organic compounds
2′-Iodo-2,2′′,3,3′′,4,4′′,5,5′′,6,6′′-decamethyl-1,1′:3′,1′′-terphenyl chloroform monosolvate
aUniversitatea Babeş-Bolyai, Facultatea de Chimie şi Inginerie Chimicã, 11 Arany Janos, 400028 Cluj-Napoca, Romania
*Correspondence e-mail: crat@chem.ubbcluj.ro
The title compound, C28H33I·CHCl3, forms dimers through C—I⋯π interactions. The is consolidated by the presence of C—H⋯π interactions between the chloroform solvent and the main molecule.
Related literature
For the synthesis and spectroscopic characterization of 2′-iodo-2,2′′,3,3′′,4,4′′,5,5′′,6,6′′-decamethyl-1,1′:3′,1′′-terphenyl, see: Hino et al. (2005); Duttwyler et al. (2008). For related m-terphenyl iodides, see: Niemeyer (1998); Twamley et al. (2000); Zakharov et al. (2003). For general background to compounds with m-terphenyl substituents, see: Power (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2000); cell SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810052736/pk2291sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810052736/pk2291Isup2.hkl
The synthesis of 2'-iodo-2,2'',3,3'',4,4'',5,5'',6,6''-decamethyl-1,1':3',1''-terphenyl was carried out according to a previously described method (Hino et al., 2005). Crystals of the title compound were obtained by slow evaporation of the solvent from a solution of 2'-iodo-2,2'',3,3'',4,4'',5,5'',6,6''-decamethyl-1,1':3',1''-terphenyl in chloroform.
Hydrogen atoms were placed in calculated positions with isotropic thermal parameters set at 1.2 times the carbon atoms directly attached for aromatic and methine hydrogen atoms and 1.5 for hydrogen atoms of the methyl groups. Methyl hydrogen atoms were allowed to rotate but not to tip.
m-Terphenyl substituents are sterrically crowded ligands used in stabilizing labile bonds and unusual geometries (Power, 2004).
We report herein the
of the title compound. The synthesis and the spectroscopic characterization of 2'-iodo-2,2'',3,3'',4,4'',5,5'',6,6''-decamethyl-1,1':3',1''-terphenyl were previously reported (Hino et al., 2005; Duttwyler et al., 2008).The
(Fig. 1) of the title compound is similar to the structures of other 2,6-diarylphenyliodides. The C—I bond length [2.099 (4) Å] is slightly smaller than those found in 2,6-(2,4,6 - iPr3C6H2)2C6H3I [2.102 (6) Å] (Twamley et al., 2000), 2,6-Ph2C6H3I [2.122 (4) Å] (Niemeyer, 1998), and 2,6-Mes2C6H3I [2.102 (5) Å] (Zakharov et al., 2003).Similar to the other 2,6-diarylphenyliodides, the dihedral angles between the flanking groups and the central benzene ring are close to 90° (Niemeyer, 1998; Twamley et al., 2000; Zakharov et al., 2003). This arrangement permits the presence of an intramolecular I···Cg contact [3.955 (1) Å]. The I···Cg interaction is reflected in the difference [Δ = 2.9°] at the C1 bonding angles.
In the π interactions (Table 1 and Fig. 2). In addition there are C—H···π interactions (Table 2 and Fig. 2) that link the dimeric units and the solvent molecules into a three dimensional network.
symmetry related molecules are linked into dimers through C—I···For the synthesis and spectroscopic characterization of 2'-iodo-2,2'',3,3'',4,4'',5,5'',6,6''-decamethyl-1,1':3',1''-terphenyl, see: Hino et al. (2005); Duttwyler et al. (2008). For related m-terphenyl iodides, see: Niemeyer (1998); Twamley et al. (2000); Zakharov et al. (2003). For general background to compounds with m-terphenyl substituents, see: Power (2004).
Data collection: SMART (Bruker, 2000); cell
SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).Fig. 1. Crystal structure of the title compound with labelling and displacement ellipsoids of C, Cl and I atoms drawn at 25% probability level. | |
Fig. 2. Intermolecular C—H···π and C—I···π interactions in the structure of the title compound. Symmetry codes: (i) 2 - x,-y,1 - z; (ii) 1/2 + x,1/2 - y,1/2 + z; (iii) -1/2 + x,1/2 - y,-1/2 + z; (iv) 3/2 - x, -1/2 + y, 1/2 - z; (v) 5/2 - x, -1/2 + y, 3/2 - z. Cg2 and Cg3 are the centroids of the benzene rings C7–C12 and C18–C23, respectively. |
C28H33I·CHCl3 | F(000) = 1248 |
Mr = 615.81 | Dx = 1.415 Mg m−3 |
Monoclinic, P21/n | Melting point = 498–497 K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 12.0294 (10) Å | Cell parameters from 3032 reflections |
b = 16.0651 (13) Å | θ = 2.3–19.9° |
c = 15.3762 (12) Å | µ = 1.40 mm−1 |
β = 103.385 (1)° | T = 297 K |
V = 2890.8 (4) Å3 | Block, colourless |
Z = 4 | 0.32 × 0.28 × 0.26 mm |
Bruker SMART CCD area-detector diffractometer | 5896 independent reflections |
Radiation source: fine-focus sealed tube | 4698 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.056 |
φ and ω scans | θmax = 26.4°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −15→15 |
Tmin = 0.663, Tmax = 0.712 | k = −20→20 |
22910 measured reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.066 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.137 | H-atom parameters constrained |
S = 1.13 | w = 1/[σ2(Fo2) + (0.0465P)2 + 3.6212P] where P = (Fo2 + 2Fc2)/3 |
5896 reflections | (Δ/σ)max = 0.031 |
308 parameters | Δρmax = 0.83 e Å−3 |
0 restraints | Δρmin = −0.68 e Å−3 |
C28H33I·CHCl3 | V = 2890.8 (4) Å3 |
Mr = 615.81 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 12.0294 (10) Å | µ = 1.40 mm−1 |
b = 16.0651 (13) Å | T = 297 K |
c = 15.3762 (12) Å | 0.32 × 0.28 × 0.26 mm |
β = 103.385 (1)° |
Bruker SMART CCD area-detector diffractometer | 5896 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 4698 reflections with I > 2σ(I) |
Tmin = 0.663, Tmax = 0.712 | Rint = 0.056 |
22910 measured reflections |
R[F2 > 2σ(F2)] = 0.066 | 0 restraints |
wR(F2) = 0.137 | H-atom parameters constrained |
S = 1.13 | Δρmax = 0.83 e Å−3 |
5896 reflections | Δρmin = −0.68 e Å−3 |
308 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7505 (4) | 0.1344 (3) | 0.4780 (3) | 0.0364 (11) | |
C2 | 0.6846 (4) | 0.1920 (3) | 0.4197 (3) | 0.0383 (11) | |
C3 | 0.6011 (5) | 0.2346 (3) | 0.4498 (3) | 0.0499 (13) | |
H3 | 0.5556 | 0.273 | 0.4122 | 0.06* | |
C4 | 0.5835 (5) | 0.2216 (4) | 0.5341 (4) | 0.0570 (15) | |
H4 | 0.5278 | 0.2518 | 0.5535 | 0.068* | |
C5 | 0.6487 (5) | 0.1637 (3) | 0.5897 (3) | 0.0490 (13) | |
H5 | 0.6354 | 0.1544 | 0.6461 | 0.059* | |
C6 | 0.7338 (4) | 0.1191 (3) | 0.5631 (3) | 0.0377 (11) | |
C7 | 0.6986 (4) | 0.2074 (3) | 0.3265 (3) | 0.0377 (11) | |
C8 | 0.6370 (4) | 0.1577 (3) | 0.2572 (3) | 0.0422 (12) | |
C9 | 0.6476 (4) | 0.1740 (3) | 0.1698 (3) | 0.0476 (13) | |
C10 | 0.7155 (5) | 0.2388 (3) | 0.1525 (3) | 0.0493 (13) | |
C11 | 0.7780 (4) | 0.2865 (3) | 0.2222 (3) | 0.0473 (12) | |
C12 | 0.7713 (4) | 0.2701 (3) | 0.3103 (3) | 0.0422 (12) | |
C13 | 0.5589 (6) | 0.0903 (4) | 0.2764 (4) | 0.0680 (17) | |
H13A | 0.4823 | 0.1009 | 0.2431 | 0.102* | |
H13B | 0.5607 | 0.0898 | 0.3391 | 0.102* | |
H13C | 0.5839 | 0.0374 | 0.2592 | 0.102* | |
C14 | 0.5810 (7) | 0.1203 (5) | 0.0945 (4) | 0.084 (2) | |
H14A | 0.6145 | 0.1244 | 0.0438 | 0.125* | |
H14B | 0.5031 | 0.139 | 0.0782 | 0.125* | |
H14C | 0.5831 | 0.0634 | 0.1139 | 0.125* | |
C15 | 0.7196 (6) | 0.2594 (5) | 0.0568 (4) | 0.084 (2) | |
H15A | 0.6584 | 0.2314 | 0.0163 | 0.127* | |
H15B | 0.7914 | 0.2415 | 0.046 | 0.127* | |
H15C | 0.7117 | 0.3184 | 0.0476 | 0.127* | |
C16 | 0.8538 (6) | 0.3562 (4) | 0.2035 (5) | 0.079 (2) | |
H16A | 0.813 | 0.3886 | 0.1538 | 0.118* | |
H16B | 0.9211 | 0.3331 | 0.1895 | 0.118* | |
H16C | 0.8753 | 0.3911 | 0.2553 | 0.118* | |
C17 | 0.8413 (5) | 0.3199 (4) | 0.3880 (4) | 0.0681 (17) | |
H17A | 0.8268 | 0.2997 | 0.443 | 0.102* | |
H17B | 0.8204 | 0.3776 | 0.3807 | 0.102* | |
H17C | 0.9211 | 0.3139 | 0.3893 | 0.102* | |
C18 | 0.8017 (4) | 0.0550 (3) | 0.6229 (3) | 0.0368 (11) | |
C19 | 0.7593 (4) | −0.0266 (3) | 0.6220 (3) | 0.0396 (11) | |
C20 | 0.8242 (5) | −0.0875 (3) | 0.6762 (3) | 0.0468 (13) | |
C21 | 0.9318 (5) | −0.0657 (3) | 0.7299 (3) | 0.0489 (13) | |
C22 | 0.9726 (4) | 0.0152 (3) | 0.7312 (3) | 0.0459 (12) | |
C23 | 0.9068 (4) | 0.0763 (3) | 0.6789 (3) | 0.0447 (12) | |
C24 | 0.6463 (5) | −0.0464 (4) | 0.5600 (4) | 0.0608 (16) | |
H24A | 0.6358 | −0.1056 | 0.5565 | 0.091* | |
H24B | 0.645 | −0.0248 | 0.5015 | 0.091* | |
H24C | 0.5859 | −0.0214 | 0.5822 | 0.091* | |
C25 | 0.7790 (6) | −0.1748 (3) | 0.6782 (4) | 0.076 (2) | |
H25A | 0.6995 | −0.176 | 0.6484 | 0.114* | |
H25B | 0.7879 | −0.1924 | 0.7391 | 0.114* | |
H25C | 0.8208 | −0.2117 | 0.6483 | 0.114* | |
C26 | 1.0042 (6) | −0.1318 (4) | 0.7865 (4) | 0.078 (2) | |
H26A | 1.0682 | −0.1451 | 0.7616 | 0.117* | |
H26B | 0.9591 | −0.1809 | 0.7876 | 0.117* | |
H26C | 1.0314 | −0.1113 | 0.8463 | 0.117* | |
C27 | 1.0888 (5) | 0.0364 (5) | 0.7901 (4) | 0.0730 (18) | |
H27A | 1.1433 | −0.0051 | 0.7828 | 0.109* | |
H27B | 1.0837 | 0.038 | 0.8515 | 0.109* | |
H27C | 1.1128 | 0.0899 | 0.7733 | 0.109* | |
C28 | 0.9492 (6) | 0.1650 (4) | 0.6799 (4) | 0.0728 (19) | |
H28A | 1.0236 | 0.1655 | 0.6671 | 0.109* | |
H28B | 0.9536 | 0.189 | 0.7378 | 0.109* | |
H28C | 0.8973 | 0.1969 | 0.6354 | 0.109* | |
I1 | 0.87935 (3) | 0.06968 (3) | 0.43456 (2) | 0.05850 (16) | |
C29 | 0.2774 (6) | 0.4708 (4) | 0.3696 (4) | 0.0684 (17) | |
H29 | 0.2996 | 0.4802 | 0.313 | 0.082* | |
Cl1 | 0.14519 (19) | 0.41957 (14) | 0.34585 (16) | 0.1030 (7) | |
Cl2 | 0.3802 (2) | 0.40834 (19) | 0.43583 (18) | 0.1351 (10) | |
Cl3 | 0.2678 (3) | 0.56550 (15) | 0.4179 (2) | 0.1352 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.037 (3) | 0.036 (3) | 0.036 (2) | 0.008 (2) | 0.008 (2) | 0.002 (2) |
C2 | 0.046 (3) | 0.038 (3) | 0.030 (2) | 0.002 (2) | 0.006 (2) | 0.000 (2) |
C3 | 0.057 (3) | 0.048 (3) | 0.044 (3) | 0.021 (3) | 0.012 (3) | 0.006 (2) |
C4 | 0.065 (4) | 0.056 (4) | 0.055 (3) | 0.024 (3) | 0.024 (3) | −0.005 (3) |
C5 | 0.059 (3) | 0.056 (3) | 0.035 (3) | 0.008 (3) | 0.016 (2) | 0.002 (2) |
C6 | 0.040 (3) | 0.036 (3) | 0.036 (3) | 0.000 (2) | 0.006 (2) | 0.001 (2) |
C7 | 0.037 (3) | 0.041 (3) | 0.033 (2) | 0.014 (2) | 0.005 (2) | 0.007 (2) |
C8 | 0.039 (3) | 0.047 (3) | 0.037 (3) | 0.007 (2) | 0.002 (2) | 0.006 (2) |
C9 | 0.047 (3) | 0.053 (3) | 0.039 (3) | 0.011 (3) | 0.004 (2) | 0.000 (2) |
C10 | 0.060 (3) | 0.054 (3) | 0.036 (3) | 0.016 (3) | 0.016 (3) | 0.008 (2) |
C11 | 0.044 (3) | 0.049 (3) | 0.049 (3) | 0.006 (2) | 0.012 (2) | 0.015 (3) |
C12 | 0.040 (3) | 0.041 (3) | 0.044 (3) | 0.006 (2) | 0.007 (2) | 0.003 (2) |
C13 | 0.072 (4) | 0.064 (4) | 0.065 (4) | −0.013 (3) | 0.009 (3) | 0.006 (3) |
C14 | 0.104 (6) | 0.096 (5) | 0.044 (3) | −0.010 (4) | 0.005 (4) | −0.015 (4) |
C15 | 0.104 (6) | 0.109 (6) | 0.046 (4) | 0.002 (5) | 0.028 (4) | 0.015 (4) |
C16 | 0.084 (5) | 0.080 (5) | 0.077 (5) | −0.008 (4) | 0.028 (4) | 0.025 (4) |
C17 | 0.067 (4) | 0.072 (4) | 0.061 (4) | −0.011 (3) | 0.006 (3) | 0.003 (3) |
C18 | 0.039 (3) | 0.040 (3) | 0.031 (2) | 0.004 (2) | 0.008 (2) | 0.007 (2) |
C19 | 0.047 (3) | 0.044 (3) | 0.029 (2) | 0.000 (2) | 0.011 (2) | 0.002 (2) |
C20 | 0.067 (4) | 0.038 (3) | 0.039 (3) | 0.003 (2) | 0.018 (3) | 0.002 (2) |
C21 | 0.057 (3) | 0.055 (3) | 0.038 (3) | 0.020 (3) | 0.017 (2) | 0.011 (2) |
C22 | 0.042 (3) | 0.062 (4) | 0.035 (3) | 0.004 (2) | 0.010 (2) | 0.005 (2) |
C23 | 0.049 (3) | 0.049 (3) | 0.033 (2) | −0.003 (2) | 0.004 (2) | 0.004 (2) |
C24 | 0.057 (4) | 0.060 (4) | 0.063 (4) | −0.012 (3) | 0.010 (3) | −0.006 (3) |
C25 | 0.119 (6) | 0.037 (3) | 0.070 (4) | −0.006 (3) | 0.019 (4) | 0.005 (3) |
C26 | 0.079 (5) | 0.078 (5) | 0.073 (4) | 0.032 (4) | 0.008 (4) | 0.028 (4) |
C27 | 0.049 (4) | 0.103 (5) | 0.059 (4) | 0.005 (3) | −0.003 (3) | 0.011 (4) |
C28 | 0.074 (4) | 0.065 (4) | 0.070 (4) | −0.023 (3) | −0.002 (3) | 0.008 (3) |
I1 | 0.0572 (2) | 0.0742 (3) | 0.0485 (2) | 0.03317 (19) | 0.02111 (17) | 0.01532 (19) |
C29 | 0.072 (4) | 0.068 (4) | 0.070 (4) | 0.006 (3) | 0.027 (3) | 0.014 (3) |
Cl1 | 0.0842 (14) | 0.1114 (17) | 0.1078 (16) | −0.0161 (12) | 0.0108 (12) | 0.0079 (13) |
Cl2 | 0.0936 (17) | 0.165 (3) | 0.144 (2) | 0.0425 (16) | 0.0228 (16) | 0.0602 (19) |
Cl3 | 0.160 (3) | 0.1012 (18) | 0.150 (2) | −0.0052 (16) | 0.048 (2) | −0.0496 (16) |
C1—C6 | 1.392 (6) | C16—H16C | 0.96 |
C1—C2 | 1.400 (6) | C17—H17A | 0.96 |
C1—I1 | 2.099 (4) | C17—H17B | 0.96 |
C2—C3 | 1.381 (6) | C17—H17C | 0.96 |
C2—C7 | 1.501 (6) | C18—C23 | 1.398 (7) |
C3—C4 | 1.377 (7) | C18—C19 | 1.406 (7) |
C3—H3 | 0.93 | C19—C20 | 1.400 (7) |
C4—C5 | 1.379 (7) | C19—C24 | 1.503 (7) |
C4—H4 | 0.93 | C20—C21 | 1.408 (8) |
C5—C6 | 1.386 (7) | C20—C25 | 1.507 (7) |
C5—H5 | 0.93 | C21—C22 | 1.389 (7) |
C6—C18 | 1.492 (6) | C21—C26 | 1.514 (7) |
C7—C12 | 1.394 (7) | C22—C23 | 1.393 (7) |
C7—C8 | 1.398 (7) | C22—C27 | 1.518 (8) |
C8—C9 | 1.403 (7) | C23—C28 | 1.513 (7) |
C8—C13 | 1.507 (7) | C24—H24A | 0.96 |
C9—C10 | 1.386 (7) | C24—H24B | 0.96 |
C9—C14 | 1.516 (8) | C24—H24C | 0.96 |
C10—C11 | 1.389 (7) | C25—H25A | 0.96 |
C10—C15 | 1.521 (7) | C25—H25B | 0.96 |
C11—C12 | 1.401 (7) | C25—H25C | 0.96 |
C11—C16 | 1.512 (8) | C26—H26A | 0.96 |
C12—C17 | 1.520 (7) | C26—H26B | 0.96 |
C13—H13A | 0.96 | C26—H26C | 0.96 |
C13—H13B | 0.96 | C27—H27A | 0.96 |
C13—H13C | 0.96 | C27—H27B | 0.96 |
C14—H14A | 0.96 | C27—H27C | 0.96 |
C14—H14B | 0.96 | C28—H28A | 0.96 |
C14—H14C | 0.96 | C28—H28B | 0.96 |
C15—H15A | 0.96 | C28—H28C | 0.96 |
C15—H15B | 0.96 | C29—Cl3 | 1.708 (7) |
C15—H15C | 0.96 | C29—Cl2 | 1.729 (7) |
C16—H16A | 0.96 | C29—Cl1 | 1.753 (7) |
C16—H16B | 0.96 | C29—H29 | 0.98 |
C6—C1—C2 | 122.3 (4) | C12—C17—H17A | 109.5 |
C6—C1—I1 | 119.4 (3) | C12—C17—H17B | 109.5 |
C2—C1—I1 | 118.3 (3) | H17A—C17—H17B | 109.5 |
C3—C2—C1 | 117.5 (4) | C12—C17—H17C | 109.5 |
C3—C2—C7 | 119.3 (4) | H17A—C17—H17C | 109.5 |
C1—C2—C7 | 123.2 (4) | H17B—C17—H17C | 109.5 |
C4—C3—C2 | 121.5 (5) | C23—C18—C19 | 120.6 (4) |
C4—C3—H3 | 119.3 | C23—C18—C6 | 119.9 (4) |
C2—C3—H3 | 119.3 | C19—C18—C6 | 119.5 (4) |
C3—C4—C5 | 119.8 (5) | C20—C19—C18 | 119.7 (5) |
C3—C4—H4 | 120.1 | C20—C19—C24 | 121.9 (5) |
C5—C4—H4 | 120.1 | C18—C19—C24 | 118.5 (4) |
C4—C5—C6 | 121.2 (5) | C19—C20—C21 | 119.0 (5) |
C4—C5—H5 | 119.4 | C19—C20—C25 | 120.5 (5) |
C6—C5—H5 | 119.4 | C21—C20—C25 | 120.4 (5) |
C5—C6—C1 | 117.7 (4) | C22—C21—C20 | 121.0 (5) |
C5—C6—C18 | 120.8 (4) | C22—C21—C26 | 119.6 (5) |
C1—C6—C18 | 121.5 (4) | C20—C21—C26 | 119.4 (5) |
C12—C7—C8 | 121.3 (4) | C21—C22—C23 | 120.0 (5) |
C12—C7—C2 | 120.2 (4) | C21—C22—C27 | 119.5 (5) |
C8—C7—C2 | 118.5 (4) | C23—C22—C27 | 120.5 (5) |
C7—C8—C9 | 118.3 (5) | C22—C23—C18 | 119.7 (5) |
C7—C8—C13 | 120.3 (5) | C22—C23—C28 | 120.9 (5) |
C9—C8—C13 | 121.3 (5) | C18—C23—C28 | 119.5 (5) |
C10—C9—C8 | 120.8 (5) | C19—C24—H24A | 109.5 |
C10—C9—C14 | 120.8 (5) | C19—C24—H24B | 109.5 |
C8—C9—C14 | 118.4 (5) | H24A—C24—H24B | 109.5 |
C9—C10—C11 | 120.3 (5) | C19—C24—H24C | 109.5 |
C9—C10—C15 | 120.2 (5) | H24A—C24—H24C | 109.5 |
C11—C10—C15 | 119.6 (5) | H24B—C24—H24C | 109.5 |
C10—C11—C12 | 120.0 (5) | C20—C25—H25A | 109.5 |
C10—C11—C16 | 120.3 (5) | C20—C25—H25B | 109.5 |
C12—C11—C16 | 119.7 (5) | H25A—C25—H25B | 109.5 |
C7—C12—C11 | 119.2 (5) | C20—C25—H25C | 109.5 |
C7—C12—C17 | 119.8 (5) | H25A—C25—H25C | 109.5 |
C11—C12—C17 | 121.0 (5) | H25B—C25—H25C | 109.5 |
C8—C13—H13A | 109.5 | C21—C26—H26A | 109.5 |
C8—C13—H13B | 109.5 | C21—C26—H26B | 109.5 |
H13A—C13—H13B | 109.5 | H26A—C26—H26B | 109.5 |
C8—C13—H13C | 109.5 | C21—C26—H26C | 109.5 |
H13A—C13—H13C | 109.5 | H26A—C26—H26C | 109.5 |
H13B—C13—H13C | 109.5 | H26B—C26—H26C | 109.5 |
C9—C14—H14A | 109.5 | C22—C27—H27A | 109.5 |
C9—C14—H14B | 109.5 | C22—C27—H27B | 109.5 |
H14A—C14—H14B | 109.5 | H27A—C27—H27B | 109.5 |
C9—C14—H14C | 109.5 | C22—C27—H27C | 109.5 |
H14A—C14—H14C | 109.5 | H27A—C27—H27C | 109.5 |
H14B—C14—H14C | 109.5 | H27B—C27—H27C | 109.5 |
C10—C15—H15A | 109.5 | C23—C28—H28A | 109.5 |
C10—C15—H15B | 109.5 | C23—C28—H28B | 109.5 |
H15A—C15—H15B | 109.5 | H28A—C28—H28B | 109.5 |
C10—C15—H15C | 109.5 | C23—C28—H28C | 109.5 |
H15A—C15—H15C | 109.5 | H28A—C28—H28C | 109.5 |
H15B—C15—H15C | 109.5 | H28B—C28—H28C | 109.5 |
C11—C16—H16A | 109.5 | Cl3—C29—Cl2 | 111.9 (4) |
C11—C16—H16B | 109.5 | Cl3—C29—Cl1 | 111.1 (4) |
H16A—C16—H16B | 109.5 | Cl2—C29—Cl1 | 110.0 (4) |
C11—C16—H16C | 109.5 | Cl3—C29—H29 | 107.9 |
H16A—C16—H16C | 109.5 | Cl2—C29—H29 | 107.9 |
H16B—C16—H16C | 109.5 | Cl1—C29—H29 | 107.9 |
C6—C1—C2—C3 | 0.3 (7) | C2—C7—C12—C11 | −176.4 (4) |
I1—C1—C2—C3 | −179.4 (4) | C8—C7—C12—C17 | −176.9 (5) |
C6—C1—C2—C7 | −177.9 (4) | C2—C7—C12—C17 | 3.3 (7) |
I1—C1—C2—C7 | 2.5 (6) | C10—C11—C12—C7 | −2.0 (7) |
C1—C2—C3—C4 | 0.5 (8) | C16—C11—C12—C7 | 178.1 (5) |
C7—C2—C3—C4 | 178.8 (5) | C10—C11—C12—C17 | 178.3 (5) |
C2—C3—C4—C5 | −1.3 (9) | C16—C11—C12—C17 | −1.5 (8) |
C3—C4—C5—C6 | 1.3 (9) | C5—C6—C18—C23 | −94.7 (6) |
C4—C5—C6—C1 | −0.5 (8) | C1—C6—C18—C23 | 87.5 (6) |
C4—C5—C6—C18 | −178.3 (5) | C5—C6—C18—C19 | 85.6 (6) |
C2—C1—C6—C5 | −0.3 (7) | C1—C6—C18—C19 | −92.2 (6) |
I1—C1—C6—C5 | 179.3 (4) | C23—C18—C19—C20 | −1.4 (7) |
C2—C1—C6—C18 | 177.5 (4) | C6—C18—C19—C20 | 178.3 (4) |
I1—C1—C6—C18 | −2.8 (6) | C23—C18—C19—C24 | −179.5 (5) |
C3—C2—C7—C12 | 89.3 (6) | C6—C18—C19—C24 | 0.2 (7) |
C1—C2—C7—C12 | −92.5 (6) | C18—C19—C20—C21 | −0.8 (7) |
C3—C2—C7—C8 | −90.5 (6) | C24—C19—C20—C21 | 177.2 (5) |
C1—C2—C7—C8 | 87.7 (6) | C18—C19—C20—C25 | 178.3 (5) |
C12—C7—C8—C9 | −1.7 (7) | C24—C19—C20—C25 | −3.7 (8) |
C2—C7—C8—C9 | 178.1 (4) | C19—C20—C21—C22 | 1.5 (7) |
C12—C7—C8—C13 | −179.9 (5) | C25—C20—C21—C22 | −177.6 (5) |
C2—C7—C8—C13 | −0.2 (7) | C19—C20—C21—C26 | −178.1 (5) |
C7—C8—C9—C10 | −1.4 (7) | C25—C20—C21—C26 | 2.8 (8) |
C13—C8—C9—C10 | 176.8 (5) | C20—C21—C22—C23 | 0.1 (7) |
C7—C8—C9—C14 | −180.0 (5) | C26—C21—C22—C23 | 179.7 (5) |
C13—C8—C9—C14 | −1.8 (8) | C20—C21—C22—C27 | 179.8 (5) |
C8—C9—C10—C11 | 2.7 (8) | C26—C21—C22—C27 | −0.6 (8) |
C14—C9—C10—C11 | −178.7 (5) | C21—C22—C23—C18 | −2.3 (7) |
C8—C9—C10—C15 | −175.7 (5) | C27—C22—C23—C18 | 178.0 (5) |
C14—C9—C10—C15 | 2.8 (8) | C21—C22—C23—C28 | 179.5 (5) |
C9—C10—C11—C12 | −1.0 (8) | C27—C22—C23—C28 | −0.2 (8) |
C15—C10—C11—C12 | 177.5 (5) | C19—C18—C23—C22 | 3.0 (7) |
C9—C10—C11—C16 | 178.8 (5) | C6—C18—C23—C22 | −176.7 (4) |
C15—C10—C11—C16 | −2.7 (8) | C19—C18—C23—C28 | −178.7 (5) |
C8—C7—C12—C11 | 3.4 (7) | C6—C18—C23—C28 | 1.5 (7) |
Cg2 and C3 are the centroids of the C7–C12 and C18–C23 benzene rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C26—H26A···Cg2i | 0.96 | 3.86 (1) | 2.97 | 155 |
C28—H28A···Cg2ii | 0.96 | 3.53 (1) | 2.87 | 127 |
C29—H29···Cg3iii | 0.98 | 3.42 (1) | 2.44 | 177 |
Symmetry codes: (i) −x+2, −y, −z+1; (ii) x+1/2, −y+1/2, z+1/2; (iii) x+1/2, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C28H33I·CHCl3 |
Mr | 615.81 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 297 |
a, b, c (Å) | 12.0294 (10), 16.0651 (13), 15.3762 (12) |
β (°) | 103.385 (1) |
V (Å3) | 2890.8 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.40 |
Crystal size (mm) | 0.32 × 0.28 × 0.26 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.663, 0.712 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 22910, 5896, 4698 |
Rint | 0.056 |
(sin θ/λ)max (Å−1) | 0.626 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.066, 0.137, 1.13 |
No. of reflections | 5896 |
No. of parameters | 308 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.83, −0.68 |
Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009), publCIF (Westrip, 2010) and PLATON (Spek, 2009).
Cg2 and C3 are the centroids of the C7–C12 and C18–C23 benzene rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C26—H26A···Cg2i | 0.96 | 3.861 (8) | 2.97 | 155 |
C28—H28A···Cg2ii | 0.96 | 3.532 (7) | 2.87 | 127 |
C29—H29···Cg3iii | 0.98 | 3.422 (6) | 2.44 | 177 |
Symmetry codes: (i) −x+2, −y, −z+1; (ii) x+1/2, −y+1/2, z+1/2; (iii) x+1/2, −y+1/2, z−1/2. |
Cg3 is the centroid of the C18–C23 benzene ring. |
Y—X···Cg | Y—X | X···Cg | Y···Cg | Y—X···Cg |
C1—I1···Cg3i | 2.099 (4) | 3.975 (2) | 6.026 (5) | 164.67 (13) |
Symmetry code: (i) 2-x, -y, 1-z. |
Acknowledgements
This work was supported by the National University Research Council (CNCSIS) of Romania (project TE 295/2010).
References
Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Duttwyler, S., Do, Q.-Q., Linden, A., Baldrige, K. K. & Siegel, J. S. (2008). Angew. Chem. Int. Ed. 47, 1719–1722. Web of Science CSD CrossRef CAS Google Scholar
Hino, S., Olmstead, M. M., Fettinger, J. C. & Power, P. P. (2005). J. Organomet. Chem. 690, 1638–1644. Web of Science CSD CrossRef CAS Google Scholar
Niemeyer, M. (1998). Organometallics, 17, 4649–4656. Web of Science CSD CrossRef CAS Google Scholar
Power, P. P. (2004). J. Organomet. Chem. 689, 3904–3919. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Twamley, B., Hardman, N. J. & Power, P. P. (2000). Acta Cryst. C56, e514–e515. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zakharov, L. N., Rheingold, A. L. & Protasiewicz, J. D. (2003). Private Communication (refcode: TUWZAM). CCDC, Cambridge, England. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
m-Terphenyl substituents are sterrically crowded ligands used in stabilizing labile bonds and unusual geometries (Power, 2004).
We report herein the crystal structure of the title compound. The synthesis and the spectroscopic characterization of 2'-iodo-2,2'',3,3'',4,4'',5,5'',6,6''-decamethyl-1,1':3',1''-terphenyl were previously reported (Hino et al., 2005; Duttwyler et al., 2008).
The crystal structure (Fig. 1) of the title compound is similar to the structures of other 2,6-diarylphenyliodides. The C—I bond length [2.099 (4) Å] is slightly smaller than those found in 2,6-(2,4,6 - iPr3C6H2)2C6H3I [2.102 (6) Å] (Twamley et al., 2000), 2,6-Ph2C6H3I [2.122 (4) Å] (Niemeyer, 1998), and 2,6-Mes2C6H3I [2.102 (5) Å] (Zakharov et al., 2003).
Similar to the other 2,6-diarylphenyliodides, the dihedral angles between the flanking groups and the central benzene ring are close to 90° (Niemeyer, 1998; Twamley et al., 2000; Zakharov et al., 2003). This arrangement permits the presence of an intramolecular I···Cg contact [3.955 (1) Å]. The I···Cg interaction is reflected in the difference [Δ = 2.9°] at the C1 bonding angles.
In the crystal structure symmetry related molecules are linked into dimers through C—I···π interactions (Table 1 and Fig. 2). In addition there are C—H···π interactions (Table 2 and Fig. 2) that link the dimeric units and the solvent molecules into a three dimensional network.