organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(1H-Tetra­zol-5-yl)pyridinium bromide

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 13 November 2010; accepted 3 December 2010; online 8 December 2010)

In the cation of the title compound, C6H6N5+·Br, the pyridine and tetra­zole rings are nearly coplanar, forming a dihedral angle of 6.41 (2)°. The organic cations inter­act with the Br anions by N—H⋯Br hydrogen bonds, leading to the formation of chains parallel to the b axis.

Related literature

For tetra­zole derivatives, see: Zhao et al. (2008[Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84-100.]); Fu et al. (2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.], 2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]). For the crystal structures and properties of related compounds, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S.-P. (2007). J. Am. Chem. Soc. 129, 5346-5347.], 2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Fu & Xiong (2008[Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6N5+·Br

  • Mr = 228.07

  • Monoclinic, P 21

  • a = 4.8688 (10) Å

  • b = 7.6850 (15) Å

  • c = 11.174 (2) Å

  • β = 92.38 (3)°

  • V = 417.73 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.87 mm−1

  • T = 298 K

  • 0.30 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000

  • 4378 measured reflections

  • 1897 independent reflections

  • 1738 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.058

  • S = 1.08

  • 1897 reflections

  • 109 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983)[Flack, H. D. (1983). Acta Cryst. A39, 876-881.], 869 Friedel pairs

  • Flack parameter: 0.045 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br1i 0.86 2.35 3.210 (3) 178
N2—H2A⋯Br1ii 0.86 2.37 3.193 (3) 160
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Tetrazole compounds have attracted attention as phase transition dielectric materials for application in micro-electronics and memory storage. With the purpose of obtaining phase transition crystals of 4-(1H-tetrazol-5-yl)pyridine salts, its interaction with various acids has been studied and a series of new materials have been made with this organic molecule (Zhao et al., 2008; Fu et al., 2008; Fu et al., 2007; Fu & Xiong 2008). In this paper, we describe the crystal structure of the title compound, 4-(1H-tetrazol-5-yl)pyridinium bromide.

In the title compound (Fig.1), the pyridine N atoms are protonated. The pyridine and tetrazole rings are nearly coplanar and only twisted from each other by a dihedral angle of 6.41 (2)°. The geometric parameters of the tetrazole rings are comparable to those in related molecules (Zhao et al., 2008; Fu et al., 2009).

In the crystal structure, the organic cations are connected by the Br- anions through two type of N—H···Br hydrogen bonds, with the N···Br distance of 3.210 (3)Å and 3.193 (3) Å, respectively. Those H-bonds link the ionic species into a one-dimensional chain parallel to the b axia (Table 1 and Fig.2).

Related literature top

For tetrazole derivatives, see: Zhao et al. (2008); Fu et al. (2008, 2009). For the crystal structures and properties of related compounds, see: Fu et al. (2007, 2009); Fu & Xiong (2008).

Experimental top

Isonicotinonitrile (30 mmol), NaN3 (45 mmol), NH4Cl (33 mmol) and DMF (50 ml) were added in a flask under nitrogen atmosphere and the mixture stirred at 110°C for 20 h. The resulting solution was then poured into ice-water (100 ml), and a white solid was obtained after adding HCl (6 M) to pH=6. The precipitate was filtered and washed with distilled water. Colourless block-shaped crystals suitable for X-ray analysis were obtained from the crude product by slow evaporation of a water/HBr (50:1 v/v) solution.

Permittivity measurement show that there is no phase transition within the temperature range (from 100 K to 400 K), and the permittivity is 6.1 at 1 MHz at room temperature.

Refinement top

All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C–H = 0.93 Å (aromatic) and N–H = 0.86 Å with Uiso(H) =1.2Ueq(C or N).

Structure description top

Tetrazole compounds have attracted attention as phase transition dielectric materials for application in micro-electronics and memory storage. With the purpose of obtaining phase transition crystals of 4-(1H-tetrazol-5-yl)pyridine salts, its interaction with various acids has been studied and a series of new materials have been made with this organic molecule (Zhao et al., 2008; Fu et al., 2008; Fu et al., 2007; Fu & Xiong 2008). In this paper, we describe the crystal structure of the title compound, 4-(1H-tetrazol-5-yl)pyridinium bromide.

In the title compound (Fig.1), the pyridine N atoms are protonated. The pyridine and tetrazole rings are nearly coplanar and only twisted from each other by a dihedral angle of 6.41 (2)°. The geometric parameters of the tetrazole rings are comparable to those in related molecules (Zhao et al., 2008; Fu et al., 2009).

In the crystal structure, the organic cations are connected by the Br- anions through two type of N—H···Br hydrogen bonds, with the N···Br distance of 3.210 (3)Å and 3.193 (3) Å, respectively. Those H-bonds link the ionic species into a one-dimensional chain parallel to the b axia (Table 1 and Fig.2).

For tetrazole derivatives, see: Zhao et al. (2008); Fu et al. (2008, 2009). For the crystal structures and properties of related compounds, see: Fu et al. (2007, 2009); Fu & Xiong (2008).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the one-dimensional hydrogen-bonded chain. H atoms not involved in hydrogen bonding (dashed line) have been omitted for clarity.
4-(1H-Tetrazol-5-yl)pyridinium bromide top
Crystal data top
C6H6N5+·BrF(000) = 224
Mr = 228.07Dx = 1.813 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1897 reflections
a = 4.8688 (10) Åθ = 3.2–27.5°
b = 7.6850 (15) ŵ = 4.87 mm1
c = 11.174 (2) ÅT = 298 K
β = 92.38 (3)°Block, colorless
V = 417.73 (14) Å30.30 × 0.05 × 0.05 mm
Z = 2
Data collection top
Rigaku Mercury2
diffractometer
1897 independent reflections
Radiation source: fine-focus sealed tube1738 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 13.66 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scanh = 66
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 99
Tmin = 0.910, Tmax = 1.000l = 1414
4378 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0135P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1897 reflectionsΔρmax = 0.41 e Å3
109 parametersΔρmin = 0.28 e Å3
1 restraintAbsolute structure: Flack (1983), 869 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.045 (11)
Crystal data top
C6H6N5+·BrV = 417.73 (14) Å3
Mr = 228.07Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.8688 (10) ŵ = 4.87 mm1
b = 7.6850 (15) ÅT = 298 K
c = 11.174 (2) Å0.30 × 0.05 × 0.05 mm
β = 92.38 (3)°
Data collection top
Rigaku Mercury2
diffractometer
1897 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1738 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.033
4378 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.058Δρmax = 0.41 e Å3
S = 1.08Δρmin = 0.28 e Å3
1897 reflectionsAbsolute structure: Flack (1983), 869 Friedel pairs
109 parametersAbsolute structure parameter: 0.045 (11)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.54779 (5)0.11064 (8)0.91219 (2)0.04195 (11)
C10.9198 (7)0.6502 (5)0.8550 (3)0.0389 (10)
H11.01230.69380.92300.047*
C20.9881 (7)0.4908 (5)0.8113 (3)0.0357 (8)
H21.12630.42510.84940.043*
C60.9049 (6)0.2572 (4)0.6591 (3)0.0298 (7)
N10.7207 (5)0.7439 (4)0.8003 (2)0.0396 (7)
H1A0.67860.84330.82970.048*
C30.8491 (6)0.4280 (4)0.7096 (3)0.0285 (6)
N31.0851 (7)0.0009 (4)0.6315 (3)0.0436 (8)
N21.1026 (5)0.1460 (4)0.6956 (3)0.0367 (8)
H2A1.22330.16570.75240.044*
C50.5854 (8)0.6883 (5)0.7017 (3)0.0393 (10)
H50.44960.75750.66510.047*
N40.8778 (6)0.0253 (4)0.5546 (3)0.0424 (8)
C40.6457 (7)0.5292 (5)0.6541 (3)0.0355 (9)
H40.55130.48970.58530.043*
N50.7617 (6)0.1826 (4)0.5708 (3)0.0386 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04736 (18)0.04135 (19)0.03641 (18)0.0106 (2)0.00715 (13)0.0064 (2)
C10.0434 (17)0.039 (3)0.0339 (17)0.0035 (15)0.0039 (15)0.0041 (15)
C20.0334 (18)0.037 (2)0.036 (2)0.0074 (15)0.0027 (16)0.0039 (16)
C60.0299 (16)0.0273 (17)0.0321 (18)0.0047 (13)0.0010 (14)0.0065 (14)
N10.0515 (17)0.0286 (15)0.0393 (16)0.0081 (13)0.0075 (15)0.0035 (13)
C30.0276 (15)0.0316 (17)0.0263 (16)0.0003 (12)0.0003 (13)0.0061 (13)
N30.0523 (19)0.0330 (18)0.045 (2)0.0094 (15)0.0047 (17)0.0071 (14)
N20.0338 (13)0.038 (3)0.0371 (14)0.0048 (13)0.0064 (12)0.0073 (14)
C50.039 (2)0.037 (2)0.041 (2)0.0084 (15)0.0007 (18)0.0101 (17)
N40.0475 (19)0.0360 (18)0.0431 (19)0.0054 (16)0.0046 (17)0.0102 (15)
C40.039 (2)0.0355 (19)0.032 (2)0.0060 (15)0.0059 (16)0.0035 (15)
N50.0411 (17)0.0381 (18)0.0357 (17)0.0011 (14)0.0099 (15)0.0036 (13)
Geometric parameters (Å, º) top
C1—N11.335 (4)N1—H1A0.8600
C1—C21.365 (5)C3—C41.386 (5)
C1—H10.9300N3—N41.312 (5)
C2—C31.385 (5)N3—N21.326 (4)
C2—H20.9300N2—H2A0.8600
C6—N51.315 (4)C5—C41.370 (4)
C6—N21.338 (4)C5—H50.9300
C6—C31.459 (4)N4—N51.350 (3)
N1—C51.330 (5)C4—H40.9300
N1—C1—C2120.2 (3)C4—C3—C6118.2 (3)
N1—C1—H1119.9N4—N3—N2105.3 (3)
C2—C1—H1119.9N3—N2—C6110.1 (3)
C1—C2—C3119.2 (3)N3—N2—H2A125.0
C1—C2—H2120.4C6—N2—H2A125.0
C3—C2—H2120.4N1—C5—C4120.1 (4)
N5—C6—N2107.6 (3)N1—C5—H5120.0
N5—C6—C3125.5 (3)C4—C5—H5120.0
N2—C6—C3126.8 (3)N3—N4—N5110.8 (3)
C5—N1—C1122.1 (3)C5—C4—C3119.2 (4)
C5—N1—H1A119.0C5—C4—H4120.4
C1—N1—H1A119.0C3—C4—H4120.4
C2—C3—C4119.2 (3)C6—N5—N4106.2 (3)
C2—C3—C6122.6 (3)
N1—C1—C2—C30.2 (5)C3—C6—N2—N3177.7 (3)
C2—C1—N1—C51.0 (6)C1—N1—C5—C41.0 (5)
C1—C2—C3—C40.5 (5)N2—N3—N4—N51.1 (4)
C1—C2—C3—C6178.4 (3)N1—C5—C4—C30.2 (5)
N5—C6—C3—C2172.4 (3)C2—C3—C4—C50.6 (5)
N2—C6—C3—C25.2 (5)C6—C3—C4—C5178.4 (3)
N5—C6—C3—C46.6 (5)N2—C6—N5—N40.4 (4)
N2—C6—C3—C4175.8 (3)C3—C6—N5—N4178.4 (3)
N4—N3—N2—C60.8 (4)N3—N4—N5—C61.0 (4)
N5—C6—N2—N30.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1i0.862.353.210 (3)178
N2—H2A···Br1ii0.862.373.193 (3)160
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC6H6N5+·Br
Mr228.07
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)4.8688 (10), 7.6850 (15), 11.174 (2)
β (°) 92.38 (3)
V3)417.73 (14)
Z2
Radiation typeMo Kα
µ (mm1)4.87
Crystal size (mm)0.30 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury2
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4378, 1897, 1738
Rint0.033
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.058, 1.08
No. of reflections1897
No. of parameters109
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.28
Absolute structureFlack (1983), 869 Friedel pairs
Absolute structure parameter0.045 (11)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1i0.862.353.210 (3)177.9
N2—H2A···Br1ii0.862.373.193 (3)159.5
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S.-P. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948.  Web of Science CSD CrossRef Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds