (12)0.0008 (14)
C30.0342 (15)0.0491 (17)0.0437 (17)0.0069 (13)0.0028 (14)0.0073 (14)
C40.0444 (18)0.0483 (19)0.0557 (19)0.0108 (14)0.0059 (15)0.0065 (15)
C50.0393 (18)0.065 (2)0.070 (2)0.0177 (15)0.0003 (16)0.0121 (17)
C60.0391 (19)0.077 (2)0.072 (2)0.0053 (17)0.0096 (16)0.0098 (19)
C70.0467 (19)0.063 (2)0.0586 (19)0.0025 (15)0.0063 (15)0.0012 (15)
C80.082 (3)0.060 (2)0.095 (3)0.0335 (19)0.016 (2)0.0060 (19)
C90.0486 (18)0.0405 (17)0.0553 (18)0.0050 (14)0.0125 (15)0.0034 (14)
C100.0403 (17)0.0442 (17)0.0425 (16)0.0093 (13)0.0016 (13)0.0005 (13)
C110.0503 (18)0.0469 (18)0.0583 (18)0.0059 (15)0.0096 (14)0.0011 (15)
C120.073 (2)0.0439 (19)0.075 (2)0.0104 (17)0.0156 (19)0.0005 (17)
C130.075 (2)0.047 (2)0.076 (2)0.0255 (17)0.022 (2)0.0016 (16)
Geometric parameters (Å, º) top
Cu1—O1i1.8951 (17)C4—C51.378 (4)
Cu1—O11.8951 (17)C5—C61.395 (4)
Cu1—N11.974 (2)C5—H50.9300
Cu1—N1i1.974 (2)C6—C71.351 (4)
Cl1—C91.743 (3)C6—H60.9300
N1—C11.309 (3)C7—H70.9300
N1—C101.434 (3)C8—H8A0.9600
N2—C91.314 (3)C8—H8B0.9600
N2—C131.341 (4)C8—H8C0.9600
O1—C31.304 (3)C9—C101.389 (4)
O2—C41.363 (3)C10—C111.378 (4)
O2—C81.429 (3)C11—C121.384 (4)
C1—C21.426 (3)C11—H110.9300
C1—H10.9300C12—C131.365 (4)
C2—C31.403 (4)C12—H120.9300
C2—C71.416 (4)C13—H130.9300
C3—C41.443 (4)
O1i—Cu1—O1180.00 (14)C7—C6—C5120.3 (3)
O1i—Cu1—N188.30 (8)C7—C6—H6119.9
O1—Cu1—N191.70 (8)C5—C6—H6119.9
O1i—Cu1—N1i91.70 (8)C6—C7—C2120.8 (3)
O1—Cu1—N1i88.30 (8)C6—C7—H7119.6
N1—Cu1—N1i180.00 (16)C2—C7—H7119.6
C1—N1—C10115.2 (2)O2—C8—H8A109.5
C1—N1—Cu1123.28 (18)O2—C8—H8B109.5
C10—N1—Cu1121.36 (17)H8A—C8—H8B109.5
C9—N2—C13116.5 (3)O2—C8—H8C109.5
C3—O1—Cu1127.80 (17)H8A—C8—H8C109.5
C4—O2—C8117.4 (2)H8B—C8—H8C109.5
N1—C1—C2126.7 (3)N2—C9—C10125.1 (3)
N1—C1—H1116.7N2—C9—Cl1115.2 (2)
C2—C1—H1116.7C10—C9—Cl1119.6 (2)
C3—C2—C7120.6 (3)C11—C10—C9117.0 (2)
C3—C2—C1121.9 (2)C11—C10—N1122.5 (2)
C7—C2—C1117.3 (3)C9—C10—N1120.5 (2)
O1—C3—C2124.5 (2)C10—C11—C12119.0 (3)
O1—C3—C4118.2 (3)C10—C11—H11120.5
C2—C3—C4117.3 (2)C12—C11—H11120.5
O2—C4—C5125.7 (3)C13—C12—C11119.1 (3)
O2—C4—C3114.2 (2)C13—C12—H12120.5
C5—C4—C3120.1 (3)C11—C12—H12120.5
C4—C5—C6121.0 (3)N2—C13—C12123.3 (3)
C4—C5—H5119.5N2—C13—H13118.3
C6—C5—H5119.5C12—C13—H13118.3
O1i—Cu1—N1—C1161.5 (2)O2—C4—C5—C6178.8 (3)
O1—Cu1—N1—C118.5 (2)C3—C4—C5—C61.2 (4)
O1i—Cu1—N1—C1013.9 (2)C4—C5—C6—C70.0 (5)
O1—Cu1—N1—C10166.1 (2)C5—C6—C7—C21.5 (5)
N1—Cu1—O1—C321.0 (2)C3—C2—C7—C61.7 (4)
N1i—Cu1—O1—C3159.0 (2)C1—C2—C7—C6176.5 (3)
C10—N1—C1—C2175.3 (2)C13—N2—C9—C102.2 (5)
Cu1—N1—C1—C29.1 (4)C13—N2—C9—Cl1179.7 (2)
N1—C1—C2—C36.3 (4)N2—C9—C10—C113.2 (4)
N1—C1—C2—C7179.0 (3)Cl1—C9—C10—C11178.8 (2)
Cu1—O1—C3—C213.0 (4)N2—C9—C10—N1176.8 (3)
Cu1—O1—C3—C4167.22 (18)Cl1—C9—C10—N11.2 (4)
C7—C2—C3—O1179.3 (2)C1—N1—C10—C1160.3 (3)
C1—C2—C3—O14.8 (4)Cu1—N1—C10—C11115.4 (3)
C7—C2—C3—C40.4 (4)C1—N1—C10—C9119.7 (3)
C1—C2—C3—C4175.0 (2)Cu1—N1—C10—C964.6 (3)
C8—O2—C4—C50.7 (4)C9—C10—C11—C122.2 (4)
C8—O2—C4—C3179.2 (2)N1—C10—C11—C12177.8 (2)
O1—C3—C4—O20.7 (4)C10—C11—C12—C130.4 (5)
C2—C3—C4—O2179.0 (2)C9—N2—C13—C120.2 (5)
O1—C3—C4—C5179.2 (2)C11—C12—C13—N20.6 (5)
C2—C3—C4—C51.0 (4)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C13H10ClN2O2)2]
Mr586.90
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)21.242 (2), 7.5743 (9), 16.141 (2)
β (°) 97.652 (1)
V3)2573.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.18 × 0.16 × 0.11
Data collection
DiffractometerBruker SMART 1000
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.827, 0.889
No. of measured, independent and
observed [I > 2σ(I)] reflections
6295, 2262, 1651
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.075, 1.01
No. of reflections2262
No. of parameters170
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.29

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Foundation of the Education Department of Gansu Province (0904–11), which is gratefully acknowledged.

References

First citationDing, Y.-J., Tong, J.-F., Dong, W.-K., Sun, Y.-X. & Yao, J. (2009). Acta Cryst. E65, m1013.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W.-K., Sun, Y.-X., Zhao, C.-Y., Dong, X.-Y. & Xu, L. (2010). Polyhedron, 29, 2087–2097.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, W.-K., Tong, J.-F., An, L.-L., Wu, J.-C. & Yao, J. (2009). Acta Cryst. E65, m945.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds