organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-{2-tert-Butyl-6-[2-(4-hy­dr­oxy­phen­yl)ethen­yl]-1-propyl-1,4-di­hydro­pyridin-4-yl­­idene}indane-1,3-dione

aSchool of Applied Chemical Engineering, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hyungkim@chonnam.ac.kr

(Received 11 November 2010; accepted 6 December 2010; online 15 December 2010)

The title compound, C29H29NO3, the nearly planar nine-membered indanedione ring [maximum deviation = 0.027 (2) Å] is located approximately parallel to its carrier pyridine ring [maximum deviation = 0.021 (2) Å] with a dihedral angle of 1.8 (1)° between the planes. However, because of steric hindrance, the benzene ring [maximum deviation = 0.006 (2) Å] is not parallel to the pyridine ring [dihedral angle = 37.29 (8)°]. The mol­ecules display numerous inter­molecular ππ inter­actions between the five- and six-membered rings, the shortest centroid–centroid distance being 3.796 (2) Å. There are inter- and intra­molecular O—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For the synthesis of the starting material, see: Yao et al. (2006a[Yao, Y.-S., Xiao, J., Wang, X.-S., Deng, Z.-B. & Zhang, B.-W. (2006a). Adv. Funct. Mater. 16, 709-718.]). For the synthesis of the title compound, see: Peng et al. (2006[Peng, Q., Kang, E. T., Neoh, K. G., Xiao, D. & Zou, D. (2006). J. Mater. Chem. 16, 376-383.]). For background to luminescent materials, see: Andreu et al. (2009[Andreu, R., Carrasquer, L., Garín, J., Modrego, M. J., Orduna, J., Alicante, R., Villacampa, B. & Allain, M. (2009). Tetrahedron Lett. 50, 2920-2924.]); Kim et al. (2004[Kim, D. U., Paik, S.-H., Kim, S.-H., Tak, Y.-H., Han, Y.-S., Kim, S.-D., Kim, K.-B., Ju, H.-J. & Kim, T.-J. (2004). Mater. Sci. Eng. C, 24, 147-149.]); Yao et al. (2006a[Yao, Y.-S., Xiao, J., Wang, X.-S., Deng, Z.-B. & Zhang, B.-W. (2006a). Adv. Funct. Mater. 16, 709-718.],b[Yao, Y.-S., Xiao, J., Zhou, Q.-X., Wang, X.-S., Wang, Y. & Zhang, B.-W. (2006b). J. Mater. Chem. 16, 3512-3520.]).

[Scheme 1]

Experimental

Crystal data
  • C29H29NO3

  • Mr = 439.53

  • Monoclinic, P 21 /c

  • a = 9.1330 (8) Å

  • b = 12.4857 (12) Å

  • c = 20.440 (2) Å

  • β = 97.775 (3)°

  • V = 2309.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 200 K

  • 0.25 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.809, Tmax = 1.000

  • 16959 measured reflections

  • 5724 independent reflections

  • 2458 reflections with I > 2σ(I)

  • Rint = 0.097

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.144

  • S = 0.95

  • 5724 reflections

  • 303 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.84 1.79 2.626 (2) 177
C2—H2⋯O2 0.95 2.24 2.927 (3) 128
C4—H4⋯O3 0.95 2.29 2.966 (3) 127
C15—H15⋯O3i 0.95 2.55 3.210 (3) 127
C16—H16⋯O1ii 0.95 2.57 3.500 (3) 166
C29—H29B⋯O2iii 0.98 2.59 3.515 (3) 158
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Indene-1,3(2H)-dione moiety is used as a strong electron acceptor for luminescent materials such as organic light-emitting diodes (OLED) (Yao et al., 2006a,b; Andreu et al., 2009; Kim et al., 2004). For the purpose of finding a pH-sensing luminescent dye, we designed the title compound which includes indene-1,3(2H)-dione moiety conjugated with 1,4-dihydropyridine ring possessing a 4-hydroxystyryl group. The title compound was synthesized by the Knoevenagel condensation of 2-(2-tert-butyl-6-methyl-1-propylpyridin-4(1H)-ylidene)-1H-indene-1,3(2H)-dione with 4-hydroxybenzaldehyde in a sealed tube and its structure was confirmed by NMR spectra and X-ray crystal analysis.

The title compound, C29H29NO3, is a 1,4-dihydropyridine ring with four distinct substituents (Fig. 1). In the crystal structure, the nearly planar 9-membered ring [maximum deviation of 0.027 (2) Å for C17] is located approximately parallel to its carrier pyridine ring [maximum deviation of 0.021 (2) Å for C3] with the dihedral angle of 1.8 (1)° between the planes. However, because of the steric hindrance, the benzne ring [maximum deviation of 0.006 (2) Å for C14] is not parallel to the pyridine ring. The dihedral angle between the pyridine and the benzene rings is 37.29 (8)°. The molecules display numerous intermolecular π-π interactions between the 5- and 6-membered rings. The shortest centroid-centroid distance is 3.796 (2) Å and the dihedral angle between the ring planes is 1.7 (1)°. Moreover, there are inter- and intramolecular O—H···O and C—H···O hydrogen bonds with d(O···O) = 2.626 (2) Å and d(C···O) = 2.927 (3) Å–3.515 (3) Å (Fig. 2, Table 1).

Related literature top

For the synthesis of the starting material, see: Yao et al. (2006a). For the synthesis of the title compound, see: Peng et al. (2006). For background to luminescent materials, see: Andreu et al. (2009); Kim et al. (2004); Yao et al. (2006a,b).

Experimental top

A mixture of 2-(2-tert-butyl-6-methyl-4H-pyran-4-ylidene)-1H-indene-1,3(2H)-dione (900 mg, 7.13 mmol) and propylamine (15 ml) was heated at 150 °C for 3 h. The mixture was cooled and concentrated under vacuum. The residue was crystallized from CHCl3 to give 2-(2-tert-butyl-6-methyl-1-propylpyridin-4(1H)-ylidene)-1H-indene-1,3(2H)-dione (750 mg, 73%). A mixture of 2-(2-tert-butyl-6-methyl-1-propylpyridin-4(1H)-ylidene)-1H-indene-1,3(2H)-dione (500 mg, 1.5 mmol), 4-hydroxybenzaldehyde (364 mg, 3.0 mmol), piperidine (600 mg, 7.0 mmol), n-butanol (10 ml) and molecular sieve (4 Å, 3 g) was heated in a sealed tube at 140 °C for 12 h. The reaction mixture was filtered and the filtrate was concentrated under vacuum to give crude product, which was chromatographed on SiO2 eluting with a mixture of CHCl3/acetone (10:1) solution to afford the title compound (130 mg, 20%) as a yellow solid. Crystals suitable for X-ray analysis were obtained by slow evaporation from a CHCl3/EtOH solution at room temperature. Mp 211 °C (dec.). 1H NMR (300 MHz, DMSO-d6): δ 9.94 (s, 1H, OH), 8.91 (d, 1H, J = 1.85 Hz, C—CH=C—N), 8.81 (d, 1H, J = 1.85 Hz, C—CH=C—N), 7.62–6.84 (m, 10H, Ar), 7.42 (d, 1H, J = 15.6 Hz, HC=CH—C6H4OH), 7.22 (d, 1H, J = 15.6 Hz, HC=CH-C6H4OH), 4.48 (t, 2H, J = 8.1 Hz, NCH2CH2CH3), 2.0 (m, 2H, NCH2CH2CH3), 1.53 [s, 9H, –C(CH3)3], 0.88 (t, 3H, J = 7.2 Hz, NCH2CH2CH3). 13C NMR (75 MHz, DMSO-d6): δ 190.5, 158.6, 158.5, 151.9, 148.4, 139.3, 137.5, 131.2, 128.9, 126.1, 118.8, 117.8, 118.0, 115.2, 113.1, 112.9, 51.1, 36.7, 30.2, 22.9, 9.8.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 (CH), 0.99 (CH2) or 0.98 Å (CH3) and O—H = 0.84 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C, O)].

Structure description top

Indene-1,3(2H)-dione moiety is used as a strong electron acceptor for luminescent materials such as organic light-emitting diodes (OLED) (Yao et al., 2006a,b; Andreu et al., 2009; Kim et al., 2004). For the purpose of finding a pH-sensing luminescent dye, we designed the title compound which includes indene-1,3(2H)-dione moiety conjugated with 1,4-dihydropyridine ring possessing a 4-hydroxystyryl group. The title compound was synthesized by the Knoevenagel condensation of 2-(2-tert-butyl-6-methyl-1-propylpyridin-4(1H)-ylidene)-1H-indene-1,3(2H)-dione with 4-hydroxybenzaldehyde in a sealed tube and its structure was confirmed by NMR spectra and X-ray crystal analysis.

The title compound, C29H29NO3, is a 1,4-dihydropyridine ring with four distinct substituents (Fig. 1). In the crystal structure, the nearly planar 9-membered ring [maximum deviation of 0.027 (2) Å for C17] is located approximately parallel to its carrier pyridine ring [maximum deviation of 0.021 (2) Å for C3] with the dihedral angle of 1.8 (1)° between the planes. However, because of the steric hindrance, the benzne ring [maximum deviation of 0.006 (2) Å for C14] is not parallel to the pyridine ring. The dihedral angle between the pyridine and the benzene rings is 37.29 (8)°. The molecules display numerous intermolecular π-π interactions between the 5- and 6-membered rings. The shortest centroid-centroid distance is 3.796 (2) Å and the dihedral angle between the ring planes is 1.7 (1)°. Moreover, there are inter- and intramolecular O—H···O and C—H···O hydrogen bonds with d(O···O) = 2.626 (2) Å and d(C···O) = 2.927 (3) Å–3.515 (3) Å (Fig. 2, Table 1).

For the synthesis of the starting material, see: Yao et al. (2006a). For the synthesis of the title compound, see: Peng et al. (2006). For background to luminescent materials, see: Andreu et al. (2009); Kim et al. (2004); Yao et al. (2006a,b).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 50% probability level for non-H atoms.
[Figure 2] Fig. 2. View of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn with dashed lines.
(E)-2-{2-tert-Butyl-6-[2-(4-hydroxyphenyl)ethenyl]-1-propyl-1,4- dihydropyridin-4-ylidene}indane-1,3-dione top
Crystal data top
C29H29NO3F(000) = 936
Mr = 439.53Dx = 1.264 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1849 reflections
a = 9.1330 (8) Åθ = 2.6–22.5°
b = 12.4857 (12) ŵ = 0.08 mm1
c = 20.440 (2) ÅT = 200 K
β = 97.775 (3)°Block, orange
V = 2309.4 (4) Å30.25 × 0.15 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
5724 independent reflections
Radiation source: fine-focus sealed tube2458 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.097
φ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 129
Tmin = 0.809, Tmax = 1.000k = 1416
16959 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0389P)2]
where P = (Fo2 + 2Fc2)/3
5724 reflections(Δ/σ)max < 0.001
303 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C29H29NO3V = 2309.4 (4) Å3
Mr = 439.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1330 (8) ŵ = 0.08 mm1
b = 12.4857 (12) ÅT = 200 K
c = 20.440 (2) Å0.25 × 0.15 × 0.10 mm
β = 97.775 (3)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
5724 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2458 reflections with I > 2σ(I)
Tmin = 0.809, Tmax = 1.000Rint = 0.097
16959 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 0.95Δρmax = 0.27 e Å3
5724 reflectionsΔρmin = 0.24 e Å3
303 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0695 (2)0.59992 (15)0.28744 (9)0.0476 (5)
H10.11760.55870.31490.071*
O20.5781 (2)0.11427 (16)0.09052 (9)0.0486 (6)
O30.78458 (19)0.03498 (15)0.12927 (8)0.0457 (5)
N10.4052 (2)0.36029 (17)0.09620 (10)0.0321 (5)
C10.3979 (3)0.3394 (2)0.02930 (12)0.0341 (7)
C20.4809 (3)0.2590 (2)0.00776 (12)0.0358 (7)
H20.47680.24740.03840.043*
C30.5722 (3)0.1927 (2)0.05153 (12)0.0321 (6)
C40.5788 (3)0.2198 (2)0.11904 (12)0.0337 (7)
H40.64300.17950.15020.040*
C50.4981 (3)0.3010 (2)0.14242 (12)0.0301 (6)
C60.3013 (3)0.4443 (2)0.11389 (12)0.0372 (7)
H6A0.28790.43520.16080.045*
H6B0.20390.43320.08700.045*
C70.3518 (3)0.5595 (2)0.10358 (13)0.0395 (7)
H7A0.41730.58380.14340.047*
H7B0.40870.56180.06570.047*
C80.2198 (3)0.6337 (2)0.09059 (15)0.0544 (9)
H8A0.15400.60870.05170.082*
H8B0.25370.70640.08260.082*
H8C0.16620.63390.12900.082*
C90.3034 (3)0.4045 (2)0.01866 (12)0.0375 (7)
H90.28090.47560.00680.045*
C100.2472 (3)0.3688 (2)0.07848 (13)0.0372 (7)
H100.26380.29540.08740.045*
C110.1628 (3)0.4304 (2)0.13161 (12)0.0317 (6)
C120.1454 (3)0.5414 (2)0.12959 (13)0.0390 (7)
H120.18890.57990.09180.047*
C130.0667 (3)0.5963 (2)0.18120 (12)0.0364 (7)
H130.05540.67170.17850.044*
C140.0037 (3)0.5414 (2)0.23731 (12)0.0336 (7)
C150.0185 (3)0.4315 (2)0.24032 (13)0.0382 (7)
H150.02540.39330.27820.046*
C160.0974 (3)0.3770 (2)0.18809 (12)0.0363 (7)
H160.10730.30150.19070.044*
C170.6529 (3)0.1067 (2)0.02824 (12)0.0323 (6)
C180.6471 (3)0.0741 (2)0.04036 (13)0.0351 (7)
C190.7476 (3)0.0205 (2)0.04171 (13)0.0350 (7)
C200.7841 (3)0.0786 (2)0.09424 (13)0.0430 (7)
H200.74120.06280.13810.052*
C210.8859 (3)0.1616 (2)0.08116 (14)0.0467 (8)
H210.91220.20340.11660.056*
C220.9486 (3)0.1837 (2)0.01795 (15)0.0463 (8)
H221.01830.24030.01030.056*
C230.9122 (3)0.1248 (2)0.03534 (14)0.0414 (7)
H230.95640.14030.07910.050*
C240.8103 (3)0.0435 (2)0.02303 (13)0.0344 (7)
C250.7502 (3)0.0347 (2)0.06786 (13)0.0354 (7)
C260.5070 (3)0.3201 (2)0.21726 (12)0.0340 (7)
C270.6370 (3)0.2581 (2)0.25452 (12)0.0469 (8)
H27A0.62370.18140.24560.070*
H27B0.64130.27120.30200.070*
H27C0.72930.28220.23980.070*
C280.3691 (3)0.2742 (2)0.24283 (13)0.0512 (8)
H28A0.28060.30960.22030.077*
H28B0.37590.28670.29050.077*
H28C0.36290.19700.23410.077*
C290.5324 (3)0.4375 (2)0.23891 (13)0.0455 (8)
H29A0.60950.46890.21590.068*
H29B0.56350.44040.28670.068*
H29C0.44040.47790.22790.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0611 (14)0.0377 (13)0.0384 (12)0.0059 (10)0.0140 (10)0.0000 (10)
O20.0662 (14)0.0522 (14)0.0251 (11)0.0169 (11)0.0023 (9)0.0015 (10)
O30.0559 (12)0.0513 (14)0.0271 (11)0.0104 (10)0.0050 (9)0.0016 (10)
N10.0349 (13)0.0362 (14)0.0256 (12)0.0032 (11)0.0055 (10)0.0029 (11)
C10.0396 (17)0.0377 (18)0.0243 (15)0.0012 (14)0.0024 (12)0.0001 (13)
C20.0439 (17)0.0381 (18)0.0251 (15)0.0048 (14)0.0038 (13)0.0022 (13)
C30.0356 (16)0.0319 (17)0.0284 (15)0.0024 (13)0.0030 (12)0.0017 (13)
C40.0385 (16)0.0341 (17)0.0270 (15)0.0018 (14)0.0009 (12)0.0026 (13)
C50.0327 (15)0.0312 (16)0.0256 (15)0.0038 (13)0.0011 (12)0.0031 (12)
C60.0384 (16)0.0415 (19)0.0326 (16)0.0056 (14)0.0077 (12)0.0002 (14)
C70.0438 (17)0.0395 (18)0.0355 (17)0.0047 (15)0.0067 (13)0.0020 (14)
C80.055 (2)0.046 (2)0.062 (2)0.0085 (17)0.0029 (16)0.0025 (17)
C90.0462 (17)0.0383 (18)0.0274 (16)0.0111 (14)0.0030 (13)0.0014 (14)
C100.0419 (17)0.0333 (17)0.0363 (17)0.0051 (14)0.0044 (13)0.0029 (14)
C110.0343 (16)0.0318 (17)0.0287 (15)0.0019 (13)0.0037 (12)0.0002 (13)
C120.0439 (17)0.0410 (19)0.0305 (16)0.0022 (15)0.0005 (13)0.0043 (14)
C130.0447 (17)0.0290 (16)0.0340 (17)0.0035 (14)0.0004 (13)0.0007 (13)
C140.0344 (16)0.0354 (18)0.0297 (16)0.0026 (14)0.0002 (12)0.0034 (14)
C150.0439 (18)0.0381 (18)0.0306 (16)0.0016 (14)0.0028 (13)0.0035 (14)
C160.0404 (17)0.0321 (17)0.0360 (17)0.0050 (14)0.0037 (13)0.0011 (13)
C170.0363 (16)0.0350 (17)0.0242 (15)0.0025 (13)0.0006 (12)0.0011 (12)
C180.0390 (17)0.0353 (17)0.0305 (16)0.0034 (14)0.0034 (13)0.0003 (13)
C190.0369 (16)0.0330 (17)0.0345 (16)0.0003 (14)0.0034 (12)0.0038 (13)
C200.0517 (19)0.045 (2)0.0311 (16)0.0075 (16)0.0018 (13)0.0045 (14)
C210.051 (2)0.046 (2)0.044 (2)0.0085 (16)0.0124 (15)0.0026 (16)
C220.0456 (19)0.0389 (19)0.054 (2)0.0112 (15)0.0057 (15)0.0035 (16)
C230.0417 (18)0.0390 (19)0.0414 (18)0.0041 (15)0.0020 (14)0.0007 (15)
C240.0377 (16)0.0333 (17)0.0308 (16)0.0029 (14)0.0004 (12)0.0006 (13)
C250.0376 (17)0.0404 (18)0.0269 (16)0.0019 (14)0.0002 (12)0.0013 (14)
C260.0436 (17)0.0360 (17)0.0225 (15)0.0013 (14)0.0046 (12)0.0016 (13)
C270.061 (2)0.054 (2)0.0254 (16)0.0025 (16)0.0018 (14)0.0006 (14)
C280.060 (2)0.057 (2)0.0398 (18)0.0049 (17)0.0157 (15)0.0014 (16)
C290.062 (2)0.042 (2)0.0306 (17)0.0027 (16)0.0005 (14)0.0022 (14)
Geometric parameters (Å, º) top
O1—C141.358 (3)C13—C141.392 (3)
O1—H10.8400C13—H130.9500
O2—C181.235 (3)C14—C151.381 (4)
O3—C251.252 (3)C15—C161.383 (3)
N1—C11.385 (3)C15—H150.9500
N1—C51.394 (3)C16—H160.9500
N1—C61.492 (3)C17—C251.434 (3)
C1—C21.367 (3)C17—C181.454 (3)
C1—C91.461 (3)C18—C191.499 (3)
C2—C31.407 (3)C19—C201.374 (3)
C2—H20.9500C19—C241.399 (3)
C3—C41.414 (3)C20—C211.393 (4)
C3—C171.421 (3)C20—H200.9500
C4—C51.376 (3)C21—C221.369 (4)
C4—H40.9500C21—H210.9500
C5—C261.539 (3)C22—C231.391 (4)
C6—C71.533 (4)C22—H220.9500
C6—H6A0.9900C23—C241.376 (3)
C6—H6B0.9900C23—H230.9500
C7—C81.515 (3)C24—C251.494 (4)
C7—H7A0.9900C26—C271.531 (3)
C7—H7B0.9900C26—C281.539 (3)
C8—H8A0.9800C26—C291.540 (4)
C8—H8B0.9800C27—H27A0.9800
C8—H8C0.9800C27—H27B0.9800
C9—C101.337 (3)C27—H27C0.9800
C9—H90.9500C28—H28A0.9800
C10—C111.462 (3)C28—H28B0.9800
C10—H100.9500C28—H28C0.9800
C11—C161.395 (3)C29—H29A0.9800
C11—C121.396 (4)C29—H29B0.9800
C12—C131.376 (3)C29—H29C0.9800
C12—H120.9500
C14—O1—H1109.5C14—C15—H15120.1
C1—N1—C5120.9 (2)C16—C15—H15120.1
C1—N1—C6115.1 (2)C15—C16—C11121.6 (3)
C5—N1—C6123.9 (2)C15—C16—H16119.2
C2—C1—N1120.1 (2)C11—C16—H16119.2
C2—C1—C9119.7 (2)C3—C17—C25126.5 (2)
N1—C1—C9120.2 (2)C3—C17—C18125.6 (2)
C1—C2—C3122.3 (2)C25—C17—C18108.0 (2)
C1—C2—H2118.8O2—C18—C17129.4 (3)
C3—C2—H2118.8O2—C18—C19123.4 (2)
C2—C3—C4115.0 (2)C17—C18—C19107.2 (2)
C2—C3—C17121.4 (2)C20—C19—C24121.3 (3)
C4—C3—C17123.5 (2)C20—C19—C18130.1 (2)
C5—C4—C3124.1 (2)C24—C19—C18108.5 (2)
C5—C4—H4117.9C19—C20—C21117.9 (3)
C3—C4—H4117.9C19—C20—H20121.0
C4—C5—N1117.5 (2)C21—C20—H20121.0
C4—C5—C26120.0 (2)C22—C21—C20120.9 (3)
N1—C5—C26122.5 (2)C22—C21—H21119.5
N1—C6—C7114.4 (2)C20—C21—H21119.5
N1—C6—H6A108.7C21—C22—C23121.2 (3)
C7—C6—H6A108.7C21—C22—H22119.4
N1—C6—H6B108.7C23—C22—H22119.4
C7—C6—H6B108.7C24—C23—C22118.3 (3)
H6A—C6—H6B107.6C24—C23—H23120.9
C8—C7—C6110.5 (2)C22—C23—H23120.9
C8—C7—H7A109.5C23—C24—C19120.3 (3)
C6—C7—H7A109.5C23—C24—C25131.7 (2)
C8—C7—H7B109.5C19—C24—C25108.0 (2)
C6—C7—H7B109.5O3—C25—C17128.0 (3)
H7A—C7—H7B108.1O3—C25—C24123.6 (2)
C7—C8—H8A109.5C17—C25—C24108.3 (2)
C7—C8—H8B109.5C27—C26—C28105.0 (2)
H8A—C8—H8B109.5C27—C26—C5110.5 (2)
C7—C8—H8C109.5C28—C26—C5110.1 (2)
H8A—C8—H8C109.5C27—C26—C29105.2 (2)
H8B—C8—H8C109.5C28—C26—C29110.8 (2)
C10—C9—C1123.2 (3)C5—C26—C29114.7 (2)
C10—C9—H9118.4C26—C27—H27A109.5
C1—C9—H9118.4C26—C27—H27B109.5
C9—C10—C11127.0 (3)H27A—C27—H27B109.5
C9—C10—H10116.5C26—C27—H27C109.5
C11—C10—H10116.5H27A—C27—H27C109.5
C16—C11—C12117.4 (2)H27B—C27—H27C109.5
C16—C11—C10119.1 (3)C26—C28—H28A109.5
C12—C11—C10123.4 (2)C26—C28—H28B109.5
C13—C12—C11121.4 (2)H28A—C28—H28B109.5
C13—C12—H12119.3C26—C28—H28C109.5
C11—C12—H12119.3H28A—C28—H28C109.5
C12—C13—C14120.1 (3)H28B—C28—H28C109.5
C12—C13—H13120.0C26—C29—H29A109.5
C14—C13—H13120.0C26—C29—H29B109.5
O1—C14—C15122.8 (2)H29A—C29—H29B109.5
O1—C14—C13117.6 (2)C26—C29—H29C109.5
C15—C14—C13119.6 (2)H29A—C29—H29C109.5
C14—C15—C16119.9 (3)H29B—C29—H29C109.5
C5—N1—C1—C20.8 (4)C2—C3—C17—C182.8 (4)
C6—N1—C1—C2175.6 (2)C4—C3—C17—C18178.4 (2)
C5—N1—C1—C9178.1 (2)C3—C17—C18—O22.5 (5)
C6—N1—C1—C95.5 (3)C25—C17—C18—O2179.3 (3)
N1—C1—C2—C32.0 (4)C3—C17—C18—C19179.1 (2)
C9—C1—C2—C3179.1 (2)C25—C17—C18—C191.0 (3)
C1—C2—C3—C43.8 (4)O2—C18—C19—C200.6 (5)
C1—C2—C3—C17177.3 (2)C17—C18—C19—C20177.9 (3)
C2—C3—C4—C53.1 (4)O2—C18—C19—C24178.6 (3)
C17—C3—C4—C5178.1 (3)C17—C18—C19—C240.1 (3)
C3—C4—C5—N10.5 (4)C24—C19—C20—C210.0 (4)
C3—C4—C5—C26176.7 (2)C18—C19—C20—C21177.7 (3)
C1—N1—C5—C41.5 (4)C19—C20—C21—C220.6 (4)
C6—N1—C5—C4174.5 (2)C20—C21—C22—C230.4 (4)
C1—N1—C5—C26178.7 (2)C21—C22—C23—C240.3 (4)
C6—N1—C5—C262.6 (4)C22—C23—C24—C190.9 (4)
C1—N1—C6—C778.9 (3)C22—C23—C24—C25178.6 (3)
C5—N1—C6—C7104.9 (3)C20—C19—C24—C230.8 (4)
N1—C6—C7—C8153.0 (2)C18—C19—C24—C23177.4 (2)
C2—C1—C9—C1026.8 (4)C20—C19—C24—C25179.0 (2)
N1—C1—C9—C10154.3 (2)C18—C19—C24—C250.8 (3)
C1—C9—C10—C11174.3 (2)C3—C17—C25—O31.5 (5)
C9—C10—C11—C16172.4 (3)C18—C17—C25—O3179.7 (3)
C9—C10—C11—C128.6 (4)C3—C17—C25—C24179.6 (2)
C16—C11—C12—C130.1 (4)C18—C17—C25—C241.5 (3)
C10—C11—C12—C13179.1 (2)C23—C24—C25—O32.4 (5)
C11—C12—C13—C140.7 (4)C19—C24—C25—O3179.7 (2)
C12—C13—C14—O1178.3 (2)C23—C24—C25—C17176.5 (3)
C12—C13—C14—C151.1 (4)C19—C24—C25—C171.4 (3)
O1—C14—C15—C16178.5 (2)C4—C5—C26—C2713.2 (3)
C13—C14—C15—C160.9 (4)N1—C5—C26—C27169.7 (2)
C14—C15—C16—C110.3 (4)C4—C5—C26—C28102.3 (3)
C12—C11—C16—C150.1 (4)N1—C5—C26—C2874.8 (3)
C10—C11—C16—C15178.9 (2)C4—C5—C26—C29131.8 (3)
C2—C3—C17—C25179.3 (2)N1—C5—C26—C2951.1 (3)
C4—C3—C17—C250.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.841.792.626 (2)177
C2—H2···O20.952.242.927 (3)128
C4—H4···O30.952.292.966 (3)127
C15—H15···O3i0.952.553.210 (3)127
C16—H16···O1ii0.952.573.500 (3)166
C29—H29B···O2iii0.982.593.515 (3)158
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x, y1/2, z1/2; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC29H29NO3
Mr439.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)9.1330 (8), 12.4857 (12), 20.440 (2)
β (°) 97.775 (3)
V3)2309.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.809, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
16959, 5724, 2458
Rint0.097
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.144, 0.95
No. of reflections5724
No. of parameters303
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.24

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.841.792.626 (2)176.9
C2—H2···O20.952.242.927 (3)128.4
C4—H4···O30.952.292.966 (3)127.2
C15—H15···O3i0.952.553.210 (3)126.8
C16—H16···O1ii0.952.573.500 (3)166.0
C29—H29B···O2iii0.982.593.515 (3)158.0
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x, y1/2, z1/2; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

This study was supported financially by Chonnam National University, 2008.

References

First citationAndreu, R., Carrasquer, L., Garín, J., Modrego, M. J., Orduna, J., Alicante, R., Villacampa, B. & Allain, M. (2009). Tetrahedron Lett. 50, 2920–2924.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKim, D. U., Paik, S.-H., Kim, S.-H., Tak, Y.-H., Han, Y.-S., Kim, S.-D., Kim, K.-B., Ju, H.-J. & Kim, T.-J. (2004). Mater. Sci. Eng. C, 24, 147–149.  Web of Science CrossRef Google Scholar
First citationPeng, Q., Kang, E. T., Neoh, K. G., Xiao, D. & Zou, D. (2006). J. Mater. Chem. 16, 376–383.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYao, Y.-S., Xiao, J., Wang, X.-S., Deng, Z.-B. & Zhang, B.-W. (2006a). Adv. Funct. Mater. 16, 709–718.  Web of Science CSD CrossRef CAS Google Scholar
First citationYao, Y.-S., Xiao, J., Zhou, Q.-X., Wang, X.-S., Wang, Y. & Zhang, B.-W. (2006b). J. Mater. Chem. 16, 3512–3520.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds