organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Chloro­phen­yl)(2,7-dimeth­­oxy-8-nitro­naphthalen-1-yl)methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 30 November 2010; accepted 11 December 2010; online 18 December 2010)

In the title compound, C19H14ClNO5, the aroyl group is attached to the naphthalene ring system with a non-coplanar configuration. The dihedral angle between naphthalene ring system and benzene ring is 70.62 (6)°. The nitro group is oriented in parallel with the adjacent carbonyl plane. The torsion angle of the carbonyl group and naphthalene ring is 54.68 (19)° (C—C—C—O), and that of nitro group and naphthalene ring is 54.26 (18)° (O—N—C—C). In the crystal, ππ inter­actions between naphthalene systems [centroid–centroid distances = 3.5633 (9), 3,5634 (9), and 3.9758(9) Å], C—H⋯O hydrogen bonds, inter­molecular N—O⋯Cl inter­actions [2.9937 (12) Å] and C—H⋯π contacts are observed.

Related literature

For electrophilic aromatic substitution of naphthalene derivatives giving aryl naphthyl ketone compounds, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]). For related structures, see: Kato et al. (2010[Kato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659.]); Mitsui et al. (2008[Mitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278.], 2010[Mitsui, R., Nagasawa, A., Watanabe, S., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o873.]); Nishijima et al. (2010[Nishijima, T., Kataoka, K., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2904-o2905.]); Watanabe et al. (2010[Watanabe, S., Nakaema, K., Nishijima, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o615.]).

[Scheme 1]

Experimental

Crystal data
  • C19H14ClNO5

  • Mr = 371.76

  • Monoclinic, P 21 /c

  • a = 8.57511 (16) Å

  • b = 14.0424 (3) Å

  • c = 14.0842 (3) Å

  • β = 100.206 (1)°

  • V = 1669.12 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.31 mm−1

  • T = 193 K

  • 0.60 × 0.40 × 0.30 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.294, Tmax = 0.544

  • 29408 measured reflections

  • 3058 independent reflections

  • 2793 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.093

  • S = 1.03

  • 3058 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C4/C9/C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O5i 0.93 2.44 3.137 (2) 132
C18—H18C⋯O3i 0.96 2.51 3.449 (2) 167
C19—H19BCg1ii 0.96 2.81 3.5845 (19) 139
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with aid of suitable acidic mediators (Okamoto & Yonezawa, 2009). Recently, we have reported the crystal structures of several 1,8-diaroylated naphthalene homologues exemplified by 1,8-bis(4-aminobenzoyl)-2,7-dimethoxynaphthalene (Nishijima et al., 2010). The aromatic rings in these molecules are arranged in a non-coplanar alignment to each other. Furthermore, we have also clarified the crystal structures of 1-monoaroylated naphthalene compounds. They have essentially the same non-coplanar structure with the 1,8-diaroylated naphthalene, e.g., 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Mitsui et al., 2008), 2,7-dimethoxy-1-(4-nitrobenzoyl)naphthalene (Watanabe et al., 2010) and (2,7-dimethoxynaphthalen-1-yl)(phenyl)methanone (Kato, et al., 2010). In the course of this work, we have revealed the crystal structure of 1-monoaroylnaphthalene compounds having a substituent, other than aroyl group, at the 8-position such as (8-bromo-2,7-dimethoxy-1-naphthyl)(4-chlorophenyl)methanone (Mitsui, Nagasawa, Watanabe et al. 2010). The aroyl group and naphthalene ring in these molecules have similar configuration to 1,8-diaroylated naphthalene. As a part of our continuous study on the molecular structures of these kinds of homologous molecules, the crystal structure of title compound, a 1-chlorobenzoylated naphthalene bearing nitro group at the 8-position, is discussed in this report.

An ORTEP (Burnett & Johnson, 1996) plot of the title compound is displayed in Fig. 1. In the molecule, the dihedral angle between the benzene ring (C11—C16) and the naphthalene ring (C1—C10) is 70.62 (6)°. The nitro group are also twisted away from the naphthalene ring system, then the nitro group and the carbonyl group are arranged almost in parallel. The dihedral angle between the ketonic C=O plane (O3/C1/C11/C17) and naphthalene ring (C1—C10) is 60.33 (7)° [C9—C1—C17—O3 torsion angle is 54.68 (19)°] and between the nitro plane (O4/O5/N1/C8) and naphthalene ring (C1—C10) is 57.34 (8)° [O4—N1—C8—O9 torsion angle is 54.26 (18)°]. On the other hand, the carbonyl group and the 4-chlorophenyl one have almost coplanar configuration [C16—C11—C17—O3 torsion angle is 10.5 (2)°], but the torsion angle is larger than those of another homologous compounds, i.e., the torsion angles of 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene and (8-bromo-2,7-dimethoxy-1-naphthyl)(4-chlorophenyl)methanone are -4.4 (2)° and -3.6 (4)°, respectively.

The molecular packing of the title compound is mainly stabilized by weak intermolecular hydrogen bonds and van der Waals interactions. The 4-chlorophenyl groups interact with the nitro groups [C13—H13···O5 is 2.44 Å; (i) x, 3/2 - y, 1/2 + z] of adjacent molecules along the c axis (Fig. 2). Interaction between the methoxy groups and the carbonyl groups [C18—H18C···O3 = 2.51 Å; (i) x, 3/2 - y, 1/2 + z] form naphthalene ring systems into zigzag arrangement (Fig. 2). On the other hand, C—H···π interaction and ππ interactions deposit layer upon layer of naphthalene rings [C1/C2/C3/C4/C9/C10 ring with centroid Cg1 and C5-C10 ring with centroid Cg2 (Fig. 3). Furthermore, O4 and C11 interact with each other [O4···Cl1 = 2.9937 (12) Å; (iii) 2 - x, -y, 1-z] (Fig. 4).

Related literature top

For electrophilic aromatic substitution of naphthalene derivatives giving aryl naphthyl ketone compounds, see: Okamoto & Yonezawa (2009). For the structures of closely related compounds, see: Kato et al. (2010); Mitsui et al. (2008); Mitsui et al. (2010); Nishijima et al. (2010); Watanabe et al. (2010).

Experimental top

To a solution of 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (653.4 mg, 2.0 mmol) in methylene chloride (10 ml), aqueous 61% nitric acid (2.0 ml) was dropped by portions at 273 K. After the reaction mixture was stirred at 273 K for 2 h, it was poured into ice-cold water (25 ml). The aqueous solution was extracted with CHCl3(15 ml × 3). The combined extracts were washed with water followed by washing with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cake. The crude product was purified by reprecipitation (good solvent:CHCl3, poor solvent:hexane) and column chromatography (silica gel, CHCl3) (isolated yield 448.8 mg, 60%). Single crystals suitable for X-ray diffraction analysis were obtained by crystallization from acetone as yellow plates.

Spectral data: 1H NMR δ (300 MHz, CDCl3); 3.73 (3H, s), 3.97 (3H, s), 7.22 (1H, d, J = 9.3 Hz), 7.24 (1H, d, J = 8.6 Hz), 7.38 (2H, d, J = 8.9 Hz), 7.82 (2H, d, J = 8.6 Hz), 7.95 (1H, d, J = 9.3 Hz), 7.96 (1H, d, J = 8.9 Hz). 13C NMR δ (75 MHz, CDCl3); 56.48, 57.22, 111.26, 111.86, 118.02, 124.16, 124.59, 128.64, 130.51, 132.59, 133.24, 134.39, 136.79, 139.17, 151.61, 157.76, 193.23. IR (KBr); 1655 (C=O), 1623 (Ar), 1527 (Ar), 1372 (NO2), 1275 (O—Me) cm-1. HRMS (m/z); [M + H]+ Calcd for C19H15ClNO5, 272.0639; found, 272.0601. m.p. = 483.1–486.4 K.

Refinement top

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.93 (aromatic) Å and C—H = 0.96 (methyl) Å, and with Uiso(H) = 1.2Ueq(C).

Structure description top

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with aid of suitable acidic mediators (Okamoto & Yonezawa, 2009). Recently, we have reported the crystal structures of several 1,8-diaroylated naphthalene homologues exemplified by 1,8-bis(4-aminobenzoyl)-2,7-dimethoxynaphthalene (Nishijima et al., 2010). The aromatic rings in these molecules are arranged in a non-coplanar alignment to each other. Furthermore, we have also clarified the crystal structures of 1-monoaroylated naphthalene compounds. They have essentially the same non-coplanar structure with the 1,8-diaroylated naphthalene, e.g., 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Mitsui et al., 2008), 2,7-dimethoxy-1-(4-nitrobenzoyl)naphthalene (Watanabe et al., 2010) and (2,7-dimethoxynaphthalen-1-yl)(phenyl)methanone (Kato, et al., 2010). In the course of this work, we have revealed the crystal structure of 1-monoaroylnaphthalene compounds having a substituent, other than aroyl group, at the 8-position such as (8-bromo-2,7-dimethoxy-1-naphthyl)(4-chlorophenyl)methanone (Mitsui, Nagasawa, Watanabe et al. 2010). The aroyl group and naphthalene ring in these molecules have similar configuration to 1,8-diaroylated naphthalene. As a part of our continuous study on the molecular structures of these kinds of homologous molecules, the crystal structure of title compound, a 1-chlorobenzoylated naphthalene bearing nitro group at the 8-position, is discussed in this report.

An ORTEP (Burnett & Johnson, 1996) plot of the title compound is displayed in Fig. 1. In the molecule, the dihedral angle between the benzene ring (C11—C16) and the naphthalene ring (C1—C10) is 70.62 (6)°. The nitro group are also twisted away from the naphthalene ring system, then the nitro group and the carbonyl group are arranged almost in parallel. The dihedral angle between the ketonic C=O plane (O3/C1/C11/C17) and naphthalene ring (C1—C10) is 60.33 (7)° [C9—C1—C17—O3 torsion angle is 54.68 (19)°] and between the nitro plane (O4/O5/N1/C8) and naphthalene ring (C1—C10) is 57.34 (8)° [O4—N1—C8—O9 torsion angle is 54.26 (18)°]. On the other hand, the carbonyl group and the 4-chlorophenyl one have almost coplanar configuration [C16—C11—C17—O3 torsion angle is 10.5 (2)°], but the torsion angle is larger than those of another homologous compounds, i.e., the torsion angles of 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene and (8-bromo-2,7-dimethoxy-1-naphthyl)(4-chlorophenyl)methanone are -4.4 (2)° and -3.6 (4)°, respectively.

The molecular packing of the title compound is mainly stabilized by weak intermolecular hydrogen bonds and van der Waals interactions. The 4-chlorophenyl groups interact with the nitro groups [C13—H13···O5 is 2.44 Å; (i) x, 3/2 - y, 1/2 + z] of adjacent molecules along the c axis (Fig. 2). Interaction between the methoxy groups and the carbonyl groups [C18—H18C···O3 = 2.51 Å; (i) x, 3/2 - y, 1/2 + z] form naphthalene ring systems into zigzag arrangement (Fig. 2). On the other hand, C—H···π interaction and ππ interactions deposit layer upon layer of naphthalene rings [C1/C2/C3/C4/C9/C10 ring with centroid Cg1 and C5-C10 ring with centroid Cg2 (Fig. 3). Furthermore, O4 and C11 interact with each other [O4···Cl1 = 2.9937 (12) Å; (iii) 2 - x, -y, 1-z] (Fig. 4).

For electrophilic aromatic substitution of naphthalene derivatives giving aryl naphthyl ketone compounds, see: Okamoto & Yonezawa (2009). For the structures of closely related compounds, see: Kato et al. (2010); Mitsui et al. (2008); Mitsui et al. (2010); Nishijima et al. (2010); Watanabe et al. (2010).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP (Burnett & Johnson, 1996); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A partial crystal packing diagram of the title compound, viewed down the b axis. The intermolecular C—H···O hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Side view of the C—H···π interactions (red dashed lines) and the ππ interactions (blue dashed lines).
[Figure 4] Fig. 4. Side view of the O···Cl interactions (red dashed lines) and the ππ interactions (blue dashed lines).
(4-Chlorophenyl)(2,7-dimethoxy-8-nitronaphthalen-1-yl)methanone top
Crystal data top
C19H14ClNO5F(000) = 768
Mr = 371.76Dx = 1.479 Mg m3
Monoclinic, P21/cMelting point = 486.4–483.1 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54187 Å
a = 8.57511 (16) ÅCell parameters from 22820 reflections
b = 14.0424 (3) Åθ = 3.1–68.2°
c = 14.0842 (3) ŵ = 2.31 mm1
β = 100.206 (1)°T = 193 K
V = 1669.12 (5) Å3Platelet, yellow
Z = 40.60 × 0.40 × 0.30 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3058 independent reflections
Radiation source: fine-focus sealed tube2793 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 10.00 pixels mm-1θmax = 68.2°, θmin = 4.5°
ω scansh = 1010
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1616
Tmin = 0.294, Tmax = 0.544l = 1616
29408 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.5094P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3058 reflectionsΔρmax = 0.21 e Å3
238 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0049 (3)
Crystal data top
C19H14ClNO5V = 1669.12 (5) Å3
Mr = 371.76Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.57511 (16) ŵ = 2.31 mm1
b = 14.0424 (3) ÅT = 193 K
c = 14.0842 (3) Å0.60 × 0.40 × 0.30 mm
β = 100.206 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3058 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2793 reflections with I > 2σ(I)
Tmin = 0.294, Tmax = 0.544Rint = 0.028
29408 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
3058 reflectionsΔρmin = 0.19 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.16621 (6)1.13841 (3)0.55672 (4)0.06727 (18)
O10.57537 (12)0.75406 (7)0.62980 (7)0.0434 (3)
O20.00458 (14)0.47410 (8)0.31568 (8)0.0511 (3)
O30.41091 (13)0.73567 (8)0.38109 (7)0.0468 (3)
O40.06202 (13)0.71291 (7)0.40079 (8)0.0485 (3)
O50.11487 (19)0.64395 (9)0.27365 (8)0.0676 (4)
N10.11528 (15)0.64617 (8)0.35979 (9)0.0412 (3)
C10.38260 (16)0.66673 (10)0.52900 (9)0.0338 (3)
C20.49357 (17)0.67065 (10)0.61336 (10)0.0360 (3)
C30.52689 (18)0.59082 (11)0.67462 (10)0.0405 (3)
H30.59890.59560.73220.049*
C40.45238 (18)0.50699 (11)0.64837 (11)0.0415 (3)
H40.47760.45380.68730.050*
C50.26174 (18)0.41072 (10)0.53798 (11)0.0408 (3)
H50.28850.35850.57810.049*
C60.15099 (18)0.39956 (10)0.45694 (11)0.0410 (3)
H60.10420.34040.44190.049*
C70.10756 (17)0.47805 (10)0.39587 (10)0.0377 (3)
C80.17971 (16)0.56535 (9)0.42014 (9)0.0347 (3)
C90.29884 (16)0.57978 (9)0.50291 (9)0.0329 (3)
C100.33774 (17)0.49855 (10)0.56356 (10)0.0366 (3)
C110.32856 (16)0.84584 (9)0.48861 (10)0.0350 (3)
C120.25859 (19)0.86117 (10)0.56900 (11)0.0427 (3)
H120.24500.81030.60900.051*
C130.2088 (2)0.95114 (11)0.59030 (12)0.0470 (4)
H130.16180.96120.64410.056*
C140.23033 (19)1.02564 (10)0.53021 (12)0.0457 (4)
C150.3010 (2)1.01289 (11)0.45082 (12)0.0501 (4)
H150.31561.06420.41160.060*
C160.35004 (18)0.92290 (11)0.43016 (11)0.0423 (3)
H160.39800.91360.37660.051*
C170.37585 (16)0.74943 (10)0.46024 (10)0.0350 (3)
C180.6731 (2)0.76752 (13)0.72157 (11)0.0501 (4)
H18A0.71570.83090.72560.060*
H18B0.75840.72230.72960.060*
H18C0.61130.75840.77140.060*
C190.0836 (2)0.38502 (13)0.29095 (13)0.0560 (4)
H19A0.15820.39210.23190.067*
H19B0.13860.36610.34160.067*
H19C0.00690.33730.28270.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0844 (3)0.0300 (2)0.0792 (3)0.01301 (19)0.0079 (2)0.01089 (18)
O10.0501 (6)0.0388 (6)0.0398 (5)0.0041 (4)0.0037 (4)0.0022 (4)
O20.0594 (7)0.0403 (6)0.0494 (6)0.0012 (5)0.0019 (5)0.0042 (5)
O30.0609 (7)0.0426 (6)0.0418 (6)0.0080 (5)0.0226 (5)0.0057 (4)
O40.0506 (6)0.0319 (5)0.0630 (7)0.0123 (4)0.0101 (5)0.0006 (5)
O50.1160 (12)0.0474 (7)0.0355 (6)0.0052 (7)0.0027 (6)0.0034 (5)
N10.0494 (7)0.0325 (6)0.0400 (7)0.0050 (5)0.0031 (5)0.0014 (5)
C10.0396 (7)0.0292 (7)0.0349 (7)0.0073 (5)0.0134 (5)0.0021 (5)
C20.0401 (7)0.0335 (7)0.0366 (7)0.0037 (6)0.0128 (6)0.0006 (5)
C30.0434 (8)0.0412 (8)0.0368 (7)0.0069 (6)0.0072 (6)0.0046 (6)
C40.0472 (8)0.0360 (8)0.0421 (8)0.0097 (6)0.0106 (6)0.0102 (6)
C50.0505 (8)0.0282 (7)0.0463 (8)0.0070 (6)0.0157 (7)0.0067 (6)
C60.0488 (8)0.0283 (7)0.0488 (8)0.0015 (6)0.0164 (7)0.0014 (6)
C70.0415 (8)0.0342 (7)0.0393 (7)0.0055 (6)0.0126 (6)0.0030 (6)
C80.0420 (7)0.0287 (7)0.0356 (7)0.0086 (5)0.0128 (6)0.0017 (5)
C90.0387 (7)0.0289 (7)0.0341 (7)0.0079 (5)0.0144 (5)0.0017 (5)
C100.0427 (8)0.0313 (7)0.0382 (7)0.0086 (6)0.0140 (6)0.0047 (5)
C110.0370 (7)0.0296 (7)0.0375 (7)0.0001 (5)0.0046 (5)0.0030 (5)
C120.0536 (9)0.0304 (7)0.0467 (8)0.0022 (6)0.0154 (7)0.0029 (6)
C130.0555 (9)0.0356 (8)0.0515 (9)0.0040 (7)0.0138 (7)0.0053 (7)
C140.0490 (9)0.0272 (7)0.0552 (9)0.0027 (6)0.0061 (7)0.0038 (6)
C150.0652 (10)0.0301 (8)0.0511 (9)0.0034 (7)0.0002 (8)0.0095 (6)
C160.0498 (8)0.0359 (8)0.0406 (7)0.0023 (6)0.0063 (6)0.0056 (6)
C170.0375 (7)0.0330 (7)0.0360 (7)0.0013 (6)0.0102 (6)0.0028 (5)
C180.0544 (9)0.0530 (9)0.0413 (8)0.0073 (8)0.0043 (7)0.0016 (7)
C190.0566 (10)0.0471 (9)0.0616 (10)0.0032 (8)0.0026 (8)0.0134 (8)
Geometric parameters (Å, º) top
Cl1—C141.7384 (15)C6—H60.9300
O1—C21.3639 (17)C7—C81.388 (2)
O1—C181.4230 (18)C8—C91.422 (2)
O2—C71.3485 (18)C9—C101.4287 (18)
O2—C191.436 (2)C11—C121.389 (2)
O3—C171.2202 (16)C11—C161.3914 (19)
O4—N11.2303 (15)C11—C171.4882 (19)
O5—N11.2130 (16)C12—C131.383 (2)
N1—C81.4661 (17)C12—H120.9300
C1—C21.385 (2)C13—C141.378 (2)
C1—C91.4311 (19)C13—H130.9300
C1—C171.5066 (18)C14—C151.375 (2)
C2—C31.413 (2)C15—C161.379 (2)
C3—C41.359 (2)C15—H150.9300
C3—H30.9300C16—H160.9300
C4—C101.411 (2)C18—H18A0.9600
C4—H40.9300C18—H18B0.9600
C5—C61.358 (2)C18—H18C0.9600
C5—C101.412 (2)C19—H19A0.9600
C5—H50.9300C19—H19B0.9600
C6—C71.407 (2)C19—H19C0.9600
C2—O1—C18118.08 (11)C4—C10—C9119.53 (13)
C7—O2—C19118.35 (12)C12—C11—C16118.90 (13)
O5—N1—O4123.61 (12)C12—C11—C17122.51 (12)
O5—N1—C8119.60 (12)C16—C11—C17118.54 (12)
O4—N1—C8116.79 (11)C13—C12—C11120.84 (14)
C2—C1—C9119.42 (12)C13—C12—H12119.6
C2—C1—C17117.58 (13)C11—C12—H12119.6
C9—C1—C17122.15 (12)C14—C13—C12118.70 (15)
O1—C2—C1115.73 (12)C14—C13—H13120.7
O1—C2—C3122.38 (13)C12—C13—H13120.7
C1—C2—C3121.75 (14)C15—C14—C13121.78 (14)
C4—C3—C2119.12 (14)C15—C14—Cl1119.68 (12)
C4—C3—H3120.4C13—C14—Cl1118.54 (13)
C2—C3—H3120.4C14—C15—C16119.06 (14)
C3—C4—C10121.77 (13)C14—C15—H15120.5
C3—C4—H4119.1C16—C15—H15120.5
C10—C4—H4119.1C15—C16—C11120.70 (14)
C6—C5—C10122.53 (13)C15—C16—H16119.6
C6—C5—H5118.7C11—C16—H16119.6
C10—C5—H5118.7O3—C17—C11120.81 (12)
C5—C6—C7119.55 (14)O3—C17—C1118.53 (12)
C5—C6—H6120.2C11—C17—C1120.66 (11)
C7—C6—H6120.2O1—C18—H18A109.5
O2—C7—C8117.58 (12)O1—C18—H18B109.5
O2—C7—C6123.50 (13)H18A—C18—H18B109.5
C8—C7—C6118.88 (14)O1—C18—H18C109.5
C7—C8—C9123.49 (12)H18A—C18—H18C109.5
C7—C8—N1115.79 (12)H18B—C18—H18C109.5
C9—C8—N1120.47 (12)O2—C19—H19A109.5
C8—C9—C10115.73 (12)O2—C19—H19B109.5
C8—C9—C1125.95 (12)H19A—C19—H19B109.5
C10—C9—C1118.31 (13)O2—C19—H19C109.5
C5—C10—C4120.69 (13)H19A—C19—H19C109.5
C5—C10—C9119.78 (13)H19B—C19—H19C109.5
C18—O1—C2—C1170.71 (12)C2—C1—C9—C102.42 (18)
C18—O1—C2—C313.54 (19)C17—C1—C9—C10166.79 (12)
C9—C1—C2—O1175.92 (11)C6—C5—C10—C4179.90 (13)
C17—C1—C2—O16.22 (17)C6—C5—C10—C90.1 (2)
C9—C1—C2—C30.14 (19)C3—C4—C10—C5179.85 (13)
C17—C1—C2—C3169.56 (12)C3—C4—C10—C90.4 (2)
O1—C2—C3—C4173.05 (12)C8—C9—C10—C51.55 (18)
C1—C2—C3—C42.4 (2)C1—C9—C10—C5177.58 (12)
C2—C3—C4—C102.7 (2)C8—C9—C10—C4178.68 (12)
C10—C5—C6—C70.7 (2)C1—C9—C10—C42.19 (19)
C19—O2—C7—C8178.28 (13)C16—C11—C12—C130.9 (2)
C19—O2—C7—C60.3 (2)C17—C11—C12—C13176.66 (14)
C5—C6—C7—O2177.91 (13)C11—C12—C13—C140.1 (2)
C5—C6—C7—C80.1 (2)C12—C13—C14—C150.7 (2)
O2—C7—C8—C9179.59 (12)C12—C13—C14—Cl1179.50 (13)
C6—C7—C8—C91.5 (2)C13—C14—C15—C160.8 (2)
O2—C7—C8—N15.20 (18)Cl1—C14—C15—C16179.43 (12)
C6—C7—C8—N1172.92 (12)C14—C15—C16—C110.0 (2)
O5—N1—C8—C758.76 (19)C12—C11—C16—C150.8 (2)
O4—N1—C8—C7120.32 (14)C17—C11—C16—C15176.83 (14)
O5—N1—C8—C9126.67 (15)C12—C11—C17—O3167.06 (14)
O4—N1—C8—C954.26 (18)C16—C11—C17—O310.5 (2)
C7—C8—C9—C102.25 (19)C12—C11—C17—C113.4 (2)
N1—C8—C9—C10171.89 (12)C16—C11—C17—C1169.08 (13)
C7—C8—C9—C1176.80 (12)C2—C1—C17—O3114.72 (15)
N1—C8—C9—C19.1 (2)C9—C1—C17—O354.68 (18)
C2—C1—C9—C8178.55 (12)C2—C1—C17—C1164.85 (17)
C17—C1—C9—C812.2 (2)C9—C1—C17—C11125.75 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C4/C9/C10 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···O5i0.932.443.137 (2)132
C18—H18C···O3i0.962.513.449 (2)167
C19—H19B···Cg1ii0.962.813.5845 (19)139
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC19H14ClNO5
Mr371.76
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)8.57511 (16), 14.0424 (3), 14.0842 (3)
β (°) 100.206 (1)
V3)1669.12 (5)
Z4
Radiation typeCu Kα
µ (mm1)2.31
Crystal size (mm)0.60 × 0.40 × 0.30
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.294, 0.544
No. of measured, independent and
observed [I > 2σ(I)] reflections
29408, 3058, 2793
Rint0.028
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.093, 1.03
No. of reflections3058
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C4/C9/C10 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···O5i0.932.443.137 (2)132
C18—H18C···O3i0.962.513.449 (2)167
C19—H19B···Cg1ii0.962.813.5845 (19)139
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+2, y+1, z+1.
 

Acknowledgements

The authors express their gratitude to Professor Keiichi Noguchi, Instumentation Analysis Center, Tokyo University of Agriculture & Technology, for technical advice. This work was partially supported by a Sasakawa Scientific Research Grant from the Japan Science Society.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMitsui, R., Nagasawa, A., Watanabe, S., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o873.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNishijima, T., Kataoka, K., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2904–o2905.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, S., Nakaema, K., Nishijima, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o615.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds