organic compounds
1-[2-(4-Nitrophenyl)-5-(5-phenyl-1,2-oxazol-3-yl)-1,2,3,4-tetrahydroquinolin-4-yl]pyrrolidin-2-one monohydrate
aInstituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca, Chile, bInstituto de Química, Universidad Austral de Chile, Valdivia, Chile, cDepartamento de Física, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, and dDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile
*Correspondence e-mail: ivanbritob@yahoo.com
The title compound, C28H24N4O4·H2O, crystallizes with two organic molecules and two solvent water molecules in the The most obvious difference between the molecules is the torsion angles between the isoxazole ring and the benzene and phenyl rings [47.0 (2)/56.4 (2) and 33.3 (2)/11.0 (2)°, respectively]. Another important difference is observed in the rotation of the nitro group with respect to the phenyl groups [3.5 (6) and 31.1 (6)°]. The pyrrolidinone fragment is cis oriented with respect to the 4-nitrophenyl fragment. In the crystal, molecules are linked into centrosymmetric R42(8) and R44(20) motifs by O—H⋯O and N—H⋯O interactions.
Related literature
For pharmacological activity of quinoline, see: Shi et al. (2008); Lunniss et al. (2009); He et al. (2005); Eswaran et al. (2010). For the synthesis and medicinal uses of quinolines, see: Kalita et al. (2006); Kouznetsov et al. (2005); Sankaran et al. (2010). For reactions of isoxazoles see: Taldone et al. (2008); Narlawar et al. (2008); Velaparthi et al. (2008); Rizzi et al. (2008); Lautens & Roy (2000); Broggini et al. (2005); Kotera et al. (1970). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: COLLECT (Nonius, 2000); cell DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810052463/om2389sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810052463/om2389Isup2.hkl
A mixture of 3-(3-aminophenyl)-5-phenylisoxazole (2.8 mmol) 3 and 4-nitrobenzaldehyde (3.4 mmol) 1 in anhydrous CH3CN (15 ml) was stirred at room temperature for 30 min. BiCl3 (20 mol%) was added. Over a period of 20 min, a solution the N-vinyl-2-pyrrolidone (NVP) (5.5 mmol) 4 in CH3CN (10 ml) was added dropwise. The resulting mixture was stirred for 10–14 h. After completion of the reaction as indicated by TLC, the reaction mixture was diluted with water (30 ml) and extracted with ethyl acetate (3× 15 ml). The organic layer was separated and dried (Na2SO4), concentrated in vacuum and the resulting product was purified by δ): 8.14 (2H, d, J = 4.0); 7.77 (1H, d, J= 8.0); 7.59 (2H, d, J = 8.0); 7.42(2H, d, J = 8.0); 7.17 (1H, t, J = 8.0); 6.93 (1H, s); 6.86 (2H, dd, J = 8.0 and 2.0); 6.80 (1H, d, J = 8.0); 6.65 (1H, s); 4.59 (1H, d, J = 12.0 and 1.0); 4.51 (1H, br.s); 4.41 (1H, s); 2.93 (2H, m); 1.98 (2H, m); 1.71 (2H, m), 1.57 (2H, m). RMN-13H(CDCl3), 400 MHz,?d): 174.58, 168.95, 162.92, 149.97,147.26, 146.71, 130.03, 129.61, 128.87, 128.54, 127.13, 127.08, 127.08, 125.82,123.74, 117.35, 116.58, 100.24, 54.76, 46.93, 42.32, 34.92, 30.46, 17.25. MS m/z (EI): 480. Anal. Calcd. for C28H24N4O4: C, 69.99;H,5.03; N, 11.66. Found: C, 69.92; H, 5.05; N, 11.79.
(silica gel) using PE and EtOAc mixtures. Results for derivatives trans and cis quinoline-isoxazole 5 and the title compound, see Figure 2. Solid crystalline mp 215–217 °C. The crystals were obtaned by slow evaporation of a solution of the title compound in a THF:H2O (1:1v/v) mixture. RMN-1H(CDCl3), 400 MHz,The positions of the O1W, O2W, N2 and N6 H atoms were refined freely along with isotropic displacement parameters. All other H atoms were placed in geometrically idealized positions (C—H = 0.93–0.98 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).
Nitrogen containing heterocycles are indispensable structural units for medicinal chemists (Sankaran et al., 2010). Compounds possessing the quinoline system have wide applications as drugs and pharmaceuticals and also occur as structural frameworks in natural products (Kalita et al., 2006). They also have several pharmacological activities such as anti-breast cancer (Shi et al., 2008), selective PDE4 inhibition (Lunniss et al., 2009), immuno modulatory (He et al., 2005), antimycobacterial agents (Eswaran et al., 2010), among others.
Quinoline and derivatives represent the major class of heterocycles, and a number of preparations have been known since the late 1800's. The quinoline skeleton is often used for the design of many synthetic compounds with diverse pharmacological properties. Several syntheses of quinolines are known, but due to their importance, the development of new synthetic approaches remains an active research area (Kouznetsov et al., 2005).
The isoxazoles form a relevant group of biologically active compounds with a wide range of applications, including Hsp90 super chaperone complex inhibitors (Taldone et al., 2008), tau aggregation inhibitors for treatment of Alzheimer's disease (Narlawar et al., 2008), Mycobacterium tuberculosis pantothenate synthetase inhibitors (Velaparthi et al., 2008) and neuronal nicotinic acetylcholine receptor agonist effect (Rizzi et al., 2008).
A considerable number of methods to synthesize substituted isoxazoles have been published including approaches based on intramolecular cycloadditions, condensations, and intramolecular cyclizations of amino acids. These methods sometimes suffer in their versatility, convenience and yield (Lautens & Roy, 2000). The isoxazole ring can be synthesized by 1,3-dipolar
reactions between nitrile oxide and alkyne, and that reaction may be catalyzed by copper(II). reactions are among the most useful reactions in synthetic and mechanistic organic chemistry (Broggini et al., 2005).Isoxazoles have a rich chemistry because of their easy reductive cleavage and susceptibility to ring transformations (Kotera et al., 1970). Depending on the substitution patterns, isoxazoles can be used as reagents for the imino-Diels-Alder condensation between anilines,
and electron-rich to generate tetrahydroquinolines with different selected substitution patterns. Due to this fact, the combination of the two heterocycles rings into a new chemical entityis of interest as no examples are known on chemical literature to date. Many molecules widely used today consist of fusions of rings; an example is the case of where in the isoxazole ring incorporation allowed obtaining stable derivatives catalyzed degradation by gastric acid level (flucloxacillin and cloxacillin).We report here the
of a novel synthetic derivative cis quinoline-isoxazole by imino Diels-Alder Fig. 2. The title compound, C28H24N4O4.H2O, crystallizes with two organic molecules and two solvent water molecule in the Fig. 1. The most obvious difference between the molecules is the torsion angles between the isoxazole ring and the benzene and phenyl rings [47.0 (2); 56.4 (2) and 33.3 (2); 11.0 (2)°] respectively. Anther important difference is observed in the rotation of the nitro group with respect to the phenyl group [3.5 (6)°; 31.1 (6)°]. The pyrrolidinone fragment is cis oriented with respect to the 4-nitrophenyl fragment. In the crystal the molecules are linked into centrosymmetric R24(8) and R44(20) motifs by O—H···O and N—H···O interactions, (Bernstein et al., 1995). There are six intramolecular hydrogen bonds which stabilized the in both molecules, Table 1.For pharmacological activity of quinoline, see: Shi et al. (2008); Lunniss et al. (2009); He et al. (2005); Eswaran et al. (2010). For the synthesis and medicinal uses of quinolines, see: Kalita et al. (2006); Kouznetsov et al. (2005); Sankaran et al. (2010). For reactions of isoxazoles see: Taldone et al. (2008); Narlawar et al. (2008); Velaparthi et al. (2008); Rizzi et al. (2008); Lautens & Roy (2000); Broggini et al. (2005); Kotera et al. (1970). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Data collection: COLLECT (Nonius, 2000); cell
DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 30% probability level. | |
Fig. 2. Synthesis scheme of the title compound. |
C28H24N4O4·H2O | Z = 4 |
Mr = 498.53 | F(000) = 1048 |
Triclinic, P1 | Dx = 1.309 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 13.516 (8) Å | Cell parameters from 7466 reflections |
b = 14.193 (6) Å | θ = 1.6–27.7° |
c = 14.987 (11) Å | µ = 0.09 mm−1 |
α = 70.151 (10)° | T = 293 K |
β = 79.62 (2)° | Prism, yellow |
γ = 69.700 (9)° | 0.39 × 0.17 × 0.12 mm |
V = 2530 (3) Å3 |
Nonius KappaCCD diffractometer | 7891 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.090 |
Graphite monochromator | θmax = 27.7°, θmin = 1.6° |
φ and ω scans with κ offsets | h = 0→17 |
21159 measured reflections | k = −16→18 |
11596 independent reflections | l = −18→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.098 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.240 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.16 | w = 1/[σ2(Fo2) + (0.0836P)2 + 2.2406P] where P = (Fo2 + 2Fc2)/3 |
11596 reflections | (Δ/σ)max < 0.001 |
691 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
C28H24N4O4·H2O | γ = 69.700 (9)° |
Mr = 498.53 | V = 2530 (3) Å3 |
Triclinic, P1 | Z = 4 |
a = 13.516 (8) Å | Mo Kα radiation |
b = 14.193 (6) Å | µ = 0.09 mm−1 |
c = 14.987 (11) Å | T = 293 K |
α = 70.151 (10)° | 0.39 × 0.17 × 0.12 mm |
β = 79.62 (2)° |
Nonius KappaCCD diffractometer | 7891 reflections with I > 2σ(I) |
21159 measured reflections | Rint = 0.090 |
11596 independent reflections |
R[F2 > 2σ(F2)] = 0.098 | 0 restraints |
wR(F2) = 0.240 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.16 | Δρmax = 0.34 e Å−3 |
11596 reflections | Δρmin = −0.33 e Å−3 |
691 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.1893 (4) | 0.5828 (4) | 0.0899 (4) | 0.151 (2) | |
O2 | 0.2061 (4) | 0.4662 (4) | 0.0265 (4) | 0.1459 (19) | |
O3 | 1.18855 (17) | 0.0338 (2) | 0.28972 (19) | 0.0595 (7) | |
O4 | 0.9406 (2) | 0.1193 (2) | 0.07318 (17) | 0.0621 (7) | |
O5 | −0.4045 (3) | 0.5670 (3) | 0.1648 (3) | 0.1073 (13) | |
O6 | −0.3530 (3) | 0.7007 (3) | 0.0855 (3) | 0.0982 (11) | |
O7 | 0.1570 (2) | 0.12322 (19) | 0.5951 (2) | 0.0675 (7) | |
O8 | 0.49271 (17) | 0.14888 (18) | 0.61723 (17) | 0.0540 (6) | |
N1 | 0.2355 (3) | 0.4985 (3) | 0.0794 (3) | 0.0850 (11) | |
N2 | 0.6331 (2) | 0.2718 (2) | 0.3431 (2) | 0.0473 (7) | |
H2N | 0.589 (3) | 0.264 (3) | 0.388 (3) | 0.077 (14)* | |
N3 | 1.1088 (2) | 0.1043 (2) | 0.3322 (2) | 0.0582 (8) | |
N4 | 0.90577 (19) | 0.22917 (19) | 0.16467 (17) | 0.0405 (6) | |
N5 | −0.3424 (3) | 0.6164 (3) | 0.1471 (3) | 0.0681 (9) | |
N6 | 0.0703 (2) | 0.5391 (2) | 0.3501 (2) | 0.0548 (8) | |
H6N | 0.039 (3) | 0.603 (3) | 0.331 (3) | 0.060 (11)* | |
N7 | 0.2327 (2) | 0.21999 (18) | 0.46358 (18) | 0.0399 (6) | |
N8 | 0.4633 (2) | 0.2353 (2) | 0.5345 (2) | 0.0511 (7) | |
C1 | 0.3325 (3) | 0.4336 (3) | 0.1285 (3) | 0.0596 (9) | |
C2 | 0.3650 (3) | 0.4683 (3) | 0.1888 (3) | 0.0616 (10) | |
H2 | 0.3254 | 0.5318 | 0.2002 | 0.074* | |
C3 | 0.4581 (3) | 0.4079 (3) | 0.2332 (3) | 0.0538 (9) | |
H3 | 0.4811 | 0.4315 | 0.2742 | 0.065* | |
C4 | 0.5168 (2) | 0.3135 (3) | 0.2172 (2) | 0.0447 (7) | |
C5 | 0.4787 (3) | 0.2782 (4) | 0.1591 (3) | 0.0767 (13) | |
H5 | 0.5159 | 0.2128 | 0.1505 | 0.092* | |
C6 | 0.3876 (4) | 0.3372 (4) | 0.1137 (4) | 0.0863 (15) | |
H6 | 0.3633 | 0.3129 | 0.0741 | 0.104* | |
C7 | 0.6221 (2) | 0.2472 (3) | 0.2599 (2) | 0.0445 (7) | |
H7 | 0.6272 | 0.1726 | 0.2780 | 0.053* | |
C8 | 0.7137 (2) | 0.2665 (3) | 0.1879 (2) | 0.0460 (8) | |
H8A | 0.7118 | 0.3392 | 0.1728 | 0.055* | |
H8B | 0.7061 | 0.2548 | 0.1297 | 0.055* | |
C9 | 0.8203 (2) | 0.1933 (2) | 0.2269 (2) | 0.0382 (7) | |
H9 | 0.8288 | 0.1225 | 0.2253 | 0.046* | |
C10 | 0.8255 (2) | 0.1874 (2) | 0.3297 (2) | 0.0352 (6) | |
C11 | 0.7322 (2) | 0.2302 (2) | 0.3808 (2) | 0.0374 (7) | |
C12 | 0.7374 (3) | 0.2340 (2) | 0.4721 (2) | 0.0438 (7) | |
H12 | 0.6758 | 0.2628 | 0.5055 | 0.053* | |
C13 | 0.8327 (3) | 0.1955 (2) | 0.5127 (2) | 0.0464 (8) | |
H13 | 0.8354 | 0.2013 | 0.5721 | 0.056* | |
C14 | 0.9243 (3) | 0.1482 (2) | 0.4654 (2) | 0.0452 (7) | |
H14 | 0.9881 | 0.1197 | 0.4941 | 0.054* | |
C15 | 0.9209 (2) | 0.1434 (2) | 0.3746 (2) | 0.0380 (7) | |
C16 | 1.0207 (2) | 0.0866 (2) | 0.3289 (2) | 0.0402 (7) | |
C17 | 1.0388 (2) | 0.0063 (2) | 0.2874 (2) | 0.0407 (7) | |
H17 | 0.9888 | −0.0202 | 0.2779 | 0.049* | |
C18 | 1.1431 (2) | −0.0240 (2) | 0.2643 (2) | 0.0429 (7) | |
C19 | 1.2137 (2) | −0.1041 (2) | 0.2210 (2) | 0.0470 (8) | |
C20 | 1.1780 (3) | −0.1278 (3) | 0.1532 (3) | 0.0616 (10) | |
H20 | 1.1094 | −0.0925 | 0.1346 | 0.074* | |
C21 | 1.2446 (4) | −0.2045 (3) | 0.1127 (3) | 0.0763 (12) | |
H21 | 1.2205 | −0.2210 | 0.0673 | 0.092* | |
C22 | 1.3470 (4) | −0.2560 (3) | 0.1400 (4) | 0.0783 (13) | |
H22 | 1.3920 | −0.3065 | 0.1123 | 0.094* | |
C23 | 1.3819 (3) | −0.2328 (3) | 0.2078 (3) | 0.0695 (12) | |
H23 | 1.4508 | −0.2678 | 0.2259 | 0.083* | |
C24 | 1.3166 (3) | −0.1586 (3) | 0.2491 (3) | 0.0558 (9) | |
H24 | 1.3407 | −0.1443 | 0.2959 | 0.067* | |
C25 | 0.9335 (3) | 0.3197 (3) | 0.1655 (3) | 0.0564 (9) | |
H25A | 0.9496 | 0.3119 | 0.2287 | 0.068* | |
H25B | 0.8764 | 0.3847 | 0.1444 | 0.068* | |
C26 | 1.0301 (4) | 0.3184 (4) | 0.0966 (4) | 0.0884 (15) | |
H26A | 1.0248 | 0.3888 | 0.0546 | 0.106* | |
H26B | 1.0934 | 0.2921 | 0.1308 | 0.106* | |
C27 | 1.0343 (3) | 0.2479 (4) | 0.0412 (3) | 0.0712 (12) | |
H27A | 1.1048 | 0.1988 | 0.0386 | 0.085* | |
H27B | 1.0150 | 0.2886 | −0.0232 | 0.085* | |
C28 | 0.9561 (3) | 0.1901 (3) | 0.0928 (2) | 0.0475 (8) | |
C29 | −0.2518 (2) | 0.5753 (3) | 0.2061 (2) | 0.0485 (8) | |
C30 | −0.2560 (3) | 0.5056 (3) | 0.2951 (3) | 0.0528 (9) | |
H30 | −0.3141 | 0.4813 | 0.3177 | 0.063* | |
C31 | −0.1722 (3) | 0.4724 (2) | 0.3505 (2) | 0.0483 (8) | |
H31 | −0.1750 | 0.4265 | 0.4117 | 0.058* | |
C32 | −0.0837 (2) | 0.5060 (2) | 0.3171 (2) | 0.0404 (7) | |
C33 | −0.0809 (3) | 0.5730 (3) | 0.2250 (3) | 0.0583 (9) | |
H33 | −0.0210 | 0.5939 | 0.2002 | 0.070* | |
C34 | −0.1656 (3) | 0.6091 (3) | 0.1698 (3) | 0.0630 (10) | |
H34 | −0.1640 | 0.6556 | 0.1088 | 0.076* | |
C35 | 0.0048 (2) | 0.4706 (2) | 0.3819 (2) | 0.0433 (7) | |
H35 | −0.0272 | 0.4730 | 0.4455 | 0.052* | |
C36 | 0.0762 (2) | 0.3586 (2) | 0.3899 (2) | 0.0422 (7) | |
H36A | 0.1121 | 0.3552 | 0.3284 | 0.051* | |
H36B | 0.0338 | 0.3111 | 0.4095 | 0.051* | |
C37 | 0.1584 (2) | 0.3241 (2) | 0.4628 (2) | 0.0368 (7) | |
H37 | 0.1205 | 0.3172 | 0.5258 | 0.044* | |
C38 | 0.2140 (2) | 0.4068 (2) | 0.4446 (2) | 0.0340 (6) | |
C39 | 0.1663 (3) | 0.5109 (2) | 0.3872 (2) | 0.0411 (7) | |
C40 | 0.2179 (3) | 0.5872 (2) | 0.3665 (2) | 0.0515 (9) | |
H40 | 0.1864 | 0.6553 | 0.3287 | 0.062* | |
C41 | 0.3136 (3) | 0.5631 (3) | 0.4009 (3) | 0.0518 (8) | |
H41 | 0.3474 | 0.6143 | 0.3851 | 0.062* | |
C42 | 0.3605 (3) | 0.4633 (3) | 0.4591 (2) | 0.0472 (8) | |
H42 | 0.4249 | 0.4477 | 0.4833 | 0.057* | |
C43 | 0.3107 (2) | 0.3856 (2) | 0.4816 (2) | 0.0375 (7) | |
C44 | 0.3630 (2) | 0.2837 (2) | 0.5516 (2) | 0.0379 (7) | |
C45 | 0.3240 (2) | 0.2333 (2) | 0.6422 (2) | 0.0426 (7) | |
H45 | 0.2557 | 0.2527 | 0.6699 | 0.051* | |
C46 | 0.4071 (3) | 0.1506 (2) | 0.6807 (2) | 0.0443 (7) | |
C47 | 0.4233 (3) | 0.0707 (3) | 0.7737 (3) | 0.0532 (9) | |
C48 | 0.3381 (4) | 0.0623 (4) | 0.8380 (3) | 0.0809 (13) | |
H48 | 0.2702 | 0.1046 | 0.8209 | 0.097* | |
C49 | 0.3530 (5) | −0.0096 (5) | 0.9289 (4) | 0.0997 (17) | |
H49 | 0.2951 | −0.0155 | 0.9720 | 0.120* | |
C50 | 0.4522 (5) | −0.0710 (4) | 0.9544 (4) | 0.0913 (16) | |
H50 | 0.4618 | −0.1184 | 1.0151 | 0.110* | |
C51 | 0.5376 (5) | −0.0636 (3) | 0.8917 (4) | 0.0815 (14) | |
H51 | 0.6052 | −0.1052 | 0.9098 | 0.098* | |
C52 | 0.5234 (3) | 0.0061 (3) | 0.8010 (3) | 0.0646 (10) | |
H52 | 0.5817 | 0.0097 | 0.7578 | 0.077* | |
C53 | 0.3095 (3) | 0.2023 (3) | 0.3841 (3) | 0.0539 (9) | |
H53A | 0.3517 | 0.2498 | 0.3662 | 0.065* | |
H53B | 0.2747 | 0.2113 | 0.3292 | 0.065* | |
C54 | 0.3765 (4) | 0.0892 (3) | 0.4239 (3) | 0.0801 (13) | |
H54A | 0.3990 | 0.0543 | 0.3749 | 0.096* | |
H54B | 0.4386 | 0.0859 | 0.4503 | 0.096* | |
C55 | 0.3063 (3) | 0.0394 (3) | 0.4998 (3) | 0.0656 (11) | |
H55A | 0.3457 | −0.0095 | 0.5539 | 0.079* | |
H55B | 0.2745 | 0.0018 | 0.4759 | 0.079* | |
C56 | 0.2227 (3) | 0.1298 (2) | 0.5272 (3) | 0.0484 (8) | |
O1W | 0.0770 (3) | 0.0833 (3) | 0.9068 (2) | 0.0812 (9) | |
H1WA | 0.034 (5) | 0.092 (5) | 0.953 (5) | 0.13 (2)* | |
H1WB | 0.077 (5) | 0.012 (6) | 0.904 (5) | 0.16 (3)* | |
O2W | 0.0413 (3) | 0.2325 (2) | 0.7199 (3) | 0.1003 (13) | |
H2WA | 0.050 (4) | 0.194 (4) | 0.773 (4) | 0.092 (18)* | |
H2WB | 0.071 (6) | 0.191 (6) | 0.676 (6) | 0.17 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.112 (3) | 0.108 (3) | 0.223 (6) | 0.031 (3) | −0.097 (4) | −0.061 (3) |
O2 | 0.110 (3) | 0.141 (4) | 0.199 (5) | −0.002 (3) | −0.100 (3) | −0.059 (4) |
O3 | 0.0358 (12) | 0.0650 (15) | 0.0817 (18) | −0.0172 (11) | 0.0031 (12) | −0.0290 (14) |
O4 | 0.0702 (17) | 0.0703 (17) | 0.0508 (15) | −0.0192 (13) | 0.0074 (12) | −0.0327 (13) |
O5 | 0.066 (2) | 0.099 (3) | 0.153 (4) | −0.0306 (19) | −0.044 (2) | −0.009 (2) |
O6 | 0.094 (2) | 0.085 (2) | 0.093 (2) | −0.0120 (18) | −0.047 (2) | 0.0057 (19) |
O7 | 0.0827 (19) | 0.0509 (14) | 0.0628 (17) | −0.0323 (13) | 0.0064 (15) | −0.0031 (12) |
O8 | 0.0400 (12) | 0.0549 (14) | 0.0518 (14) | −0.0061 (10) | −0.0069 (11) | −0.0043 (11) |
N1 | 0.064 (2) | 0.083 (3) | 0.102 (3) | −0.009 (2) | −0.037 (2) | −0.018 (2) |
N2 | 0.0372 (15) | 0.0636 (17) | 0.0402 (15) | −0.0123 (13) | 0.0027 (13) | −0.0208 (13) |
N3 | 0.0425 (16) | 0.0625 (18) | 0.077 (2) | −0.0169 (14) | −0.0022 (15) | −0.0299 (16) |
N4 | 0.0400 (14) | 0.0430 (13) | 0.0326 (13) | −0.0107 (11) | 0.0035 (11) | −0.0093 (11) |
N5 | 0.0507 (19) | 0.063 (2) | 0.078 (2) | −0.0022 (16) | −0.0216 (17) | −0.0137 (18) |
N6 | 0.0608 (19) | 0.0260 (13) | 0.071 (2) | −0.0093 (13) | −0.0264 (16) | 0.0001 (13) |
N7 | 0.0441 (14) | 0.0292 (12) | 0.0431 (14) | −0.0093 (10) | −0.0047 (11) | −0.0081 (10) |
N8 | 0.0393 (15) | 0.0532 (16) | 0.0481 (16) | −0.0086 (12) | −0.0032 (12) | −0.0052 (13) |
C1 | 0.0437 (19) | 0.066 (2) | 0.068 (2) | −0.0122 (17) | −0.0178 (18) | −0.0163 (19) |
C2 | 0.054 (2) | 0.057 (2) | 0.068 (3) | −0.0062 (17) | −0.0077 (19) | −0.0221 (19) |
C3 | 0.052 (2) | 0.060 (2) | 0.054 (2) | −0.0148 (17) | −0.0061 (16) | −0.0252 (17) |
C4 | 0.0364 (16) | 0.0546 (19) | 0.0473 (18) | −0.0152 (14) | −0.0011 (14) | −0.0204 (15) |
C5 | 0.069 (3) | 0.072 (3) | 0.098 (3) | 0.001 (2) | −0.033 (2) | −0.046 (2) |
C6 | 0.077 (3) | 0.087 (3) | 0.112 (4) | −0.006 (2) | −0.047 (3) | −0.050 (3) |
C7 | 0.0393 (17) | 0.0489 (17) | 0.0470 (18) | −0.0125 (14) | −0.0029 (14) | −0.0178 (14) |
C8 | 0.0408 (17) | 0.0587 (19) | 0.0368 (17) | −0.0098 (15) | −0.0060 (13) | −0.0163 (15) |
C9 | 0.0369 (16) | 0.0419 (15) | 0.0348 (16) | −0.0123 (12) | 0.0016 (12) | −0.0121 (12) |
C10 | 0.0404 (16) | 0.0344 (14) | 0.0307 (15) | −0.0147 (12) | −0.0011 (12) | −0.0069 (11) |
C11 | 0.0413 (16) | 0.0367 (14) | 0.0335 (15) | −0.0160 (12) | 0.0009 (12) | −0.0073 (12) |
C12 | 0.0503 (19) | 0.0446 (16) | 0.0335 (16) | −0.0141 (14) | 0.0039 (14) | −0.0121 (13) |
C13 | 0.066 (2) | 0.0429 (16) | 0.0297 (16) | −0.0169 (15) | −0.0071 (15) | −0.0079 (13) |
C14 | 0.0485 (18) | 0.0425 (16) | 0.0410 (18) | −0.0125 (14) | −0.0126 (14) | −0.0048 (14) |
C15 | 0.0404 (16) | 0.0351 (14) | 0.0370 (16) | −0.0137 (12) | −0.0031 (13) | −0.0066 (12) |
C16 | 0.0377 (16) | 0.0418 (16) | 0.0365 (16) | −0.0131 (13) | −0.0073 (13) | −0.0029 (13) |
C17 | 0.0363 (16) | 0.0426 (16) | 0.0395 (17) | −0.0122 (13) | −0.0060 (13) | −0.0058 (13) |
C18 | 0.0384 (16) | 0.0425 (16) | 0.0430 (18) | −0.0136 (13) | −0.0056 (13) | −0.0045 (13) |
C19 | 0.0409 (17) | 0.0422 (16) | 0.0453 (19) | −0.0103 (14) | 0.0038 (14) | −0.0035 (14) |
C20 | 0.055 (2) | 0.062 (2) | 0.062 (2) | −0.0146 (18) | −0.0012 (18) | −0.0163 (19) |
C21 | 0.091 (3) | 0.072 (3) | 0.070 (3) | −0.028 (2) | 0.009 (2) | −0.030 (2) |
C22 | 0.075 (3) | 0.057 (2) | 0.088 (3) | −0.014 (2) | 0.025 (3) | −0.026 (2) |
C23 | 0.046 (2) | 0.058 (2) | 0.079 (3) | −0.0073 (17) | 0.011 (2) | −0.007 (2) |
C24 | 0.0414 (18) | 0.0536 (19) | 0.058 (2) | −0.0124 (15) | 0.0034 (16) | −0.0050 (16) |
C25 | 0.064 (2) | 0.0487 (19) | 0.054 (2) | −0.0239 (17) | 0.0065 (17) | −0.0111 (16) |
C26 | 0.085 (3) | 0.094 (3) | 0.092 (3) | −0.054 (3) | 0.028 (3) | −0.026 (3) |
C27 | 0.066 (3) | 0.082 (3) | 0.055 (2) | −0.028 (2) | 0.0201 (19) | −0.014 (2) |
C28 | 0.0420 (17) | 0.0532 (19) | 0.0345 (17) | −0.0055 (14) | −0.0004 (14) | −0.0080 (14) |
C29 | 0.0374 (17) | 0.0462 (17) | 0.053 (2) | −0.0043 (14) | −0.0078 (15) | −0.0109 (15) |
C30 | 0.0391 (18) | 0.0516 (19) | 0.063 (2) | −0.0141 (15) | 0.0049 (16) | −0.0160 (17) |
C31 | 0.0485 (19) | 0.0426 (17) | 0.0433 (18) | −0.0126 (14) | −0.0006 (15) | −0.0028 (14) |
C32 | 0.0384 (16) | 0.0337 (14) | 0.0409 (17) | −0.0032 (12) | −0.0028 (13) | −0.0091 (12) |
C33 | 0.0453 (19) | 0.072 (2) | 0.047 (2) | −0.0236 (17) | −0.0020 (16) | 0.0013 (17) |
C34 | 0.058 (2) | 0.071 (2) | 0.041 (2) | −0.0227 (19) | −0.0103 (17) | 0.0115 (17) |
C35 | 0.0453 (18) | 0.0355 (15) | 0.0422 (17) | −0.0048 (13) | −0.0077 (14) | −0.0083 (13) |
C36 | 0.0415 (17) | 0.0330 (14) | 0.0496 (19) | −0.0109 (12) | −0.0063 (14) | −0.0084 (13) |
C37 | 0.0369 (15) | 0.0288 (13) | 0.0393 (16) | −0.0077 (11) | 0.0008 (12) | −0.0080 (12) |
C38 | 0.0372 (15) | 0.0289 (13) | 0.0346 (15) | −0.0093 (11) | 0.0011 (12) | −0.0107 (11) |
C39 | 0.0509 (18) | 0.0309 (14) | 0.0405 (17) | −0.0116 (13) | −0.0046 (14) | −0.0098 (12) |
C40 | 0.073 (2) | 0.0301 (15) | 0.049 (2) | −0.0182 (15) | −0.0061 (17) | −0.0053 (13) |
C41 | 0.066 (2) | 0.0447 (18) | 0.054 (2) | −0.0321 (17) | 0.0001 (17) | −0.0122 (15) |
C42 | 0.0481 (18) | 0.0510 (18) | 0.0490 (19) | −0.0236 (15) | −0.0006 (15) | −0.0159 (15) |
C43 | 0.0403 (16) | 0.0349 (14) | 0.0363 (16) | −0.0123 (12) | 0.0033 (13) | −0.0119 (12) |
C44 | 0.0344 (15) | 0.0398 (15) | 0.0414 (17) | −0.0125 (12) | −0.0012 (13) | −0.0139 (13) |
C45 | 0.0382 (16) | 0.0457 (17) | 0.0423 (17) | −0.0137 (13) | −0.0010 (13) | −0.0113 (14) |
C46 | 0.0464 (18) | 0.0449 (17) | 0.0445 (18) | −0.0192 (14) | −0.0052 (14) | −0.0109 (14) |
C47 | 0.063 (2) | 0.0492 (18) | 0.049 (2) | −0.0230 (17) | −0.0108 (17) | −0.0072 (15) |
C48 | 0.076 (3) | 0.083 (3) | 0.064 (3) | −0.026 (2) | 0.003 (2) | 0.001 (2) |
C49 | 0.111 (4) | 0.105 (4) | 0.063 (3) | −0.044 (3) | 0.009 (3) | 0.003 (3) |
C50 | 0.135 (5) | 0.076 (3) | 0.058 (3) | −0.040 (3) | −0.026 (3) | 0.004 (2) |
C51 | 0.108 (4) | 0.060 (2) | 0.077 (3) | −0.029 (2) | −0.042 (3) | 0.000 (2) |
C52 | 0.077 (3) | 0.050 (2) | 0.065 (2) | −0.0218 (19) | −0.024 (2) | −0.0033 (18) |
C53 | 0.057 (2) | 0.0459 (18) | 0.056 (2) | −0.0086 (15) | 0.0027 (17) | −0.0228 (16) |
C54 | 0.081 (3) | 0.049 (2) | 0.092 (3) | 0.007 (2) | −0.002 (3) | −0.030 (2) |
C55 | 0.075 (3) | 0.0348 (17) | 0.082 (3) | −0.0026 (17) | −0.024 (2) | −0.0159 (18) |
C56 | 0.059 (2) | 0.0346 (16) | 0.053 (2) | −0.0185 (15) | −0.0155 (17) | −0.0050 (14) |
O1W | 0.082 (2) | 0.093 (2) | 0.066 (2) | −0.0288 (18) | 0.0151 (17) | −0.0289 (17) |
O2W | 0.129 (3) | 0.0466 (16) | 0.083 (3) | −0.0045 (17) | 0.016 (2) | −0.0025 (17) |
O1—N1 | 1.191 (5) | C23—H23 | 0.9300 |
O2—N1 | 1.217 (6) | C24—H24 | 0.9300 |
O3—C18 | 1.357 (4) | C25—C26 | 1.511 (5) |
O3—N3 | 1.416 (4) | C25—H25A | 0.9700 |
O4—C28 | 1.228 (4) | C25—H25B | 0.9700 |
O5—N5 | 1.212 (5) | C26—C27 | 1.483 (7) |
O6—N5 | 1.217 (5) | C26—H26A | 0.9700 |
O7—C56 | 1.225 (4) | C26—H26B | 0.9700 |
O8—C46 | 1.358 (4) | C27—C28 | 1.505 (5) |
O8—N8 | 1.416 (4) | C27—H27A | 0.9700 |
N1—C1 | 1.469 (5) | C27—H27B | 0.9700 |
N2—C11 | 1.399 (4) | C29—C34 | 1.365 (5) |
N2—C7 | 1.449 (4) | C29—C30 | 1.370 (5) |
N2—H2N | 0.82 (4) | C30—C31 | 1.377 (5) |
N3—C16 | 1.311 (4) | C30—H30 | 0.9300 |
N4—C28 | 1.345 (4) | C31—C32 | 1.388 (5) |
N4—C25 | 1.463 (4) | C31—H31 | 0.9300 |
N4—C9 | 1.470 (4) | C32—C33 | 1.387 (5) |
N5—C29 | 1.472 (5) | C32—C35 | 1.515 (5) |
N6—C39 | 1.378 (4) | C33—C34 | 1.381 (5) |
N6—C35 | 1.446 (4) | C33—H33 | 0.9300 |
N6—H6N | 0.83 (4) | C34—H34 | 0.9300 |
N7—C56 | 1.346 (4) | C35—C36 | 1.523 (4) |
N7—C53 | 1.461 (4) | C35—H35 | 0.9800 |
N7—C37 | 1.468 (3) | C36—C37 | 1.538 (4) |
N8—C44 | 1.312 (4) | C36—H36A | 0.9700 |
C1—C2 | 1.360 (5) | C36—H36B | 0.9700 |
C1—C6 | 1.384 (6) | C37—C38 | 1.529 (4) |
C2—C3 | 1.388 (5) | C37—H37 | 0.9800 |
C2—H2 | 0.9300 | C38—C43 | 1.407 (4) |
C3—C4 | 1.376 (5) | C38—C39 | 1.420 (4) |
C3—H3 | 0.9300 | C39—C40 | 1.404 (5) |
C4—C5 | 1.382 (5) | C40—C41 | 1.368 (5) |
C4—C7 | 1.519 (5) | C40—H40 | 0.9300 |
C5—C6 | 1.372 (6) | C41—C42 | 1.380 (5) |
C5—H5 | 0.9300 | C41—H41 | 0.9300 |
C6—H6 | 0.9300 | C42—C43 | 1.401 (4) |
C7—C8 | 1.526 (4) | C42—H42 | 0.9300 |
C7—H7 | 0.9800 | C43—C44 | 1.490 (4) |
C8—C9 | 1.533 (4) | C44—C45 | 1.407 (4) |
C8—H8A | 0.9700 | C45—C46 | 1.352 (4) |
C8—H8B | 0.9700 | C45—H45 | 0.9300 |
C9—C10 | 1.527 (4) | C46—C47 | 1.464 (5) |
C9—H9 | 0.9800 | C47—C48 | 1.373 (6) |
C10—C15 | 1.405 (4) | C47—C52 | 1.386 (5) |
C10—C11 | 1.409 (4) | C48—C49 | 1.396 (7) |
C11—C12 | 1.402 (4) | C48—H48 | 0.9300 |
C12—C13 | 1.376 (5) | C49—C50 | 1.360 (8) |
C12—H12 | 0.9300 | C49—H49 | 0.9300 |
C13—C14 | 1.385 (5) | C50—C51 | 1.360 (7) |
C13—H13 | 0.9300 | C50—H50 | 0.9300 |
C14—C15 | 1.395 (5) | C51—C52 | 1.383 (6) |
C14—H14 | 0.9300 | C51—H51 | 0.9300 |
C15—C16 | 1.493 (4) | C52—H52 | 0.9300 |
C16—C17 | 1.407 (4) | C53—C54 | 1.512 (5) |
C17—C18 | 1.340 (4) | C53—H53A | 0.9700 |
C17—H17 | 0.9300 | C53—H53B | 0.9700 |
C18—C19 | 1.466 (5) | C54—C55 | 1.492 (6) |
C19—C20 | 1.377 (5) | C54—H54A | 0.9700 |
C19—C24 | 1.398 (5) | C54—H54B | 0.9700 |
C20—C21 | 1.392 (6) | C55—C56 | 1.509 (5) |
C20—H20 | 0.9300 | C55—H55A | 0.9700 |
C21—C22 | 1.384 (7) | C55—H55B | 0.9700 |
C21—H21 | 0.9300 | O1W—H1WA | 0.83 (7) |
C22—C23 | 1.368 (7) | O1W—H1WB | 1.02 (8) |
C22—H22 | 0.9300 | O2W—H2WA | 0.80 (6) |
C23—C24 | 1.369 (6) | O2W—H2WB | 0.98 (8) |
C18—O3—N3 | 108.5 (2) | H26A—C26—H26B | 108.6 |
C46—O8—N8 | 108.4 (2) | C26—C27—C28 | 105.7 (3) |
O1—N1—O2 | 121.6 (4) | C26—C27—H27A | 110.6 |
O1—N1—C1 | 119.3 (4) | C28—C27—H27A | 110.6 |
O2—N1—C1 | 119.0 (4) | C26—C27—H27B | 110.6 |
C11—N2—C7 | 118.4 (3) | C28—C27—H27B | 110.6 |
C11—N2—H2N | 107 (3) | H27A—C27—H27B | 108.7 |
C7—N2—H2N | 117 (3) | O4—C28—N4 | 125.6 (3) |
C16—N3—O3 | 105.1 (3) | O4—C28—C27 | 126.2 (3) |
C28—N4—C25 | 113.5 (3) | N4—C28—C27 | 108.2 (3) |
C28—N4—C9 | 122.3 (3) | C34—C29—C30 | 122.0 (3) |
C25—N4—C9 | 123.6 (2) | C34—C29—N5 | 118.2 (3) |
O5—N5—O6 | 123.6 (4) | C30—C29—N5 | 119.8 (3) |
O5—N5—C29 | 118.5 (3) | C29—C30—C31 | 118.5 (3) |
O6—N5—C29 | 117.8 (4) | C29—C30—H30 | 120.7 |
C39—N6—C35 | 121.3 (3) | C31—C30—H30 | 120.7 |
C39—N6—H6N | 116 (3) | C30—C31—C32 | 121.5 (3) |
C35—N6—H6N | 117 (3) | C30—C31—H31 | 119.3 |
C56—N7—C53 | 112.7 (3) | C32—C31—H31 | 119.3 |
C56—N7—C37 | 123.1 (3) | C33—C32—C31 | 118.0 (3) |
C53—N7—C37 | 122.9 (2) | C33—C32—C35 | 122.4 (3) |
C44—N8—O8 | 105.4 (2) | C31—C32—C35 | 119.6 (3) |
C2—C1—C6 | 121.4 (4) | C34—C33—C32 | 121.0 (3) |
C2—C1—N1 | 119.5 (4) | C34—C33—H33 | 119.5 |
C6—C1—N1 | 119.1 (4) | C32—C33—H33 | 119.5 |
C1—C2—C3 | 119.3 (3) | C29—C34—C33 | 118.9 (3) |
C1—C2—H2 | 120.4 | C29—C34—H34 | 120.5 |
C3—C2—H2 | 120.4 | C33—C34—H34 | 120.5 |
C4—C3—C2 | 120.7 (3) | N6—C35—C32 | 111.8 (3) |
C4—C3—H3 | 119.7 | N6—C35—C36 | 107.9 (3) |
C2—C3—H3 | 119.7 | C32—C35—C36 | 112.7 (3) |
C3—C4—C5 | 118.5 (3) | N6—C35—H35 | 108.1 |
C3—C4—C7 | 122.8 (3) | C32—C35—H35 | 108.1 |
C5—C4—C7 | 118.7 (3) | C36—C35—H35 | 108.1 |
C6—C5—C4 | 121.7 (4) | C35—C36—C37 | 110.2 (3) |
C6—C5—H5 | 119.1 | C35—C36—H36A | 109.6 |
C4—C5—H5 | 119.1 | C37—C36—H36A | 109.6 |
C5—C6—C1 | 118.3 (4) | C35—C36—H36B | 109.6 |
C5—C6—H6 | 120.9 | C37—C36—H36B | 109.6 |
C1—C6—H6 | 120.9 | H36A—C36—H36B | 108.1 |
N2—C7—C4 | 111.8 (3) | N7—C37—C38 | 112.6 (2) |
N2—C7—C8 | 107.4 (3) | N7—C37—C36 | 109.7 (2) |
C4—C7—C8 | 110.6 (3) | C38—C37—C36 | 111.5 (2) |
N2—C7—H7 | 109.0 | N7—C37—H37 | 107.6 |
C4—C7—H7 | 109.0 | C38—C37—H37 | 107.6 |
C8—C7—H7 | 109.0 | C36—C37—H37 | 107.6 |
C7—C8—C9 | 111.2 (3) | C43—C38—C39 | 117.7 (3) |
C7—C8—H8A | 109.4 | C43—C38—C37 | 123.6 (2) |
C9—C8—H8A | 109.4 | C39—C38—C37 | 118.7 (3) |
C7—C8—H8B | 109.4 | N6—C39—C40 | 118.8 (3) |
C9—C8—H8B | 109.4 | N6—C39—C38 | 121.5 (3) |
H8A—C8—H8B | 108.0 | C40—C39—C38 | 119.7 (3) |
N4—C9—C10 | 111.4 (2) | C41—C40—C39 | 121.1 (3) |
N4—C9—C8 | 109.1 (2) | C41—C40—H40 | 119.4 |
C10—C9—C8 | 111.8 (2) | C39—C40—H40 | 119.4 |
N4—C9—H9 | 108.1 | C40—C41—C42 | 120.4 (3) |
C10—C9—H9 | 108.1 | C40—C41—H41 | 119.8 |
C8—C9—H9 | 108.1 | C42—C41—H41 | 119.8 |
C15—C10—C11 | 118.4 (3) | C41—C42—C43 | 119.9 (3) |
C15—C10—C9 | 122.4 (3) | C41—C42—H42 | 120.1 |
C11—C10—C9 | 119.1 (3) | C43—C42—H42 | 120.1 |
N2—C11—C12 | 118.0 (3) | C42—C43—C38 | 121.2 (3) |
N2—C11—C10 | 122.3 (3) | C42—C43—C44 | 115.5 (3) |
C12—C11—C10 | 119.7 (3) | C38—C43—C44 | 123.2 (3) |
C13—C12—C11 | 120.8 (3) | N8—C44—C45 | 111.6 (3) |
C13—C12—H12 | 119.6 | N8—C44—C43 | 118.7 (3) |
C11—C12—H12 | 119.6 | C45—C44—C43 | 129.3 (3) |
C12—C13—C14 | 120.2 (3) | C46—C45—C44 | 105.4 (3) |
C12—C13—H13 | 119.9 | C46—C45—H45 | 127.3 |
C14—C13—H13 | 119.9 | C44—C45—H45 | 127.3 |
C13—C14—C15 | 119.9 (3) | C45—C46—O8 | 109.1 (3) |
C13—C14—H14 | 120.1 | C45—C46—C47 | 134.1 (3) |
C15—C14—H14 | 120.1 | O8—C46—C47 | 116.7 (3) |
C14—C15—C10 | 120.8 (3) | C48—C47—C52 | 118.6 (4) |
C14—C15—C16 | 117.8 (3) | C48—C47—C46 | 119.5 (4) |
C10—C15—C16 | 121.4 (3) | C52—C47—C46 | 121.8 (3) |
N3—C16—C17 | 111.6 (3) | C47—C48—C49 | 120.1 (5) |
N3—C16—C15 | 118.9 (3) | C47—C48—H48 | 119.9 |
C17—C16—C15 | 129.2 (3) | C49—C48—H48 | 119.9 |
C18—C17—C16 | 105.6 (3) | C50—C49—C48 | 120.1 (5) |
C18—C17—H17 | 127.2 | C50—C49—H49 | 120.0 |
C16—C17—H17 | 127.2 | C48—C49—H49 | 120.0 |
C17—C18—O3 | 109.2 (3) | C51—C50—C49 | 120.6 (4) |
C17—C18—C19 | 133.9 (3) | C51—C50—H50 | 119.7 |
O3—C18—C19 | 116.8 (3) | C49—C50—H50 | 119.7 |
C20—C19—C24 | 119.4 (3) | C50—C51—C52 | 119.8 (5) |
C20—C19—C18 | 119.9 (3) | C50—C51—H51 | 120.1 |
C24—C19—C18 | 120.7 (3) | C52—C51—H51 | 120.1 |
C19—C20—C21 | 120.0 (4) | C51—C52—C47 | 120.8 (4) |
C19—C20—H20 | 120.0 | C51—C52—H52 | 119.6 |
C21—C20—H20 | 120.0 | C47—C52—H52 | 119.6 |
C22—C21—C20 | 119.8 (4) | N7—C53—C54 | 102.8 (3) |
C22—C21—H21 | 120.1 | N7—C53—H53A | 111.2 |
C20—C21—H21 | 120.1 | C54—C53—H53A | 111.2 |
C23—C22—C21 | 120.0 (4) | N7—C53—H53B | 111.2 |
C23—C22—H22 | 120.0 | C54—C53—H53B | 111.2 |
C21—C22—H22 | 120.0 | H53A—C53—H53B | 109.1 |
C22—C23—C24 | 120.6 (4) | C55—C54—C53 | 104.9 (3) |
C22—C23—H23 | 119.7 | C55—C54—H54A | 110.8 |
C24—C23—H23 | 119.7 | C53—C54—H54A | 110.8 |
C23—C24—C19 | 120.1 (4) | C55—C54—H54B | 110.8 |
C23—C24—H24 | 119.9 | C53—C54—H54B | 110.8 |
C19—C24—H24 | 119.9 | H54A—C54—H54B | 108.8 |
N4—C25—C26 | 103.4 (3) | C54—C55—C56 | 105.0 (3) |
N4—C25—H25A | 111.1 | C54—C55—H55A | 110.8 |
C26—C25—H25A | 111.1 | C56—C55—H55A | 110.8 |
N4—C25—H25B | 111.1 | C54—C55—H55B | 110.8 |
C26—C25—H25B | 111.1 | C56—C55—H55B | 110.8 |
H25A—C25—H25B | 109.0 | H55A—C55—H55B | 108.8 |
C27—C26—C25 | 106.8 (3) | O7—C56—N7 | 125.6 (3) |
C27—C26—H26A | 110.4 | O7—C56—C55 | 126.5 (3) |
C25—C26—H26A | 110.4 | N7—C56—C55 | 107.9 (3) |
C27—C26—H26B | 110.4 | H1WA—O1W—H1WB | 102 (6) |
C25—C26—H26B | 110.4 | H2WA—O2W—H2WB | 108 (6) |
C18—O3—N3—C16 | −0.9 (4) | C26—C27—C28—N4 | 4.8 (5) |
C46—O8—N8—C44 | −0.3 (3) | O5—N5—C29—C34 | 159.1 (4) |
O1—N1—C1—C2 | 3.3 (7) | O6—N5—C29—C34 | −23.9 (5) |
O2—N1—C1—C2 | −179.0 (5) | O5—N5—C29—C30 | −21.3 (6) |
O1—N1—C1—C6 | −178.1 (6) | O6—N5—C29—C30 | 155.7 (4) |
O2—N1—C1—C6 | −0.4 (7) | C34—C29—C30—C31 | 2.6 (5) |
C6—C1—C2—C3 | 3.0 (7) | N5—C29—C30—C31 | −176.9 (3) |
N1—C1—C2—C3 | −178.4 (4) | C29—C30—C31—C32 | −1.6 (5) |
C1—C2—C3—C4 | −0.5 (6) | C30—C31—C32—C33 | −1.1 (5) |
C2—C3—C4—C5 | −2.6 (6) | C30—C31—C32—C35 | 177.7 (3) |
C2—C3—C4—C7 | 176.7 (3) | C31—C32—C33—C34 | 2.9 (6) |
C3—C4—C5—C6 | 3.3 (7) | C35—C32—C33—C34 | −175.9 (3) |
C7—C4—C5—C6 | −176.0 (4) | C30—C29—C34—C33 | −0.9 (6) |
C4—C5—C6—C1 | −0.9 (8) | N5—C29—C34—C33 | 178.6 (4) |
C2—C1—C6—C5 | −2.3 (8) | C32—C33—C34—C29 | −1.9 (6) |
N1—C1—C6—C5 | 179.1 (5) | C39—N6—C35—C32 | −167.4 (3) |
C11—N2—C7—C4 | −169.6 (3) | C39—N6—C35—C36 | −42.9 (4) |
C11—N2—C7—C8 | −48.1 (4) | C33—C32—C35—N6 | 19.1 (4) |
C3—C4—C7—N2 | 21.5 (5) | C31—C32—C35—N6 | −159.7 (3) |
C5—C4—C7—N2 | −159.1 (4) | C33—C32—C35—C36 | −102.7 (4) |
C3—C4—C7—C8 | −98.1 (4) | C31—C32—C35—C36 | 78.6 (4) |
C5—C4—C7—C8 | 81.2 (4) | N6—C35—C36—C37 | 60.8 (3) |
N2—C7—C8—C9 | 62.6 (3) | C32—C35—C36—C37 | −175.3 (2) |
C4—C7—C8—C9 | −175.2 (3) | C56—N7—C37—C38 | 138.2 (3) |
C28—N4—C9—C10 | 142.5 (3) | C53—N7—C37—C38 | −55.9 (4) |
C25—N4—C9—C10 | −46.8 (4) | C56—N7—C37—C36 | −96.9 (3) |
C28—N4—C9—C8 | −93.6 (3) | C53—N7—C37—C36 | 68.9 (4) |
C25—N4—C9—C8 | 77.1 (4) | C35—C36—C37—N7 | −174.8 (2) |
C7—C8—C9—N4 | −168.3 (3) | C35—C36—C37—C38 | −49.4 (3) |
C7—C8—C9—C10 | −44.7 (4) | N7—C37—C38—C43 | −37.9 (4) |
N4—C9—C10—C15 | −44.4 (4) | C36—C37—C38—C43 | −161.7 (3) |
C8—C9—C10—C15 | −166.7 (3) | N7—C37—C38—C39 | 142.0 (3) |
N4—C9—C10—C11 | 133.7 (3) | C36—C37—C38—C39 | 18.2 (4) |
C8—C9—C10—C11 | 11.4 (4) | C35—N6—C39—C40 | −169.0 (3) |
C7—N2—C11—C12 | −165.9 (3) | C35—N6—C39—C38 | 11.7 (5) |
C7—N2—C11—C10 | 15.5 (4) | C43—C38—C39—N6 | −178.4 (3) |
C15—C10—C11—N2 | −177.5 (3) | C37—C38—C39—N6 | 1.7 (4) |
C9—C10—C11—N2 | 4.4 (4) | C43—C38—C39—C40 | 2.4 (4) |
C15—C10—C11—C12 | 4.0 (4) | C37—C38—C39—C40 | −177.5 (3) |
C9—C10—C11—C12 | −174.1 (3) | N6—C39—C40—C41 | −179.5 (3) |
N2—C11—C12—C13 | −179.2 (3) | C38—C39—C40—C41 | −0.2 (5) |
C10—C11—C12—C13 | −0.6 (4) | C39—C40—C41—C42 | −1.6 (5) |
C11—C12—C13—C14 | −2.8 (5) | C40—C41—C42—C43 | 1.2 (5) |
C12—C13—C14—C15 | 2.7 (5) | C41—C42—C43—C38 | 1.1 (5) |
C13—C14—C15—C10 | 0.9 (5) | C41—C42—C43—C44 | −174.8 (3) |
C13—C14—C15—C16 | −176.8 (3) | C39—C38—C43—C42 | −2.8 (4) |
C11—C10—C15—C14 | −4.2 (4) | C37—C38—C43—C42 | 177.1 (3) |
C9—C10—C15—C14 | 173.9 (3) | C39—C38—C43—C44 | 172.8 (3) |
C11—C10—C15—C16 | 173.4 (3) | C37—C38—C43—C44 | −7.3 (4) |
C9—C10—C15—C16 | −8.5 (4) | O8—N8—C44—C45 | 0.0 (4) |
O3—N3—C16—C17 | 0.9 (4) | O8—N8—C44—C43 | 173.6 (3) |
O3—N3—C16—C15 | 175.7 (3) | C42—C43—C44—N8 | −54.3 (4) |
C14—C15—C16—N3 | −45.5 (4) | C38—C43—C44—N8 | 129.9 (3) |
C10—C15—C16—N3 | 136.9 (3) | C42—C43—C44—C45 | 118.0 (4) |
C14—C15—C16—C17 | 128.3 (3) | C38—C43—C44—C45 | −57.8 (5) |
C10—C15—C16—C17 | −49.4 (4) | N8—C44—C45—C46 | 0.4 (4) |
N3—C16—C17—C18 | −0.6 (4) | C43—C44—C45—C46 | −172.4 (3) |
C15—C16—C17—C18 | −174.7 (3) | C44—C45—C46—O8 | −0.6 (4) |
C16—C17—C18—O3 | 0.0 (3) | C44—C45—C46—C47 | 175.6 (4) |
C16—C17—C18—C19 | 178.8 (3) | N8—O8—C46—C45 | 0.6 (4) |
N3—O3—C18—C17 | 0.6 (4) | N8—O8—C46—C47 | −176.3 (3) |
N3—O3—C18—C19 | −178.4 (3) | C45—C46—C47—C48 | 9.7 (6) |
C17—C18—C19—C20 | 33.9 (5) | O8—C46—C47—C48 | −174.3 (4) |
O3—C18—C19—C20 | −147.4 (3) | C45—C46—C47—C52 | −167.0 (4) |
C17—C18—C19—C24 | −144.8 (4) | O8—C46—C47—C52 | 8.9 (5) |
O3—C18—C19—C24 | 33.9 (4) | C52—C47—C48—C49 | 0.4 (7) |
C24—C19—C20—C21 | −0.7 (5) | C46—C47—C48—C49 | −176.5 (4) |
C18—C19—C20—C21 | −179.4 (3) | C47—C48—C49—C50 | 0.5 (9) |
C19—C20—C21—C22 | −0.6 (6) | C48—C49—C50—C51 | −0.4 (9) |
C20—C21—C22—C23 | 1.0 (6) | C49—C50—C51—C52 | −0.7 (8) |
C21—C22—C23—C24 | −0.1 (6) | C50—C51—C52—C47 | 1.7 (7) |
C22—C23—C24—C19 | −1.2 (6) | C48—C47—C52—C51 | −1.5 (6) |
C20—C19—C24—C23 | 1.6 (5) | C46—C47—C52—C51 | 175.3 (4) |
C18—C19—C24—C23 | −179.7 (3) | C56—N7—C53—C54 | −20.9 (4) |
C28—N4—C25—C26 | −13.2 (4) | C37—N7—C53—C54 | 172.0 (3) |
C9—N4—C25—C26 | 175.3 (3) | N7—C53—C54—C55 | 25.6 (4) |
N4—C25—C26—C27 | 15.4 (5) | C53—C54—C55—C56 | −22.0 (5) |
C25—C26—C27—C28 | −12.7 (5) | C53—N7—C56—O7 | −172.8 (3) |
C25—N4—C28—O4 | −174.6 (3) | C37—N7—C56—O7 | −5.7 (5) |
C9—N4—C28—O4 | −3.0 (5) | C53—N7—C56—C55 | 7.2 (4) |
C25—N4—C28—C27 | 5.5 (4) | C37—N7—C56—C55 | 174.3 (3) |
C9—N4—C28—C27 | 177.1 (3) | C54—C55—C56—O7 | −170.2 (4) |
C26—C27—C28—O4 | −175.0 (4) | C54—C55—C56—N7 | 9.8 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O4i | 0.83 (7) | 2.07 (7) | 2.904 (5) | 173 (6) |
O1W—H1WB···O4ii | 1.03 (8) | 1.87 (8) | 2.877 (5) | 167 (6) |
O2W—H2WB···O7 | 0.97 (8) | 1.80 (9) | 2.754 (5) | 165 (8) |
N6—H6N···O2Wiii | 0.83 (4) | 2.13 (4) | 2.958 (5) | 179 (5) |
O2W—H2WA···O1W | 0.80 (6) | 2.09 (6) | 2.883 (6) | 175 (6) |
C3—H3···N2 | 0.93 | 2.52 | 2.848 (6) | 101 |
C9—H9···O4 | 0.98 | 2.50 | 2.857 (4) | 101 |
C33—H33···N6 | 0.93 | 2.51 | 2.830 (6) | 100 |
C37—H37···O7 | 0.98 | 2.49 | 2.872 (4) | 103 |
C52—H52···O8 | 0.93 | 2.50 | 2.811 (5) | 100 |
Symmetry codes: (i) x−1, y, z+1; (ii) −x+1, −y, −z+1; (iii) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C28H24N4O4·H2O |
Mr | 498.53 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 13.516 (8), 14.193 (6), 14.987 (11) |
α, β, γ (°) | 70.151 (10), 79.62 (2), 69.700 (9) |
V (Å3) | 2530 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.39 × 0.17 × 0.12 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21159, 11596, 7891 |
Rint | 0.090 |
(sin θ/λ)max (Å−1) | 0.653 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.098, 0.240, 1.16 |
No. of reflections | 11596 |
No. of parameters | 691 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.34, −0.33 |
Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O4i | 0.83 (7) | 2.07 (7) | 2.904 (5) | 173 (6) |
O1W—H1WB···O4ii | 1.03 (8) | 1.87 (8) | 2.877 (5) | 167 (6) |
O2W—H2WB···O7 | 0.97 (8) | 1.80 (9) | 2.754 (5) | 165 (8) |
N6—H6N···O2Wiii | 0.83 (4) | 2.13 (4) | 2.958 (5) | 179 (5) |
O2W—H2WA···O1W | 0.80 (6) | 2.09 (6) | 2.883 (6) | 175 (6) |
C3—H3···N2 | 0.93 | 2.52 | 2.848 (6) | 101 |
C9—H9···O4 | 0.98 | 2.50 | 2.857 (4) | 101 |
C33—H33···N6 | 0.93 | 2.51 | 2.830 (6) | 100 |
C37—H37···O7 | 0.98 | 2.49 | 2.872 (4) | 103 |
C52—H52···O8 | 0.93 | 2.50 | 2.811 (5) | 100 |
Symmetry codes: (i) x−1, y, z+1; (ii) −x+1, −y, −z+1; (iii) −x, −y+1, −z+1. |
Acknowledgements
LAS thanks FONDECYT (project No. 1100481) and PBCT ADI-38. We thank the Spanish Research Council (CSIC) for providing us with a free-of-charge licence for the CSD system.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Broggini, G., Chiesa, K., De Marchi, I., Martinelli, M., Pilati, T. & Zecchi, G. (2005). Tetrahedron, 61, 3525–3531. Web of Science CSD CrossRef CAS Google Scholar
Eswaran, S., Adhikari, V. A., Pal, K. N. & Chowdhury, H. I. (2010). Bioorg. Med. Chem. 20, 1040–1044. CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
He, F.-J., Yun, L.-H., Yang, R.-F., Xiao, Z.-Y., Cheng, J.-P., Zhou, W.-X. & Zhang, Y.-X. (2005). Bioorg. Med. Chem. Lett. 15, 2980–2985. Web of Science CrossRef PubMed CAS Google Scholar
Kalita, P., Baruah, B. & Bhuyan, P. (2006). Tetrahedron Lett. 47, 7779–7782. Web of Science CrossRef CAS Google Scholar
Kotera, K., Takano, Y., Matsuura, A. & Kitahonoki, K. (1970). Tetrahedron, 26, 539–556. CrossRef CAS Google Scholar
Kouznetsov, V. V., Vargas, L. Y. & Melendez, C. C. (2005). Curr. Org. Chem. 9, 141–161. Web of Science CrossRef CAS Google Scholar
Lautens, M. & Roy, A. (2000). Org. Lett. 2, 555–557. Web of Science CrossRef PubMed CAS Google Scholar
Lunniss, J. C., Cooper, W. J. A., Eldred, D. C., Kranz, M., Lindvall, M., Lucas, S. F., Neu, M., Preston, A., Ranshaw, E. L., Redgrave, J. A., Robinson, E. J., Shimpley, J. T., Solanke, E. Y., Somers, O. D. & Wiseman, O. J. (2009). Bioorg. Med. Chem. Lett. 19, 1380–1385. Web of Science CrossRef PubMed CAS Google Scholar
Narlawar, R., Pickhardt, M., Leuchtenberger, S., Baumann, K., Krause, S., Dyrks, T., Weggen, S., Mandelkow, E. & Schmidt, B. (2008). Chem. Med. Chem. 3, 165-172. Web of Science CrossRef PubMed CAS Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Rizzi, L., Dallanoce, C., Matera, C., Magrone, P., Pucci, L., Gotti, C., Clementi, F. & De Amici, M. (2008). Bioorg. Med. Chem. Lett. 18, 4651–4654. Web of Science CrossRef PubMed CAS Google Scholar
Sankaran, M., Kumarasamy, C., Chokkalingam, U. & Mohan, P. S. (2010). Bioorg. Med. Chem. Lett. 20, 7147–7151. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shi, A., Nguyen, T. A., Battina, K. S., Rana, S., Takemoto, J. D., Chiang, K. P. & Hua, D. (2008). Bioorg. Med. Chem. Lett. 18, 3364–3368. Web of Science CrossRef PubMed CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Taldone, T., Gozman, A., Maharaj, R. & Chiosis, G. (2008). Curr. Opin. Pharmacol. 8, 370–374. Web of Science CrossRef PubMed CAS Google Scholar
Velaparthi, S., Brunsteiner, M., Uddin, R., Wan, B., Franzblau, S. G. & Petukhov, P. A. (2008). J. Med. Chem. 51, 1999–2002. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Nitrogen containing heterocycles are indispensable structural units for medicinal chemists (Sankaran et al., 2010). Compounds possessing the quinoline system have wide applications as drugs and pharmaceuticals and also occur as structural frameworks in natural products (Kalita et al., 2006). They also have several pharmacological activities such as anti-breast cancer (Shi et al., 2008), selective PDE4 inhibition (Lunniss et al., 2009), immuno modulatory (He et al., 2005), antimycobacterial agents (Eswaran et al., 2010), among others.
Quinoline and derivatives represent the major class of heterocycles, and a number of preparations have been known since the late 1800's. The quinoline skeleton is often used for the design of many synthetic compounds with diverse pharmacological properties. Several syntheses of quinolines are known, but due to their importance, the development of new synthetic approaches remains an active research area (Kouznetsov et al., 2005).
The isoxazoles form a relevant group of biologically active compounds with a wide range of applications, including Hsp90 super chaperone complex inhibitors (Taldone et al., 2008), tau aggregation inhibitors for treatment of Alzheimer's disease (Narlawar et al., 2008), Mycobacterium tuberculosis pantothenate synthetase inhibitors (Velaparthi et al., 2008) and neuronal nicotinic acetylcholine receptor agonist effect (Rizzi et al., 2008).
A considerable number of methods to synthesize substituted isoxazoles have been published including approaches based on intramolecular cycloadditions, condensations, and intramolecular cyclizations of amino acids. These methods sometimes suffer in their versatility, convenience and yield (Lautens & Roy, 2000). The isoxazole ring can be synthesized by 1,3-dipolar cycloaddition reactions between nitrile oxide and alkyne, and that reaction may be catalyzed by copper(II). Cycloaddition reactions are among the most useful reactions in synthetic and mechanistic organic chemistry (Broggini et al., 2005).
Isoxazoles have a rich chemistry because of their easy reductive cleavage and susceptibility to ring transformations (Kotera et al., 1970). Depending on the substitution patterns, isoxazoles can be used as reagents for the imino-Diels-Alder condensation between anilines, aldehydes and electron-rich alkenes to generate tetrahydroquinolines with different selected substitution patterns. Due to this fact, the combination of the two heterocycles rings into a new chemical entityis of interest as no examples are known on chemical literature to date. Many molecules widely used today consist of fusions of rings; an example is the case of penicillins, where in the isoxazole ring incorporation allowed obtaining stable derivatives catalyzed degradation by gastric acid level (flucloxacillin and cloxacillin).
We report here the crystal structure of a novel synthetic derivative cis quinoline-isoxazole by imino Diels-Alder cycloaddition, Fig. 2. The title compound, C28H24N4O4.H2O, crystallizes with two organic molecules and two solvent water molecule in the asymmetric unit., Fig. 1. The most obvious difference between the molecules is the torsion angles between the isoxazole ring and the benzene and phenyl rings [47.0 (2); 56.4 (2) and 33.3 (2); 11.0 (2)°] respectively. Anther important difference is observed in the rotation of the nitro group with respect to the phenyl group [3.5 (6)°; 31.1 (6)°]. The pyrrolidinone fragment is cis oriented with respect to the 4-nitrophenyl fragment. In the crystal the molecules are linked into centrosymmetric R24(8) and R44(20) motifs by O—H···O and N—H···O interactions, (Bernstein et al., 1995). There are six intramolecular hydrogen bonds which stabilized the molecular conformation in both molecules, Table 1.