organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2,4-Di­chloro­phen­­oxy)-1-(4-meth­­oxy­phen­yl)-4-(3-nitro­phen­yl)azetidin-2-one

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 8 December 2010; accepted 15 December 2010; online 18 December 2010)

In the title compound, C22H16Cl2N2O5, the nearly planar four-membered β-lactam ring [maximum deviations of 0.011 (2) for the N atom] makes dihedral angles of 68.34 (13), 83.04 (13) and 3.37 (13)° with the dichloro-, nitro- and meth­oxy­phenyl rings, respectively. The crystal structure is stabilized by C—H⋯O hydrogen-bond inter­actions. In addition, a ππ stacking inter­action [centroid–centroid distance = 3.6622 (12) Å] is observed between the β-lactam and nitro­phenyl rings.

Related literature

For general background on β-lactams, see: Alcaide & Almendros (2001[Alcaide, B. & Almendros, P. (2001). Chem. Soc. Rev. 30, 226-240.]); Alcaide et al. (2007[Alcaide, B., Almendros, P. & Aragoncillo, C. (2007). Chem. Rev. 107, 4437-4492.]); Banik et al. (2004[Banik, B. K., Becker, F. F. & Banik, I. (2004). Bioorg. Med. Chem. 12, 2523-2528.]); Jarrahpour & Ebrahimi (2010[Jarrahpour, A. & Ebrahimi, E. (2010). Molecules, 15, 515-531.]); Jarrahpour & Zarei (2009[Jarrahpour, A. & Zarei, M. (2009). Tetrahedron, 65, 2927-2934.]); Jarrahpour et al. (2007[Jarrahpour, A., Khalili, D., Clecq, E. D., Salmi, C. & Brunel, J. M. (2007). Molecules, 12, 1720-1730.]); Turos et al. (2005[Turos, E., Coates, C., Shim, J. Y., Wang, Y., Leslie, J. M., Long, T. E., Reddy, G. S. K., Ortiz, A., Culbreath, M., Dickey, S., Lim, D. V., Alonso, E. & Gonzalez, J. (2005). Bioorg. Med. Chem. 13, 6289-6308.]); Vatmurge et al. (2008[Vatmurge, M. S., Hazra, B. G., Pore, V. S., Shirazi, F., Chavan, P. S. & Deshpande, M. V. (2008). Bioorg. Med. Chem. Lett. 18, 2043-2047.]).

[Scheme 1]

Experimental

Crystal data
  • C22H16Cl2N2O5

  • Mr = 459.27

  • Orthorhombic, P b c a

  • a = 9.0406 (2) Å

  • b = 17.8177 (5) Å

  • c = 25.9964 (6) Å

  • V = 4187.57 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 296 K

  • 0.57 × 0.41 × 0.28 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.826, Tmax = 0.909

  • 38140 measured reflections

  • 4199 independent reflections

  • 3153 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.129

  • S = 1.05

  • 4199 reflections

  • 282 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.93 2.60 3.360 (3) 140
C7—H7⋯O2ii 0.98 2.56 3.287 (3) 131
C17—H17⋯O2 0.93 2.55 3.148 (3) 123
C18—H18⋯O5iii 0.93 2.48 3.382 (3) 165
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) -x+2, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Azetidin-2-one or β-Lactam ring system is a usual skeleton structure of antibiotic drugs like penicillins, cephalosporins, carbapenems, nocardicins and monobactams (Vatmurge et al., 2008), that account for 50% of total antibiotics of the world (Alcaide et al., 2001), and play an important role in the fight against pathogenic bacteria. β-Lactams possess very biological activity such as antibacterial (Jarrahpour et al., 2009), anticancer (Banik et al., 2004), antifungal (Jarrahpour et al., 2010), antiviral (Jarrahpour et al., 2007), and anti-MRSA (Turos et al., 2005). β-Lactams can be used as a starting materials for the synthesis of other biological and medicinal substances such as α- and β-amino acids, β-amino alcohols, amino sugars, alkaloids, heterocycles, and taxoids and show the importance of β-Lactam ring as synthetic intermediates (Alcaide et al., 2007).

In the title compound, (Fig. 1), the β-lactam ring (N1/C7–C9) is nearly planar, with maximum deviations of -0.011 (2) for N1 and 0.010 (2) Å for C8. The O1—C7—C8—O2, C20–C19—O5—C22, O3—N2—C14—C13, O4—N2—C14—C13, Cl1—C2—C3—C4 and Cl2—C4—C3—C2 torsion angles are -60.3 (3), 6.6 (4), 0.3 (4), 179.6 (3), 179.51 (17) and 177.69 (17) °. The dihedral angles between the ring planes are listed in Table 2.

In the crystal structure, molecules are linked by intermolecular C—H···O hydrogen-bond interactions (Table 1 and Fig. 2). Furthermore, a π-π stacking interaction [centroid-centroid distance = 3.6622 (12) Å] is present in the structure, between the β-lactam ring (N1/C7–C9) and the benzene ring (C10–C15) attached to the nitro group.

Related literature top

For general background on β-lactams, see: Alcaide & Almendros (2001); Alcaide et al. (2007); Banik et al. (2004); Jarrahpour & Ebrahimi (2010); Jarrahpour & Zarei (2009); Jarrahpour et al. (2007); Turos et al. (2005); Vatmurge et al. (2008).

Experimental top

To a solution of N-(3-nitrobenzylidene)-4-methoxybenzenamine (1.0 eq.) in dry CH2Cl2 was added 2,4-dichlorophenoxy acetic acid (1.5 eq.), triethylamine (3.0 eq.), p-toluenesulfonyl chloride (1.5 eq.) and stirred at room temperature. After 10 h, the mixture was washed with 1M HCl (20 ml), saturated sodium bicarbonate solution (20 ml), brine (20 ml), dried over sodium sulfate and the solvent was evaporated to give the crude product as a gray precipitate which was then purified by recrystallization from EtOAc. (Yield 80%). [mp: 434–436 K]. IR (KBr, cm-1): 1763 (CO β-Lactam); 1H-NMR (250 MHz, CDCl3) δ (p.p.m): 3.67 (OCH3, s, 3H), 5.44 (H-9, d, 1H, J = 5.0 Hz), 5.49 (H-7, d, 1H, J = 5.0 Hz), 6.73–8.21 (ArH, m, 11H); 13C-NMR (62.9 MHz, CDCl3) δ (p.p.m): 55.49 (OMe), 60.38 (C-9), 81.63 (C-7), 114.67–156.98 (aromatic carbons), 161.30 (CO β-Lactam). Analysis calculated for C22H16Cl2N2O5: C 57.53, H 3.51, N 6.10%. found: C 57.42, H 3.45, N 6.23%.

Refinement top

H atoms attached to C atoms were placed at calculated positions and were treated as riding on their parent atoms with C—H = 0.93 (aromatic), 0.96 (methyl) or 0.98 Å (methine), and with Uiso(H) = 1.5Ueq(C) for methyl and Uiso(H) = 1.2Ueq(C) for aromatic, methine.

Structure description top

Azetidin-2-one or β-Lactam ring system is a usual skeleton structure of antibiotic drugs like penicillins, cephalosporins, carbapenems, nocardicins and monobactams (Vatmurge et al., 2008), that account for 50% of total antibiotics of the world (Alcaide et al., 2001), and play an important role in the fight against pathogenic bacteria. β-Lactams possess very biological activity such as antibacterial (Jarrahpour et al., 2009), anticancer (Banik et al., 2004), antifungal (Jarrahpour et al., 2010), antiviral (Jarrahpour et al., 2007), and anti-MRSA (Turos et al., 2005). β-Lactams can be used as a starting materials for the synthesis of other biological and medicinal substances such as α- and β-amino acids, β-amino alcohols, amino sugars, alkaloids, heterocycles, and taxoids and show the importance of β-Lactam ring as synthetic intermediates (Alcaide et al., 2007).

In the title compound, (Fig. 1), the β-lactam ring (N1/C7–C9) is nearly planar, with maximum deviations of -0.011 (2) for N1 and 0.010 (2) Å for C8. The O1—C7—C8—O2, C20–C19—O5—C22, O3—N2—C14—C13, O4—N2—C14—C13, Cl1—C2—C3—C4 and Cl2—C4—C3—C2 torsion angles are -60.3 (3), 6.6 (4), 0.3 (4), 179.6 (3), 179.51 (17) and 177.69 (17) °. The dihedral angles between the ring planes are listed in Table 2.

In the crystal structure, molecules are linked by intermolecular C—H···O hydrogen-bond interactions (Table 1 and Fig. 2). Furthermore, a π-π stacking interaction [centroid-centroid distance = 3.6622 (12) Å] is present in the structure, between the β-lactam ring (N1/C7–C9) and the benzene ring (C10–C15) attached to the nitro group.

For general background on β-lactams, see: Alcaide & Almendros (2001); Alcaide et al. (2007); Banik et al. (2004); Jarrahpour & Ebrahimi (2010); Jarrahpour & Zarei (2009); Jarrahpour et al. (2007); Turos et al. (2005); Vatmurge et al. (2008).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the packing and hydrogen bonding interactions down the a axis. Non-hydrogen bonding H atoms are omitted for clarity.
3-(2,4-Dichlorophenoxy)-1-(4-methoxyphenyl)-4-(3-nitrophenyl)azetidin-2-one top
Crystal data top
C22H16Cl2N2O5F(000) = 1888
Mr = 459.27Dx = 1.457 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 34508 reflections
a = 9.0406 (2) Åθ = 1.4–26.8°
b = 17.8177 (5) ŵ = 0.35 mm1
c = 25.9964 (6) ÅT = 296 K
V = 4187.57 (18) Å3Prism, colourless
Z = 80.57 × 0.41 × 0.28 mm
Data collection top
Stoe IPDS 2
diffractometer
4199 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3153 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.075
Detector resolution: 6.67 pixels mm-1θmax = 26.2°, θmin = 1.6°
ω scansh = 1111
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 2222
Tmin = 0.826, Tmax = 0.909l = 3232
38140 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.070P)2 + 0.3877P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4199 reflectionsΔρmax = 0.23 e Å3
282 parametersΔρmin = 0.34 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0019 (5)
Crystal data top
C22H16Cl2N2O5V = 4187.57 (18) Å3
Mr = 459.27Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.0406 (2) ŵ = 0.35 mm1
b = 17.8177 (5) ÅT = 296 K
c = 25.9964 (6) Å0.57 × 0.41 × 0.28 mm
Data collection top
Stoe IPDS 2
diffractometer
4199 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
3153 reflections with I > 2σ(I)
Tmin = 0.826, Tmax = 0.909Rint = 0.075
38140 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
4199 reflectionsΔρmin = 0.34 e Å3
282 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.21262 (8)0.86082 (4)0.66036 (3)0.0868 (3)
Cl20.34474 (8)0.78256 (5)0.70616 (3)0.0919 (3)
O10.19780 (15)0.74409 (8)0.58582 (5)0.0565 (5)
O20.4456 (2)0.72877 (11)0.50535 (6)0.0855 (7)
O30.0887 (3)0.49540 (13)0.78799 (7)0.1238 (12)
O40.0058 (3)0.45763 (14)0.71618 (9)0.1210 (10)
O50.9134 (2)0.44061 (12)0.55088 (7)0.0914 (7)
N10.4083 (2)0.61733 (10)0.55214 (6)0.0564 (6)
N20.0844 (3)0.49729 (13)0.74126 (8)0.0856 (9)
C10.0686 (2)0.74787 (11)0.61302 (7)0.0504 (6)
C20.0615 (2)0.80367 (12)0.65049 (7)0.0557 (6)
C30.0640 (3)0.81334 (13)0.67948 (8)0.0631 (7)
C40.1839 (3)0.76777 (13)0.67092 (8)0.0625 (7)
C50.1788 (2)0.71157 (14)0.63466 (8)0.0633 (7)
C60.0516 (2)0.70191 (13)0.60600 (7)0.0582 (7)
C70.2181 (2)0.68260 (13)0.55226 (7)0.0568 (7)
C80.3747 (3)0.68511 (13)0.53065 (7)0.0609 (7)
C90.2637 (2)0.60649 (12)0.57725 (7)0.0535 (6)
C100.2670 (2)0.60270 (11)0.63547 (6)0.0501 (6)
C110.3591 (2)0.64886 (13)0.66385 (7)0.0596 (7)
C120.3587 (3)0.64666 (15)0.71726 (8)0.0728 (9)
C130.2688 (3)0.59739 (15)0.74266 (8)0.0732 (9)
C140.1795 (3)0.55169 (13)0.71435 (8)0.0629 (7)
C150.1755 (2)0.55356 (12)0.66085 (7)0.0565 (6)
C160.5354 (2)0.57158 (12)0.55186 (7)0.0540 (6)
C170.6591 (2)0.59165 (13)0.52329 (8)0.0614 (7)
C180.7819 (2)0.54645 (14)0.52407 (8)0.0658 (8)
C190.7845 (3)0.48143 (15)0.55296 (8)0.0657 (8)
C200.6621 (3)0.46155 (15)0.58117 (9)0.0750 (8)
C210.5384 (3)0.50650 (14)0.58026 (8)0.0685 (8)
C220.9267 (3)0.37785 (19)0.58396 (10)0.0931 (11)
H30.067800.850400.704600.0760*
H50.260000.680500.629500.0760*
H60.047300.663800.581600.0700*
H70.141000.677900.525900.0680*
H90.209300.564200.562300.0640*
H110.422200.681900.646900.0720*
H120.419900.678800.735800.0870*
H130.268500.595100.778400.0880*
H150.112100.522200.642700.0680*
H170.658600.635400.503800.0740*
H180.864600.559800.504900.0790*
H200.662900.417900.600800.0900*
H210.455500.492600.599200.0820*
H22A0.849100.342700.576600.1110*
H22B0.919100.394100.619100.1110*
H22C1.020900.354200.578600.1110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0833 (5)0.0746 (4)0.1024 (5)0.0248 (3)0.0095 (3)0.0215 (3)
Cl20.0737 (4)0.1076 (6)0.0944 (5)0.0119 (4)0.0284 (3)0.0017 (4)
O10.0547 (8)0.0589 (9)0.0560 (7)0.0000 (7)0.0057 (6)0.0002 (6)
O20.0927 (13)0.0846 (12)0.0791 (10)0.0041 (10)0.0313 (9)0.0292 (9)
O30.194 (3)0.1049 (16)0.0724 (11)0.0032 (17)0.0507 (14)0.0294 (10)
O40.161 (2)0.0992 (16)0.1027 (15)0.0574 (17)0.0489 (15)0.0058 (13)
O50.0724 (11)0.1072 (15)0.0946 (12)0.0299 (11)0.0292 (9)0.0270 (11)
N10.0581 (10)0.0616 (11)0.0496 (8)0.0027 (9)0.0153 (7)0.0052 (7)
N20.119 (2)0.0620 (13)0.0757 (14)0.0005 (14)0.0386 (13)0.0087 (10)
C10.0516 (11)0.0512 (11)0.0485 (9)0.0041 (9)0.0012 (8)0.0065 (8)
C20.0615 (12)0.0478 (11)0.0579 (10)0.0003 (9)0.0014 (9)0.0013 (8)
C30.0738 (15)0.0539 (12)0.0615 (11)0.0062 (11)0.0063 (10)0.0056 (9)
C40.0605 (13)0.0668 (14)0.0603 (11)0.0068 (11)0.0071 (9)0.0041 (10)
C50.0553 (12)0.0725 (14)0.0621 (11)0.0060 (11)0.0001 (9)0.0017 (10)
C60.0594 (12)0.0628 (13)0.0523 (10)0.0027 (10)0.0015 (9)0.0060 (9)
C70.0609 (12)0.0654 (13)0.0442 (9)0.0040 (10)0.0027 (8)0.0022 (9)
C80.0684 (13)0.0693 (14)0.0451 (9)0.0016 (11)0.0107 (9)0.0056 (9)
C90.0538 (11)0.0610 (13)0.0457 (9)0.0024 (10)0.0092 (8)0.0028 (8)
C100.0512 (11)0.0529 (11)0.0461 (9)0.0053 (9)0.0111 (8)0.0042 (8)
C110.0569 (12)0.0695 (14)0.0524 (10)0.0043 (10)0.0026 (9)0.0046 (9)
C120.0780 (16)0.0854 (17)0.0551 (11)0.0040 (13)0.0052 (11)0.0028 (11)
C130.0942 (18)0.0748 (16)0.0507 (10)0.0088 (14)0.0085 (11)0.0055 (11)
C140.0803 (15)0.0532 (12)0.0553 (11)0.0092 (11)0.0237 (10)0.0102 (9)
C150.0627 (12)0.0493 (11)0.0576 (10)0.0027 (10)0.0134 (9)0.0015 (9)
C160.0550 (11)0.0611 (12)0.0460 (9)0.0001 (10)0.0110 (8)0.0033 (8)
C170.0656 (13)0.0640 (13)0.0547 (11)0.0022 (11)0.0173 (9)0.0018 (9)
C180.0588 (13)0.0769 (16)0.0618 (11)0.0014 (12)0.0203 (10)0.0004 (11)
C190.0609 (13)0.0759 (16)0.0604 (11)0.0090 (11)0.0145 (10)0.0013 (10)
C200.0758 (15)0.0774 (16)0.0719 (13)0.0126 (13)0.0243 (11)0.0179 (12)
C210.0666 (14)0.0698 (15)0.0691 (13)0.0067 (12)0.0269 (11)0.0123 (11)
C220.086 (2)0.110 (2)0.0834 (16)0.0294 (17)0.0107 (14)0.0117 (15)
Geometric parameters (Å, º) top
Cl1—C21.723 (2)C12—C131.367 (4)
Cl2—C41.739 (3)C13—C141.363 (3)
O1—C11.367 (2)C14—C151.392 (3)
O1—C71.413 (3)C16—C171.389 (3)
O2—C81.204 (3)C16—C211.375 (3)
O3—N21.216 (3)C17—C181.372 (3)
O4—N21.196 (3)C18—C191.381 (3)
O5—C191.375 (3)C19—C201.374 (4)
O5—C221.416 (4)C20—C211.376 (4)
N1—C81.365 (3)C3—H30.9300
N1—C91.474 (3)C5—H50.9300
N1—C161.409 (3)C6—H60.9300
N2—C141.472 (3)C7—H70.9800
C1—C21.393 (3)C9—H90.9800
C1—C61.373 (3)C11—H110.9300
C2—C31.373 (3)C12—H120.9300
C3—C41.373 (4)C13—H130.9300
C4—C51.376 (3)C15—H150.9300
C5—C61.381 (3)C17—H170.9300
C7—C81.524 (3)C18—H180.9300
C7—C91.559 (3)C20—H200.9300
C9—C101.515 (2)C21—H210.9300
C10—C111.384 (3)C22—H22A0.9600
C10—C151.373 (3)C22—H22B0.9600
C11—C121.389 (3)C22—H22C0.9600
Cl1···O12.8458 (16)C15···Cl1vii3.580 (2)
Cl1···O4i3.400 (3)C16···C113.593 (3)
Cl1···C15i3.580 (2)C17···O23.148 (3)
Cl2···C12ii3.624 (3)C18···O5ix3.382 (3)
Cl2···O4iii3.452 (3)C21···C103.319 (3)
Cl2···C3iv3.615 (2)C3···H20i2.9100
Cl2···C12iv3.635 (3)C4···H12iv3.0500
Cl2···H12ii2.9200C6···H72.7500
Cl2···H22Bi3.0900C7···H113.0800
O1···Cl12.8458 (16)C7···H62.5400
O1···O23.077 (2)C8···H172.8000
O1···N13.081 (2)C8···H113.0500
O1···C113.020 (2)C9···H212.7300
O2···C7v3.287 (3)C9···H62.9900
O2···O13.077 (2)C10···H212.7600
O2···C173.148 (3)C18···H6xiii3.0000
O2···C1v3.298 (2)C18···H9xiv2.9900
O2···C6v3.147 (3)C20···H22A2.7100
O3···C3vi3.360 (3)C20···H22B2.8000
O3···C12iv3.407 (4)C22···H202.5300
O4···Cl1vii3.400 (3)C22···H7xiv3.0900
O4···Cl2viii3.452 (3)H3···O3xi2.6000
O5···C18ix3.382 (3)H3···O4xi2.8600
O1···H112.8000H6···C72.5400
O2···H7v2.5600H6···C92.9900
O2···H172.5500H6···C18ii3.0000
O3···H132.4200H6···H72.2500
O3···H3vi2.6000H7···C62.7500
O4···H152.4300H7···H62.2500
O4···H22Bii2.8700H7···O2x2.5600
O4···H3vi2.8600H7···C22xiv3.0900
O5···H18ix2.4800H9···H152.3900
N1···O13.081 (2)H9···C18xiv2.9900
N2···C13iv3.391 (4)H11···O12.8000
N1···H112.7200H11···N12.7200
C1···C103.201 (3)H11···C73.0800
C1···C113.429 (3)H11···C83.0500
C1···O2x3.298 (2)H12···Cl2xiii2.9200
C3···O3xi3.360 (3)H12···C4xii3.0500
C3···Cl2xii3.615 (2)H13···O32.4200
C6···C103.465 (3)H15···O42.4300
C6···C93.402 (3)H15···H92.3900
C6···O2x3.147 (3)H17···O22.5500
C7···O2x3.287 (3)H17···C82.8000
C8···C113.525 (3)H18···O5ix2.4800
C9···C63.402 (3)H20···C222.5300
C10···C213.319 (3)H20···H22A2.2400
C10···C63.465 (3)H20···H22B2.4000
C10···C13.201 (3)H20···C3vii2.9100
C11···O13.020 (2)H21···C92.7300
C11···C163.593 (3)H21···C102.7600
C11···C83.525 (3)H22A···C202.7100
C11···C13.429 (3)H22A···H202.2400
C12···O3xii3.407 (4)H22B···O4xiii2.8700
C12···Cl2xii3.635 (3)H22B···C202.8000
C12···Cl2xiii3.624 (3)H22B···H202.4000
C13···N2xii3.391 (4)H22B···Cl2vii3.0900
C1—O1—C7117.95 (15)C16—C17—C18119.5 (2)
C19—O5—C22117.8 (2)C17—C18—C19121.0 (2)
C8—N1—C995.73 (17)O5—C19—C18115.9 (2)
C8—N1—C16133.74 (19)O5—C19—C20124.6 (2)
C9—N1—C16130.53 (17)C18—C19—C20119.5 (2)
O3—N2—O4123.2 (3)C19—C20—C21119.7 (2)
O3—N2—C14118.3 (2)C16—C21—C20121.1 (2)
O4—N2—C14118.5 (2)C2—C3—H3120.00
O1—C1—C2115.86 (16)C4—C3—H3120.00
O1—C1—C6125.32 (17)C4—C5—H5120.00
C2—C1—C6118.82 (17)C6—C5—H5120.00
Cl1—C2—C1119.29 (14)C1—C6—H6120.00
Cl1—C2—C3119.96 (16)C5—C6—H6120.00
C1—C2—C3120.76 (19)O1—C7—H7114.00
C2—C3—C4119.3 (2)C8—C7—H7114.00
Cl2—C4—C3119.04 (17)C9—C7—H7114.00
Cl2—C4—C5119.95 (19)N1—C9—H9112.00
C3—C4—C5121.0 (2)C7—C9—H9112.00
C4—C5—C6119.2 (2)C10—C9—H9112.00
C1—C6—C5120.9 (2)C10—C11—H11120.00
O1—C7—C8109.01 (16)C12—C11—H11120.00
O1—C7—C9116.85 (15)C11—C12—H12120.00
C8—C7—C986.19 (15)C13—C12—H12120.00
O2—C8—N1132.6 (2)C12—C13—H13121.00
O2—C8—C7135.7 (2)C14—C13—H13121.00
N1—C8—C791.71 (17)C10—C15—H15121.00
N1—C9—C786.33 (14)C14—C15—H15121.00
N1—C9—C10115.51 (15)C16—C17—H17120.00
C7—C9—C10117.40 (16)C18—C17—H17120.00
C9—C10—C11121.20 (17)C17—C18—H18120.00
C9—C10—C15119.76 (16)C19—C18—H18120.00
C11—C10—C15119.03 (16)C19—C20—H20120.00
C10—C11—C12121.0 (2)C21—C20—H20120.00
C11—C12—C13120.2 (2)C16—C21—H21120.00
C12—C13—C14118.4 (2)C20—C21—H21119.00
N2—C14—C13118.87 (19)O5—C22—H22A109.00
N2—C14—C15118.4 (2)O5—C22—H22B109.00
C13—C14—C15122.7 (2)O5—C22—H22C109.00
C10—C15—C14118.67 (19)H22A—C22—H22B110.00
N1—C16—C17120.69 (19)H22A—C22—H22C109.00
N1—C16—C21120.09 (18)H22B—C22—H22C109.00
C17—C16—C21119.2 (2)
C7—O1—C1—C2171.82 (16)C4—C5—C6—C10.5 (3)
C7—O1—C1—C68.5 (3)C8—C7—C9—C10115.53 (17)
C1—O1—C7—C978.4 (2)C9—C7—C8—O2177.4 (3)
C1—O1—C7—C8173.88 (16)O1—C7—C9—N1110.79 (16)
C22—O5—C19—C18173.6 (2)O1—C7—C8—O260.3 (3)
C22—O5—C19—C206.6 (4)C9—C7—C8—N11.51 (15)
C16—N1—C8—O22.3 (4)O1—C7—C8—N1118.62 (16)
C8—N1—C16—C21176.3 (2)O1—C7—C9—C106.1 (2)
C8—N1—C16—C173.4 (3)C8—C7—C9—N11.40 (14)
C9—N1—C16—C17177.12 (19)C7—C9—C10—C1160.5 (2)
C16—N1—C9—C1062.5 (3)C7—C9—C10—C15118.4 (2)
C8—N1—C9—C71.56 (15)N1—C9—C10—C1139.2 (3)
C9—N1—C8—C71.60 (15)N1—C9—C10—C15141.92 (19)
C16—N1—C8—C7178.8 (2)C9—C10—C11—C12178.2 (2)
C9—N1—C8—O2177.4 (2)C11—C10—C15—C140.4 (3)
C9—N1—C16—C213.3 (3)C15—C10—C11—C120.8 (3)
C16—N1—C9—C7178.78 (19)C9—C10—C15—C14179.34 (19)
C8—N1—C9—C10117.14 (19)C10—C11—C12—C131.4 (4)
O4—N2—C14—C151.1 (4)C11—C12—C13—C140.7 (4)
O3—N2—C14—C15179.6 (2)C12—C13—C14—C150.5 (4)
O4—N2—C14—C13179.6 (3)C12—C13—C14—N2178.8 (2)
O3—N2—C14—C130.3 (4)C13—C14—C15—C101.0 (4)
C6—C1—C2—C30.9 (3)N2—C14—C15—C10178.2 (2)
C2—C1—C6—C51.4 (3)N1—C16—C21—C20179.0 (2)
O1—C1—C6—C5178.31 (19)C17—C16—C21—C200.6 (3)
C6—C1—C2—Cl1179.03 (15)N1—C16—C17—C18179.40 (19)
O1—C1—C2—C3178.88 (18)C21—C16—C17—C180.2 (3)
O1—C1—C2—Cl11.2 (2)C16—C17—C18—C190.2 (3)
C1—C2—C3—C40.6 (3)C17—C18—C19—C200.3 (3)
Cl1—C2—C3—C4179.51 (17)C17—C18—C19—O5179.9 (2)
C2—C3—C4—C51.6 (3)O5—C19—C20—C21179.7 (2)
C2—C3—C4—Cl2177.69 (17)C18—C19—C20—C210.1 (4)
C3—C4—C5—C61.0 (3)C19—C20—C21—C160.6 (4)
Cl2—C4—C5—C6178.21 (17)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1, y, z; (iii) x1/2, y+1/2, z; (iv) x1/2, y, z+3/2; (v) x+1/2, y+3/2, z+1; (vi) x, y1/2, z+3/2; (vii) x+1/2, y1/2, z; (viii) x1/2, y1/2, z; (ix) x+2, y+1, z+1; (x) x1/2, y+3/2, z+1; (xi) x, y+1/2, z+3/2; (xii) x+1/2, y, z+3/2; (xiii) x+1, y, z; (xiv) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3xi0.932.603.360 (3)140
C7—H7···O2x0.982.563.287 (3)131
C17—H17···O20.932.553.148 (3)123
C18—H18···O5ix0.932.483.382 (3)165
Symmetry codes: (ix) x+2, y+1, z+1; (x) x1/2, y+3/2, z+1; (xi) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC22H16Cl2N2O5
Mr459.27
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)9.0406 (2), 17.8177 (5), 25.9964 (6)
V3)4187.57 (18)
Z8
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.57 × 0.41 × 0.28
Data collection
DiffractometerStoe IPDS 2
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.826, 0.909
No. of measured, independent and
observed [I > 2σ(I)] reflections
38140, 4199, 3153
Rint0.075
(sin θ/λ)max1)0.621
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.129, 1.05
No. of reflections4199
No. of parameters282
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.34

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.932.603.360 (3)140
C7—H7···O2ii0.982.563.287 (3)131
C17—H17···O20.932.553.148 (3)123
C18—H18···O5iii0.932.483.382 (3)165
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x1/2, y+3/2, z+1; (iii) x+2, y+1, z+1.
The dihedral angles between the mean planes of the rings (°). top
Ring-2Ring-3Ring-4
Ring-168.34 (13)83.04 (13)3.37 (13)
Ring-247.32 (11)70.49 (10)
Ring-383.00 (11)
Ring 1 : N1/C7–C9 β-lactam ring, Ring 2 : C1–C6 benzene ring, Ring 3 : C10–C15 benzene ring, Ring 4 : C16–C21 benzene ring.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund). AJ and SATB also thank the Shiraz University Research Council for financial support (grant No. 89-GR—SC-23).

References

First citationAlcaide, B. & Almendros, P. (2001). Chem. Soc. Rev. 30, 226–240.  Web of Science CrossRef CAS Google Scholar
First citationAlcaide, B., Almendros, P. & Aragoncillo, C. (2007). Chem. Rev. 107, 4437–4492.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBanik, B. K., Becker, F. F. & Banik, I. (2004). Bioorg. Med. Chem. 12, 2523–2528.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJarrahpour, A. & Ebrahimi, E. (2010). Molecules, 15, 515-531.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJarrahpour, A., Khalili, D., Clecq, E. D., Salmi, C. & Brunel, J. M. (2007). Molecules, 12, 1720-1730.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJarrahpour, A. & Zarei, M. (2009). Tetrahedron, 65, 2927–2934.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTuros, E., Coates, C., Shim, J. Y., Wang, Y., Leslie, J. M., Long, T. E., Reddy, G. S. K., Ortiz, A., Culbreath, M., Dickey, S., Lim, D. V., Alonso, E. & Gonzalez, J. (2005). Bioorg. Med. Chem. 13, 6289–6308.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVatmurge, M. S., Hazra, B. G., Pore, V. S., Shirazi, F., Chavan, P. S. & Deshpande, M. V. (2008). Bioorg. Med. Chem. Lett. 18, 2043–2047.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds