organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 6-di­methyl­amino-4-hy­dr­oxy-2-naphtho­ate

aDepartment of Bio & Chemical Engineering, Hongik University, Jochiwon, Chungnam 339-701, Republic of Korea, bBiomaterial Research Center, Korea Research Institute of Chemical Technology, PO Box 107, Yuseong, Daejeon 305-600, Republic of Korea, and cCenter for Chemical Analysis, Korea Research Institute of Chemical Technology, PO Box 107, Yuseong, Daejeon 305-600, Republic of Korea
*Correspondence e-mail: mhkim@krict.re.kr

(Received 9 November 2010; accepted 18 December 2010; online 24 December 2010)

In the title compound, C14H15NO3, the ester group is oriented so that the carbonyl group points in the opposite direction to the hy­droxy group. The mol­ecule as a whole is almost planar (the r.m.s. deviation of the non-H atoms is 0.0268 Å). In the crystal, mol­ecules are linked by inter­molecular O—H⋯O hydrogen bonds into infinite chains that propagate parallel to the c axis.

Related literature

For the synthesis, properties and applications of organic photochromic and thermochromic dyes, see: Gabbutt et al. (2003[Gabbutt, C. D., Heron, B. M., Instone, A. C., Thomas, D. A., Partington, S. M., Hursthouse, M. B. & Gelbrich, T. (2003). Eur. J. Org. Chem. pp. 1220-1230.], 2004[Gabbutt, C. D., Hepworth, J. D., Heron, B. M., Thomas, D. A., Kilner, C. & Partington, S. M. (2004). Heterocycles, 63, 567-582.]); Kim et al. (2010[Kim, M.-H., Seo, J.-S., Kim, C.-H., Ryu, J.-W. & Lee, K.-H. (2010). Acta Cryst. E66, o66.]); Kumar et al. (1995[Kumar, A., Gemert, B. V. & Knowles, D. B. (1995). US Patent 5458814.]); Gemert & Selvig (2000[Gemert, B. V. & Selvig, C. D. (2000). US Patent 6106744.]); Nelson et al. (2002[Nelson, C. M., Chopra, A., Knowles, D. B., Gemert, B. V. & Kumar, A. (2002). US Patent 6348604 B1.]). For an additional review of such materials, see; Crano & Guglielmetti (1999[Crano, J. C. & Guglielmetti, R. J. (1999). Organic Photochromic and Thermochromic Compounds, Vol. 1, edited by J. C. Crano & R. J. Guglielmetti. New York: Plenum Press.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15NO3

  • Mr = 245.27

  • Monoclinic, C 2/c

  • a = 27.2482 (5) Å

  • b = 6.6211 (1) Å

  • c = 13.6283 (3) Å

  • β = 97.203 (1)°

  • V = 2439.32 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.43 × 0.28 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 11077 measured reflections

  • 3019 independent reflections

  • 2021 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.151

  • S = 1.05

  • 3019 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O15—H15A⋯O12i 0.82 1.92 2.736 (2) 170
Symmetry code: (i) [x, -y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthesis and applications of organic photochromic and thermochromic dyes has become of great interest recently (Kumar et al., 1995; Gemert & Selvig, 2000; Nelson et al., 2002; Gabbutt et al., 2003, 2004). These compounds may be useful as optical transmission materials in ophthalmic glasses and lenses. They have potential use in optical disks or memories (Crano & Guglielmetti, 1999). In the present work, the structure of methyl 6-(dimethylamino)-4-hydroxy-2-naphthoate has been determined to study the effect of substituents on the novel photochromic naphthopyrans (Kim et al., 2010). The orientation of the hydroxy group and the carbonyl of the ester group in the structure of the title compound, C14H15NO3, are opposite to each other as shown in Fig. 1. The dimethylamino group, hydroxy group, methyl carboxyl group and the naphthonyl ring are almost coplanar (rms deviation = 0.0268 Å). In the crystal structure, the molecules are linked by moderate-strength intermolecular O—H···O hydrogen bonds into one-dimensional, infinite chains running along the c axis as shown in Fig. 2. The molecular chains are generated by O—H···O hydrogen bonds (Table 1) between the H atom of the hydroxy group and the O atom of the methyl carboxyl group.

Related literature top

For the synthesis, properties and applications of organic photochromic and thermochromic dyes, see: Gabbutt et al. (2003, 2004); Kim et al. (2010); Kumar et al. (1995); Gemert & Selvig (2000); Nelson et al. (2002). For an additional review, see; Crano & Guglielmetti (1999).

Experimental top

Concentrated hydrochloric acid (3 ml) was added dropwise to a stirred solution of 4-acetoxy-6-dimethylamino-2-naphthonic acid (212.5 g) in methanol (1000 ml). On completion of the addition the solution was heated to reflux for 12 h and then cooled to room temperature. The resulting brown solution was evaporated and diluted with water (800 ml) and extracted with ethyl acetate (2 x 1200 ml). The organic extracts were dried over anhydrous magnesium sulfate and evaporated to give the title compound (164 g, yield 67%) as a white powder. Single crystals suitable for X-ray diffraction were obtained from a solution in isopropyl alcohol.

Refinement top

All H atoms were placed in calculated positions using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) for aromatic H atoms, C—H = 0.96 Å and Uiso(H) = 1.5 Ueq(C) for methyl H atoms, and O—H = 0.82 Å and Uiso(H) = 1.5 Ueq(O) for hydroxy H atom.

Structure description top

The synthesis and applications of organic photochromic and thermochromic dyes has become of great interest recently (Kumar et al., 1995; Gemert & Selvig, 2000; Nelson et al., 2002; Gabbutt et al., 2003, 2004). These compounds may be useful as optical transmission materials in ophthalmic glasses and lenses. They have potential use in optical disks or memories (Crano & Guglielmetti, 1999). In the present work, the structure of methyl 6-(dimethylamino)-4-hydroxy-2-naphthoate has been determined to study the effect of substituents on the novel photochromic naphthopyrans (Kim et al., 2010). The orientation of the hydroxy group and the carbonyl of the ester group in the structure of the title compound, C14H15NO3, are opposite to each other as shown in Fig. 1. The dimethylamino group, hydroxy group, methyl carboxyl group and the naphthonyl ring are almost coplanar (rms deviation = 0.0268 Å). In the crystal structure, the molecules are linked by moderate-strength intermolecular O—H···O hydrogen bonds into one-dimensional, infinite chains running along the c axis as shown in Fig. 2. The molecular chains are generated by O—H···O hydrogen bonds (Table 1) between the H atom of the hydroxy group and the O atom of the methyl carboxyl group.

For the synthesis, properties and applications of organic photochromic and thermochromic dyes, see: Gabbutt et al. (2003, 2004); Kim et al. (2010); Kumar et al. (1995); Gemert & Selvig (2000); Nelson et al. (2002). For an additional review, see; Crano & Guglielmetti (1999).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic numbering scheme and 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitary radius.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed down the b axis showing the O—H···O (dashed lines) hydrogen bonds.
Methyl 6-dimethylamino-4-hydroxy-2-naphthoate top
Crystal data top
C14H15NO3F(000) = 1040
Mr = 245.27Dx = 1.336 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3143 reflections
a = 27.2482 (5) Åθ = 3.0–27.2°
b = 6.6211 (1) ŵ = 0.09 mm1
c = 13.6283 (3) ÅT = 296 K
β = 97.203 (1)°Block, colorless
V = 2439.32 (8) Å30.43 × 0.28 × 0.15 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
2021 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 28.3°, θmin = 1.5°
φ and ω scansh = 3536
11077 measured reflectionsk = 88
3019 independent reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0744P)2 + 0.749P]
where P = (Fo2 + 2Fc2)/3
3019 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C14H15NO3V = 2439.32 (8) Å3
Mr = 245.27Z = 8
Monoclinic, C2/cMo Kα radiation
a = 27.2482 (5) ŵ = 0.09 mm1
b = 6.6211 (1) ÅT = 296 K
c = 13.6283 (3) Å0.43 × 0.28 × 0.15 mm
β = 97.203 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2021 reflections with I > 2σ(I)
11077 measured reflectionsRint = 0.023
3019 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
3019 reflectionsΔρmin = 0.18 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.10637 (5)0.2829 (2)0.43577 (10)0.0394 (4)
H1A0.11080.26270.50380.047*
C20.07851 (5)0.1492 (2)0.37597 (10)0.0362 (3)
C30.07115 (5)0.1797 (2)0.27191 (10)0.0373 (3)
H3A0.05210.08890.23140.045*
C40.09206 (5)0.3421 (2)0.23145 (10)0.0345 (3)
C50.14347 (5)0.6521 (2)0.25090 (11)0.0381 (3)
H5A0.13820.67260.18290.046*
C60.17280 (5)0.7870 (2)0.30964 (11)0.0401 (4)
C70.18010 (6)0.7510 (3)0.41358 (12)0.0468 (4)
H7A0.19990.83870.45450.056*
C80.15860 (6)0.5908 (3)0.45420 (11)0.0452 (4)
H8A0.16380.57260.52240.054*
C90.12140 (5)0.4845 (2)0.29174 (10)0.0335 (3)
C100.12857 (5)0.4515 (2)0.39531 (10)0.0363 (3)
C110.05648 (5)0.0258 (2)0.42183 (11)0.0385 (3)
O120.06137 (4)0.05793 (18)0.51061 (8)0.0511 (3)
O130.03034 (4)0.14286 (17)0.35582 (8)0.0508 (3)
C140.00549 (7)0.3150 (3)0.39160 (15)0.0580 (5)
H14A0.01160.38740.33660.087*
H14B0.01780.27000.43420.087*
H14C0.02940.40240.42790.087*
O150.08692 (4)0.37976 (16)0.13226 (7)0.0451 (3)
H15A0.07910.27530.10190.068*
N160.19479 (5)0.9504 (2)0.27050 (11)0.0529 (4)
C170.22463 (7)1.0916 (3)0.33220 (16)0.0623 (5)
H17A0.25221.02190.36800.093*
H17B0.20501.15240.37810.093*
H17C0.23661.19460.29170.093*
C180.18437 (7)0.9976 (3)0.16678 (14)0.0583 (5)
H18A0.19650.89100.12860.087*
H18B0.20041.12200.15340.087*
H18C0.14931.01140.14920.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0450 (8)0.0457 (9)0.0270 (7)0.0007 (6)0.0030 (6)0.0031 (6)
C20.0404 (7)0.0346 (8)0.0337 (7)0.0021 (6)0.0050 (6)0.0038 (6)
C30.0454 (8)0.0350 (7)0.0310 (7)0.0005 (6)0.0030 (6)0.0025 (6)
C40.0429 (7)0.0352 (7)0.0255 (7)0.0038 (6)0.0045 (6)0.0001 (6)
C50.0448 (8)0.0395 (8)0.0304 (7)0.0001 (6)0.0059 (6)0.0009 (6)
C60.0407 (7)0.0397 (8)0.0408 (8)0.0029 (6)0.0085 (6)0.0004 (7)
C70.0495 (9)0.0515 (10)0.0388 (8)0.0119 (7)0.0028 (7)0.0076 (8)
C80.0522 (9)0.0539 (10)0.0290 (7)0.0073 (7)0.0030 (6)0.0025 (7)
C90.0377 (7)0.0348 (7)0.0286 (7)0.0022 (6)0.0062 (5)0.0011 (6)
C100.0404 (7)0.0402 (8)0.0285 (7)0.0001 (6)0.0045 (6)0.0019 (6)
C110.0418 (8)0.0356 (8)0.0383 (8)0.0037 (6)0.0063 (6)0.0055 (6)
O120.0670 (7)0.0479 (7)0.0382 (6)0.0019 (6)0.0065 (5)0.0120 (5)
O130.0631 (7)0.0452 (7)0.0438 (6)0.0166 (5)0.0054 (5)0.0044 (5)
C140.0683 (11)0.0434 (9)0.0642 (12)0.0156 (8)0.0160 (9)0.0039 (9)
O150.0682 (7)0.0412 (6)0.0254 (5)0.0051 (5)0.0039 (5)0.0003 (4)
N160.0618 (9)0.0499 (8)0.0470 (8)0.0190 (7)0.0061 (7)0.0030 (7)
C170.0618 (11)0.0528 (11)0.0721 (13)0.0179 (9)0.0072 (9)0.0030 (10)
C180.0673 (11)0.0511 (10)0.0570 (11)0.0053 (9)0.0092 (9)0.0152 (9)
Geometric parameters (Å, º) top
C1—C21.367 (2)C8—H8A0.9300
C1—C101.414 (2)C9—C101.417 (2)
C1—H1A0.9300C11—O121.219 (2)
C2—C31.422 (2)C11—O131.325 (2)
C2—C111.479 (2)O13—C141.442 (2)
C3—C41.365 (2)C14—H14A0.9600
C3—H3A0.9300C14—H14B0.9600
C4—O151.364 (2)C14—H14C0.9600
C4—C91.428 (2)O15—H15A0.8200
C5—C61.385 (2)N16—C171.439 (2)
C5—C91.410 (2)N16—C181.441 (2)
C5—H5A0.9300C17—H17A0.9600
C6—N161.376 (2)C17—H17B0.9600
C6—C71.426 (2)C17—H17C0.9600
C7—C81.362 (2)C18—H18A0.9600
C7—H7A0.9300C18—H18B0.9600
C8—C101.414 (2)C18—H18C0.9600
C2—C1—C10120.8 (1)C8—C10—C9117.6 (1)
C2—C1—H1A119.6C1—C10—C9119.8 (1)
C10—C1—H1A119.6O12—C11—O13123.7 (1)
C1—C2—C3120.1 (1)O12—C11—C2123.8 (1)
C1—C2—C11118.7 (1)O13—C11—C2112.5 (1)
C3—C2—C11121.2 (1)C11—O13—C14117.9 (1)
C4—C3—C2120.1 (1)O13—C14—H14A109.5
C4—C3—H3A120.0O13—C14—H14B109.5
C2—C3—H3A120.0H14A—C14—H14B109.5
O15—C4—C3123.2 (1)O13—C14—H14C109.5
O15—C4—C9115.5 (1)H14A—C14—H14C109.5
C3—C4—C9121.3 (1)H14B—C14—H14C109.5
C6—C5—C9121.6 (1)C4—O15—H15A109.5
C6—C5—H5A119.2C6—N16—C17121.7 (1)
C9—C5—H5A119.2C6—N16—C18120.6 (1)
N16—C6—C5122.1 (1)C17—N16—C18117.4 (2)
N16—C6—C7120.2 (1)N16—C17—H17A109.5
C5—C6—C7117.7 (1)N16—C17—H17B109.5
C8—C7—C6121.4 (1)H17A—C17—H17B109.5
C8—C7—H7A119.3N16—C17—H17C109.5
C6—C7—H7A119.3H17A—C17—H17C109.5
C7—C8—C10121.7 (1)H17B—C17—H17C109.5
C7—C8—H8A119.2N16—C18—H18A109.5
C10—C8—H8A119.2N16—C18—H18B109.5
C5—C9—C10120.1 (1)H18A—C18—H18B109.5
C5—C9—C4121.9 (1)N16—C18—H18C109.5
C10—C9—C4118.0 (1)H18A—C18—H18C109.5
C8—C10—C1122.6 (1)H18B—C18—H18C109.5
C10—C1—C2—C30.6 (2)C7—C8—C10—C90.1 (2)
C10—C1—C2—C11179.4 (1)C2—C1—C10—C8178.5 (1)
C1—C2—C3—C40.3 (2)C2—C1—C10—C90.9 (2)
C11—C2—C3—C4179.8 (1)C5—C9—C10—C80.5 (2)
C2—C3—C4—O15179.4 (1)C4—C9—C10—C8178.6 (1)
C2—C3—C4—C90.2 (2)C5—C9—C10—C1179.9 (1)
C9—C5—C6—N16179.6 (1)C4—C9—C10—C10.8 (2)
C9—C5—C6—C70.0 (2)C1—C2—C11—O120.5 (2)
N16—C6—C7—C8179.8 (2)C3—C2—C11—O12179.5 (1)
C5—C6—C7—C80.7 (2)C1—C2—C11—O13179.9 (1)
C6—C7—C8—C100.7 (3)C3—C2—C11—O130.1 (2)
C6—C5—C9—C100.6 (2)O12—C11—O13—C141.5 (2)
C6—C5—C9—C4178.5 (1)C2—C11—O13—C14177.9 (1)
O15—C4—C9—C50.1 (2)C5—C6—N16—C17179.1 (2)
C3—C4—C9—C5179.6 (1)C7—C6—N16—C171.4 (2)
O15—C4—C9—C10179.2 (1)C5—C6—N16—C185.7 (2)
C3—C4—C9—C100.5 (2)C7—C6—N16—C18174.8 (2)
C7—C8—C10—C1179.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O15—H15A···O12i0.821.922.736 (2)170
Symmetry code: (i) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC14H15NO3
Mr245.27
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)27.2482 (5), 6.6211 (1), 13.6283 (3)
β (°) 97.203 (1)
V3)2439.32 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.43 × 0.28 × 0.15
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11077, 3019, 2021
Rint0.023
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.151, 1.05
No. of reflections3019
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.18

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O15—H15A···O12i0.821.922.736 (2)170
Symmetry code: (i) x, y, z1/2.
 

Acknowledgements

This work was supported by 2008 Hongik University Research Fund.

References

First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrano, J. C. & Guglielmetti, R. J. (1999). Organic Photochromic and Thermochromic Compounds, Vol. 1, edited by J. C. Crano & R. J. Guglielmetti. New York: Plenum Press.  Google Scholar
First citationGabbutt, C. D., Hepworth, J. D., Heron, B. M., Thomas, D. A., Kilner, C. & Partington, S. M. (2004). Heterocycles, 63, 567–582.  CAS Google Scholar
First citationGabbutt, C. D., Heron, B. M., Instone, A. C., Thomas, D. A., Partington, S. M., Hursthouse, M. B. & Gelbrich, T. (2003). Eur. J. Org. Chem. pp. 1220–1230.  Web of Science CSD CrossRef Google Scholar
First citationGemert, B. V. & Selvig, C. D. (2000). US Patent 6106744.  Google Scholar
First citationKim, M.-H., Seo, J.-S., Kim, C.-H., Ryu, J.-W. & Lee, K.-H. (2010). Acta Cryst. E66, o66.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKumar, A., Gemert, B. V. & Knowles, D. B. (1995). US Patent 5458814.  Google Scholar
First citationNelson, C. M., Chopra, A., Knowles, D. B., Gemert, B. V. & Kumar, A. (2002). US Patent 6348604 B1.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds