organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-(Z)-Methyl 2-[2,3-bis­­(benzyl­­oxy­carbon­yl)guanidino]-4-methyl­penta­no­ate

aDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA, and bDepartment of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE 205A, Tampa, FL 33620-5250, USA
*Correspondence e-mail: ffroncz@lsu.edu

(Received 23 November 2010; accepted 30 November 2010; online 4 December 2010)

The title mol­ecule, C24H29N3O6, has a nearly planar ten-atom C3N3O4 core, on account of both N—H groups forming six-membered-ring intra­molecular hydrogen bonds to carbamate carbonyl O atoms. The absolute configuration was determined from resonant scattering of light atoms in Mo Kα radiation, agreeing with the configuration of starting materials.

Related literature

For related structures, see: Travlos & White (1994[Travlos, S. D. & White, J. (1994). Acta Cryst. C50, 1631-1632.]); Feichtinger et al. (1998[Feichtinger, K., Sings, H. L., Baker, T. J., Matthews, K. & Goodman, M. (1998). J. Org. Chem. 63, 8432-8439.]); Marsh (2002[Marsh, R. E. (2002). Acta Cryst. B58, 893-899.]). For graph sets, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]). For absolute configuration based on resonant scattering from light atoms, see: Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]); Fronczek (2010[Fronczek, F. (2010). ACA Annual Meeting, Chicago, Illinois, USA. Abstract 07.06.5.]); Lutz & van Krieken (2010[Lutz, M. & van Krieken, J. (2010). Acta Cryst. C66, o401-o405.]); Thompson et al. (2008[Thompson, A. L., Watkin, D. J., Gal, Z. A., Jones, L., Hollinshead, J., Jenkinson, S. F., Fleet, G. W. J. & Nash, R. J. (2008). Acta Cryst. C64, o649-o652.]).

[Scheme 1]

Experimental

Crystal data
  • C24H29N3O6

  • Mr = 455.50

  • Orthorhombic, P 21 21 21

  • a = 7.7203 (5) Å

  • b = 14.2043 (10) Å

  • c = 21.280 (2) Å

  • V = 2333.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 90 K

  • 0.30 × 0.28 × 0.15 mm

Data collection
  • Nonius KappaCCD diffractometer with an Oxford Cryosystems Cryostream cooler

  • 43001 measured reflections

  • 10411 independent reflections

  • 9219 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.101

  • S = 1.02

  • 10411 reflections

  • 307 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4545 Friedel pairs

  • Flack parameter: 0.2 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O5 0.849 (16) 2.051 (16) 2.7047 (11) 133.3 (14)
N3—H3N⋯O4 0.873 (16) 1.898 (16) 2.6306 (11) 140.4 (14)

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Molecules used as drugs frequently contain heterocyclic subunits, and substituted guanidine or amidine compounds are very important intermediates in the synthesis of many heterocyclic compounds. However, substituted guanidines and amidine compounds themselves can be difficult to synthesize. Thus, synthesis of substituted guanidines is important and interesting. One possible route to these compounds is to use 1,3-bis(benzyloxycarbonyl)-2-methyl-2-thiopseudourea, which has a good leaving group and L-leucine methyl ester hydrochloride, which is a good nucleophile. Reaction of these starting materials led to successful synthesis of the chiral title compound, which was confirmed by crystal structure determination.

The structure, shown in Figure 1, has a guanidine at its core. The three C—N distances of the guanidine vary from 1.3225 (12) to 1.3864 (12) Å, with the shortest being the formal double bond to the unprotonated N atom N2 and the longest being to the other carbamate N atom N3. These values are in good agreement with those seen in 1,2-bis(methoxycarbonyl)-3-phenylguanidine, (Travlos & White, 1994), in which the length pattern is the same and the range of lengths is 1.309 (3) to 1.388 (4) Å. In N,N',N''-tris(t-butoxycarbonyl)guanidine (Feichtinger et al., 1998; space group corrected by Marsh, 2002), the CN and C—NH groups are disordered, and the C—N distance is 1.343 Å. In the title compound, the two N—H groups form intramolecular hydrogen bonds with graph set (Etter, 1990) S(6). The hydrogen bonding leads to a fairly planar central C3N3O4 portion of the molecule, which has a mean deviation 0.019 Å from coplanarity and a maximum deviation 0.0533 (10) Å for N3.

The lone stereocenter is carbon C3, with (S) configuration, as known from starting material L-leucine. Absolute configuration determination based on resonant scattering of the light atoms in Mo Kα radiation was possible for this structure, on account of the excellent quality of the crystal, the fact that it is relatively rich in O and N, the high resolution of the data, and the completeness of the set of 4545 Bijvoet pairs, which were kept separate in the refinement. While the Flack (1983) parameter is unconvincing, with a value of 0.2 (5), the Hooft et al. (2008) parameter y = 0.0 (2) has a much smaller uncertainty, and the Hooft P2(true) value is 1.000. A number of oxygen-rich compounds producing Mo data sets of similar high quality have been shown to yield similarly reliable absolute-structure results, agreeing with the known configurations (Fronczek, 2010; Lutz & van Krieken, 2010; Thompson et al., 2008).

Related literature top

For related structures, see: Travlos & White (1994); Feichtinger et al. (1998); Marsh (2002). For graph sets, see: Etter (1990). For absolute configuration based on resonant scattering from light atoms, see: Hooft et al. (2008); Fronczek (2010); Lutz & van Krieken (2010); Thompson et al. (2008).

Experimental top

A mixture of 1,3-bis(benzyloxycarbonyl)-2-methyl-2-thiopseudourea (2.79 mmol, 1 g), L-leucine methyl ester hydrochloride (2.79 mmol, 0.51 g), and triethylamine (2.79 mmole, 0.4 ml) in THF (absolute, 10 mL) was stirred at 338 K. The mixture was brought to room temperature, and the precipitate was filtered by vacuum. After evaporation of all solvents from the filtrate, the product was purified by chromatography (EtOAc/hexane, 1:4). The product was isolated as colorless crystals in 46% yield. 1H NMR (Methanol, 400 MHz): δ 0.85–0.88 (dd, 6H), 1.58–1.60 (m, 2H), 1.67–1.74 (m, 1H), 3.63 (s, 3H), 4.54–4.59 (m, 1H), 7.28–7.43 (m, 10H), 8.53–8.55 (d, 1H), 11.47 (s, 1H). 13C NMR (Methanol, 400 MHz): δ 22.12, 24.95, 67.08, 68.47, 128.44, 128.54, 128.93, 129.01, 129.13, 155.36, 163.12, 172.39. MS m/z 456.21 [M+H]+, 478.19 [M+Na]+.

Refinement top

All H atoms were visible in difference maps, and those on C were placed in idealized positions with C—H distances 0.95 - 1.00 Å and thereafter treated as riding. Coordinates for the H atoms on N were refined. Uiso for H was assigned as 1.2 times Ueq of the attached atoms (1.5 for methyl). A torsional parameter was refined for each methyl group. Friedel pairs were kept separate in the refinement.

Structure description top

Molecules used as drugs frequently contain heterocyclic subunits, and substituted guanidine or amidine compounds are very important intermediates in the synthesis of many heterocyclic compounds. However, substituted guanidines and amidine compounds themselves can be difficult to synthesize. Thus, synthesis of substituted guanidines is important and interesting. One possible route to these compounds is to use 1,3-bis(benzyloxycarbonyl)-2-methyl-2-thiopseudourea, which has a good leaving group and L-leucine methyl ester hydrochloride, which is a good nucleophile. Reaction of these starting materials led to successful synthesis of the chiral title compound, which was confirmed by crystal structure determination.

The structure, shown in Figure 1, has a guanidine at its core. The three C—N distances of the guanidine vary from 1.3225 (12) to 1.3864 (12) Å, with the shortest being the formal double bond to the unprotonated N atom N2 and the longest being to the other carbamate N atom N3. These values are in good agreement with those seen in 1,2-bis(methoxycarbonyl)-3-phenylguanidine, (Travlos & White, 1994), in which the length pattern is the same and the range of lengths is 1.309 (3) to 1.388 (4) Å. In N,N',N''-tris(t-butoxycarbonyl)guanidine (Feichtinger et al., 1998; space group corrected by Marsh, 2002), the CN and C—NH groups are disordered, and the C—N distance is 1.343 Å. In the title compound, the two N—H groups form intramolecular hydrogen bonds with graph set (Etter, 1990) S(6). The hydrogen bonding leads to a fairly planar central C3N3O4 portion of the molecule, which has a mean deviation 0.019 Å from coplanarity and a maximum deviation 0.0533 (10) Å for N3.

The lone stereocenter is carbon C3, with (S) configuration, as known from starting material L-leucine. Absolute configuration determination based on resonant scattering of the light atoms in Mo Kα radiation was possible for this structure, on account of the excellent quality of the crystal, the fact that it is relatively rich in O and N, the high resolution of the data, and the completeness of the set of 4545 Bijvoet pairs, which were kept separate in the refinement. While the Flack (1983) parameter is unconvincing, with a value of 0.2 (5), the Hooft et al. (2008) parameter y = 0.0 (2) has a much smaller uncertainty, and the Hooft P2(true) value is 1.000. A number of oxygen-rich compounds producing Mo data sets of similar high quality have been shown to yield similarly reliable absolute-structure results, agreeing with the known configurations (Fronczek, 2010; Lutz & van Krieken, 2010; Thompson et al., 2008).

For related structures, see: Travlos & White (1994); Feichtinger et al. (1998); Marsh (2002). For graph sets, see: Etter (1990). For absolute configuration based on resonant scattering from light atoms, see: Hooft et al. (2008); Fronczek (2010); Lutz & van Krieken (2010); Thompson et al. (2008).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Ellipsoids at the 50% level, with H atoms having arbitrary radius.
(S)-(Z)-Methyl 2-[2,3-bis(benzyloxycarbonyl)guanidino]-4-methylpentanoate top
Crystal data top
C24H29N3O6F(000) = 968
Mr = 455.50Dx = 1.297 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5760 reflections
a = 7.7203 (5) Åθ = 2.5–36.1°
b = 14.2043 (10) ŵ = 0.09 mm1
c = 21.280 (2) ÅT = 90 K
V = 2333.6 (3) Å3Fragment, colourless
Z = 40.30 × 0.28 × 0.15 mm
Data collection top
Nonius KappaCCD (with an Oxford Cryosystems Cryostream cooler)
diffractometer
9219 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
Graphite monochromatorθmax = 36.1°, θmin = 2.8°
ω and φ scansh = 1212
43001 measured reflectionsk = 2222
10411 independent reflectionsl = 3434
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.6349P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
10411 reflectionsΔρmax = 0.33 e Å3
307 parametersΔρmin = 0.28 e Å3
0 restraintsAbsolute structure: Flack (1983), 4545 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.2 (5)
Crystal data top
C24H29N3O6V = 2333.6 (3) Å3
Mr = 455.50Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.7203 (5) ŵ = 0.09 mm1
b = 14.2043 (10) ÅT = 90 K
c = 21.280 (2) Å0.30 × 0.28 × 0.15 mm
Data collection top
Nonius KappaCCD (with an Oxford Cryosystems Cryostream cooler)
diffractometer
9219 reflections with I > 2σ(I)
43001 measured reflectionsRint = 0.056
10411 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101Δρmax = 0.33 e Å3
S = 1.02Δρmin = 0.28 e Å3
10411 reflectionsAbsolute structure: Flack (1983), 4545 Friedel pairs
307 parametersAbsolute structure parameter: 0.2 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.58734 (12)0.48105 (6)0.79229 (4)0.01853 (16)
O20.69349 (11)0.37173 (6)0.72588 (4)0.01797 (15)
O30.66892 (11)0.75163 (5)0.55412 (3)0.01520 (14)
O40.70303 (12)0.64048 (5)0.47943 (4)0.01833 (15)
O50.57441 (13)0.31412 (5)0.54332 (4)0.02052 (17)
O60.65667 (11)0.35908 (5)0.44569 (3)0.01435 (13)
N10.55713 (12)0.46022 (6)0.62459 (4)0.01239 (14)
H1N0.555 (2)0.4008 (11)0.6200 (7)0.015*
N20.62092 (12)0.60509 (5)0.58336 (4)0.01166 (14)
N30.63981 (13)0.46856 (6)0.51925 (4)0.01316 (15)
H3N0.665 (2)0.5094 (11)0.4900 (7)0.016*
C10.66331 (18)0.43149 (9)0.84503 (5)0.0225 (2)
H1A0.60320.37140.85110.034*
H1B0.65190.46990.88310.034*
H1C0.78620.41970.83660.034*
C20.61124 (13)0.44220 (7)0.73573 (4)0.01164 (15)
C30.51657 (13)0.49959 (7)0.68598 (4)0.01065 (15)
H30.55920.56600.68760.013*
C40.32033 (13)0.49892 (7)0.69888 (4)0.01355 (16)
H4A0.27790.43340.69540.016*
H4B0.30050.51980.74270.016*
C50.21252 (14)0.56144 (7)0.65481 (5)0.01525 (17)
H50.24040.54370.61050.018*
C60.01921 (16)0.54251 (9)0.66614 (7)0.0256 (2)
H6A0.01030.55860.70960.038*
H6B0.00550.47580.65870.038*
H6C0.04990.58110.63740.038*
C70.25316 (14)0.66599 (7)0.66332 (5)0.01623 (18)
H7A0.17750.70330.63600.024*
H7B0.37440.67780.65220.024*
H7C0.23360.68390.70720.024*
C80.60582 (13)0.51301 (6)0.57593 (4)0.01072 (15)
C90.66760 (13)0.66107 (7)0.53418 (4)0.01203 (15)
C100.70649 (16)0.82125 (7)0.50644 (5)0.01594 (18)
H10A0.61290.82270.47470.019*
H10B0.81680.80610.48500.019*
C110.71972 (14)0.91503 (7)0.53912 (5)0.01436 (17)
C120.83270 (16)0.92721 (8)0.58972 (5)0.01901 (19)
H120.90220.87610.60360.023*
C130.84373 (17)1.01415 (9)0.61988 (6)0.0235 (2)
H130.92051.02210.65440.028*
C140.74245 (17)1.08929 (8)0.59950 (6)0.0243 (2)
H140.75021.14850.62010.029*
C150.63033 (17)1.07768 (7)0.54924 (6)0.0220 (2)
H150.56161.12900.53530.026*
C160.61826 (16)0.99065 (7)0.51914 (5)0.01785 (18)
H160.54060.98280.48490.021*
C170.61893 (14)0.37440 (7)0.50618 (5)0.01343 (16)
C180.63343 (15)0.26163 (7)0.42515 (5)0.01528 (18)
H18A0.51260.24120.43260.018*
H18B0.71190.21940.44890.018*
C190.67470 (14)0.25779 (6)0.35627 (4)0.01216 (15)
C200.55057 (14)0.22770 (7)0.31311 (5)0.01544 (17)
H200.43730.21200.32700.019*
C210.59258 (16)0.22057 (8)0.24956 (5)0.0188 (2)
H210.50840.19880.22040.023*
C220.75696 (16)0.24510 (8)0.22862 (5)0.0190 (2)
H220.78490.24100.18520.023*
C230.88041 (15)0.27570 (7)0.27170 (5)0.01767 (18)
H230.99280.29280.25760.021*
C240.84025 (14)0.28140 (7)0.33530 (5)0.01503 (17)
H240.92570.30140.36450.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0276 (4)0.0184 (3)0.0095 (3)0.0087 (3)0.0024 (3)0.0005 (3)
O20.0190 (4)0.0179 (3)0.0170 (3)0.0076 (3)0.0007 (3)0.0004 (3)
O30.0251 (4)0.0083 (3)0.0122 (3)0.0017 (3)0.0044 (3)0.0002 (2)
O40.0303 (4)0.0128 (3)0.0120 (3)0.0029 (3)0.0067 (3)0.0006 (2)
O50.0370 (5)0.0108 (3)0.0137 (3)0.0018 (3)0.0072 (3)0.0001 (3)
O60.0222 (4)0.0101 (3)0.0107 (3)0.0015 (3)0.0039 (3)0.0022 (2)
N10.0194 (4)0.0083 (3)0.0095 (3)0.0002 (3)0.0026 (3)0.0005 (2)
N20.0163 (4)0.0084 (3)0.0103 (3)0.0011 (3)0.0016 (3)0.0001 (2)
N30.0209 (4)0.0087 (3)0.0099 (3)0.0009 (3)0.0035 (3)0.0003 (2)
C10.0282 (6)0.0277 (5)0.0115 (4)0.0081 (5)0.0040 (4)0.0028 (4)
C20.0121 (4)0.0126 (4)0.0103 (3)0.0008 (3)0.0002 (3)0.0011 (3)
C30.0141 (4)0.0096 (3)0.0083 (3)0.0009 (3)0.0012 (3)0.0000 (3)
C40.0127 (4)0.0144 (4)0.0136 (4)0.0011 (3)0.0005 (3)0.0016 (3)
C50.0156 (4)0.0147 (4)0.0154 (4)0.0030 (3)0.0035 (3)0.0015 (3)
C60.0152 (5)0.0239 (5)0.0377 (7)0.0013 (4)0.0054 (5)0.0014 (5)
C70.0177 (5)0.0139 (4)0.0171 (4)0.0043 (3)0.0029 (3)0.0012 (3)
C80.0124 (4)0.0105 (3)0.0092 (3)0.0006 (3)0.0005 (3)0.0004 (3)
C90.0128 (4)0.0100 (3)0.0132 (4)0.0004 (3)0.0006 (3)0.0002 (3)
C100.0252 (5)0.0099 (4)0.0127 (4)0.0022 (3)0.0047 (4)0.0019 (3)
C110.0193 (4)0.0094 (3)0.0144 (4)0.0018 (3)0.0053 (3)0.0004 (3)
C120.0218 (5)0.0158 (4)0.0195 (4)0.0004 (4)0.0029 (4)0.0013 (4)
C130.0238 (5)0.0228 (5)0.0239 (5)0.0051 (4)0.0040 (4)0.0084 (4)
C140.0280 (6)0.0147 (4)0.0302 (6)0.0059 (4)0.0126 (5)0.0070 (4)
C150.0289 (6)0.0111 (4)0.0259 (5)0.0028 (4)0.0118 (4)0.0016 (4)
C160.0223 (5)0.0137 (4)0.0175 (4)0.0019 (4)0.0059 (4)0.0024 (3)
C170.0180 (4)0.0108 (4)0.0115 (4)0.0009 (3)0.0024 (3)0.0022 (3)
C180.0231 (5)0.0096 (4)0.0132 (4)0.0026 (3)0.0042 (3)0.0027 (3)
C190.0155 (4)0.0097 (3)0.0113 (3)0.0005 (3)0.0013 (3)0.0017 (3)
C200.0140 (4)0.0146 (4)0.0178 (4)0.0018 (3)0.0006 (3)0.0039 (3)
C210.0219 (5)0.0186 (4)0.0158 (4)0.0056 (4)0.0070 (4)0.0041 (4)
C220.0287 (6)0.0165 (4)0.0118 (4)0.0045 (4)0.0010 (4)0.0008 (3)
C230.0199 (5)0.0169 (4)0.0163 (4)0.0009 (4)0.0045 (4)0.0015 (3)
C240.0163 (4)0.0150 (4)0.0138 (4)0.0025 (3)0.0005 (3)0.0005 (3)
Geometric parameters (Å, º) top
O1—C21.3369 (12)C7—H7A0.9800
O1—C11.4488 (13)C7—H7B0.9800
O2—C21.2037 (12)C7—H7C0.9800
O3—C91.3546 (12)C10—C111.5061 (14)
O3—C101.4462 (12)C10—H10A0.9900
O4—C91.2321 (12)C10—H10B0.9900
O5—C171.2147 (12)C11—C161.3958 (15)
O6—C171.3377 (12)C11—C121.3966 (16)
O6—C181.4626 (12)C12—C131.3943 (16)
N1—C81.3326 (12)C12—H120.9500
N1—C31.4550 (12)C13—C141.3923 (19)
N1—H1N0.849 (16)C13—H130.9500
N2—C81.3225 (12)C14—C151.386 (2)
N2—C91.3628 (12)C14—H140.9500
N3—C171.3756 (12)C15—C161.3954 (15)
N3—C81.3864 (12)C15—H150.9500
N3—H3N0.873 (16)C16—H160.9500
C1—H1A0.9800C18—C191.5011 (14)
C1—H1B0.9800C18—H18A0.9900
C1—H1C0.9800C18—H18B0.9900
C2—C31.5230 (13)C19—C201.3944 (14)
C3—C41.5397 (14)C19—C241.3947 (15)
C3—H31.0000C20—C211.3944 (16)
C4—C51.5366 (14)C20—H200.9500
C4—H4A0.9900C21—C221.3895 (18)
C4—H4B0.9900C21—H210.9500
C5—C71.5286 (15)C22—C231.3920 (17)
C5—C61.5355 (17)C22—H220.9500
C5—H51.0000C23—C241.3910 (15)
C6—H6A0.9800C23—H230.9500
C6—H6B0.9800C24—H240.9500
C6—H6C0.9800
C2—O1—C1116.17 (8)O4—C9—N2130.27 (9)
C9—O3—C10115.54 (8)O3—C9—N2108.40 (8)
C17—O6—C18114.50 (8)O3—C10—C11107.12 (8)
C8—N1—C3122.83 (8)O3—C10—H10A110.3
C8—N1—H1N118.5 (11)C11—C10—H10A110.3
C3—N1—H1N118.6 (11)O3—C10—H10B110.3
C8—N2—C9120.56 (8)C11—C10—H10B110.3
C17—N3—C8126.62 (8)H10A—C10—H10B108.5
C17—N3—H3N121.8 (10)C16—C11—C12119.34 (10)
C8—N3—H3N111.1 (10)C16—C11—C10120.13 (10)
O1—C1—H1A109.5C12—C11—C10120.53 (10)
O1—C1—H1B109.5C13—C12—C11120.18 (11)
H1A—C1—H1B109.5C13—C12—H12119.9
O1—C1—H1C109.5C11—C12—H12119.9
H1A—C1—H1C109.5C14—C13—C12120.09 (12)
H1B—C1—H1C109.5C14—C13—H13120.0
O2—C2—O1124.94 (9)C12—C13—H13120.0
O2—C2—C3125.25 (9)C15—C14—C13119.99 (11)
O1—C2—C3109.80 (8)C15—C14—H14120.0
N1—C3—C2108.37 (8)C13—C14—H14120.0
N1—C3—C4111.68 (8)C14—C15—C16120.10 (11)
C2—C3—C4110.18 (8)C14—C15—H15120.0
N1—C3—H3108.9C16—C15—H15120.0
C2—C3—H3108.9C15—C16—C11120.30 (11)
C4—C3—H3108.9C15—C16—H16119.9
C5—C4—C3114.87 (8)C11—C16—H16119.9
C5—C4—H4A108.5O5—C17—O6124.96 (9)
C3—C4—H4A108.5O5—C17—N3125.94 (9)
C5—C4—H4B108.5O6—C17—N3109.10 (8)
C3—C4—H4B108.5O6—C18—C19107.47 (8)
H4A—C4—H4B107.5O6—C18—H18A110.2
C7—C5—C6110.55 (9)C19—C18—H18A110.2
C7—C5—C4112.21 (8)O6—C18—H18B110.2
C6—C5—C4109.24 (9)C19—C18—H18B110.2
C7—C5—H5108.2H18A—C18—H18B108.5
C6—C5—H5108.2C20—C19—C24119.53 (9)
C4—C5—H5108.2C20—C19—C18120.56 (9)
C5—C6—H6A109.5C24—C19—C18119.88 (9)
C5—C6—H6B109.5C19—C20—C21120.08 (10)
H6A—C6—H6B109.5C19—C20—H20120.0
C5—C6—H6C109.5C21—C20—H20120.0
H6A—C6—H6C109.5C22—C21—C20120.35 (10)
H6B—C6—H6C109.5C22—C21—H21119.8
C5—C7—H7A109.5C20—C21—H21119.8
C5—C7—H7B109.5C21—C22—C23119.50 (10)
H7A—C7—H7B109.5C21—C22—H22120.2
C5—C7—H7C109.5C23—C22—H22120.2
H7A—C7—H7C109.5C24—C23—C22120.42 (11)
H7B—C7—H7C109.5C24—C23—H23119.8
N2—C8—N1119.24 (8)C22—C23—H23119.8
N2—C8—N3122.53 (8)C23—C24—C19120.10 (10)
N1—C8—N3118.24 (8)C23—C24—H24119.9
O4—C9—O3121.32 (9)C19—C24—H24119.9
C1—O1—C2—O21.94 (16)O3—C10—C11—C1254.29 (13)
C1—O1—C2—C3177.18 (9)C16—C11—C12—C130.00 (16)
C8—N1—C3—C2132.15 (10)C10—C11—C12—C13179.77 (10)
C8—N1—C3—C4106.31 (11)C11—C12—C13—C140.20 (18)
O2—C2—C3—N15.64 (14)C12—C13—C14—C150.08 (18)
O1—C2—C3—N1175.24 (8)C13—C14—C15—C160.24 (18)
O2—C2—C3—C4116.82 (11)C14—C15—C16—C110.45 (17)
O1—C2—C3—C462.30 (11)C12—C11—C16—C150.33 (16)
N1—C3—C4—C564.38 (11)C10—C11—C16—C15179.91 (10)
C2—C3—C4—C5175.13 (8)C18—O6—C17—O52.47 (16)
C3—C4—C5—C765.68 (11)C18—O6—C17—N3177.91 (9)
C3—C4—C5—C6171.35 (9)C8—N3—C17—O53.52 (19)
C9—N2—C8—N1178.87 (9)C8—N3—C17—O6176.87 (10)
C9—N2—C8—N31.53 (15)C17—O6—C18—C19177.95 (9)
C3—N1—C8—N21.03 (15)O6—C18—C19—C20120.63 (10)
C3—N1—C8—N3179.35 (9)O6—C18—C19—C2461.55 (12)
C17—N3—C8—N2176.29 (10)C24—C19—C20—C210.56 (15)
C17—N3—C8—N14.11 (16)C18—C19—C20—C21177.26 (9)
C10—O3—C9—O42.71 (15)C19—C20—C21—C221.28 (16)
C10—O3—C9—N2176.60 (9)C20—C21—C22—C230.85 (16)
C8—N2—C9—O40.78 (18)C21—C22—C23—C240.28 (16)
C8—N2—C9—O3178.44 (9)C22—C23—C24—C190.99 (16)
C9—O3—C10—C11174.34 (9)C20—C19—C24—C230.56 (15)
O3—C10—C11—C16125.47 (10)C18—C19—C24—C23178.40 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O50.849 (16)2.051 (16)2.7047 (11)133.3 (14)
N3—H3N···O40.873 (16)1.898 (16)2.6306 (11)140.4 (14)

Experimental details

Crystal data
Chemical formulaC24H29N3O6
Mr455.50
Crystal system, space groupOrthorhombic, P212121
Temperature (K)90
a, b, c (Å)7.7203 (5), 14.2043 (10), 21.280 (2)
V3)2333.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.28 × 0.15
Data collection
DiffractometerNonius KappaCCD (with an Oxford Cryosystems Cryostream cooler)
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
43001, 10411, 9219
Rint0.056
(sin θ/λ)max1)0.829
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.101, 1.02
No. of reflections10411
No. of parameters307
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.28
Absolute structureFlack (1983), 4545 Friedel pairs
Absolute structure parameter0.2 (5)

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O50.849 (16)2.051 (16)2.7047 (11)133.3 (14)
N3—H3N···O40.873 (16)1.898 (16)2.6306 (11)140.4 (14)
 

Acknowledgements

The purchase of the diffractometer at Louisiana State University was made possible by grant No. LEQSF(1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents. We thank MingZhou Zhou for helpful discussions and Melissa Topper for assistance with crystallization.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFeichtinger, K., Sings, H. L., Baker, T. J., Matthews, K. & Goodman, M. (1998). J. Org. Chem. 63, 8432–8439.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFronczek, F. (2010). ACA Annual Meeting, Chicago, Illinois, USA. Abstract 07.06.5.  Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLutz, M. & van Krieken, J. (2010). Acta Cryst. C66, o401–o405.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMarsh, R. E. (2002). Acta Cryst. B58, 893–899.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThompson, A. L., Watkin, D. J., Gal, Z. A., Jones, L., Hollinshead, J., Jenkinson, S. F., Fleet, G. W. J. & Nash, R. J. (2008). Acta Cryst. C64, o649–o652.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTravlos, S. D. & White, J. (1994). Acta Cryst. C50, 1631–1632.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds