organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2′-Iodo-2,2′′,3,3′′,4,4′′,5,5′′,6,6′′-deca­methyl-1,1′:3′,1′′-terphenyl chloro­form monosolvate

aUniversitatea Babeş-Bolyai, Facultatea de Chimie şi Inginerie Chimicã, 11 Arany Janos, 400028 Cluj-Napoca, Romania
*Correspondence e-mail: crat@chem.ubbcluj.ro

(Received 7 December 2010; accepted 15 December 2010; online 24 December 2010)

The title compound, C28H33I·CHCl3, forms dimers through C—I⋯π inter­actions. The crystal structure is consolidated by the presence of C—H⋯π inter­actions between the chloro­form solvent and the main mol­ecule.

Related literature

For the synthesis and spectroscopic characterization of 2′-iodo-2,2′′,3,3′′,4,4′′,5,5′′,6,6′′-deca­methyl-1,1′:3′,1′′-terphenyl, see: Hino et al. (2005[Hino, S., Olmstead, M. M., Fettinger, J. C. & Power, P. P. (2005). J. Organomet. Chem. 690, 1638-1644.]); Duttwyler et al. (2008[Duttwyler, S., Do, Q.-Q., Linden, A., Baldrige, K. K. & Siegel, J. S. (2008). Angew. Chem. Int. Ed. 47, 1719-1722.]). For related m-terphenyl iodides, see: Niemeyer (1998[Niemeyer, M. (1998). Organometallics, 17, 4649-4656.]); Twamley et al. (2000[Twamley, B., Hardman, N. J. & Power, P. P. (2000). Acta Cryst. C56, e514-e515.]); Zakharov et al. (2003[Zakharov, L. N., Rheingold, A. L. & Protasiewicz, J. D. (2003). Private Communication (refcode: TUWZAM). CCDC, Cambridge, England.]). For general background to compounds with m-terphenyl substituents, see: Power (2004[Power, P. P. (2004). J. Organomet. Chem. 689, 3904-3919.]).

[Scheme 1]

Experimental

Crystal data
  • C28H33I·CHCl3

  • Mr = 615.81

  • Monoclinic, P 21 /n

  • a = 12.0294 (10) Å

  • b = 16.0651 (13) Å

  • c = 15.3762 (12) Å

  • β = 103.385 (1)°

  • V = 2890.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.40 mm−1

  • T = 297 K

  • 0.32 × 0.28 × 0.26 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.663, Tmax = 0.712

  • 22910 measured reflections

  • 5896 independent reflections

  • 4698 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.137

  • S = 1.13

  • 5896 reflections

  • 308 parameters

  • H-atom parameters constrained

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
C—H⋯π inter­actions (Å, °)

Cg2 and C3 are the centroids of the C7–C12 and C18–C23 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26ACg2i 0.96 3.86 (1) 2.97 155
C28—H28ACg2ii 0.96 3.53 (1) 2.87 127
C29—H29⋯Cg3iii 0.98 3.42 (1) 2.44 177
Symmetry codes: (i) -x+2, -y, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Table 2
C—I⋯π inter­actions (Å, °)

Cg3 is the centroid of the C18–C23 benzene ring.

YXCg YX XCg YCg YXCg
C1—I1⋯Cg3i 2.099 (4) 3.975 (2) 6.026 (5) 164.67 (13)
Symmetry code: (i) 2-x, -y, 1-z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

m-Terphenyl substituents are sterrically crowded ligands used in stabilizing labile bonds and unusual geometries (Power, 2004).

We report herein the crystal structure of the title compound. The synthesis and the spectroscopic characterization of 2'-iodo-2,2'',3,3'',4,4'',5,5'',6,6''-decamethyl-1,1':3',1''-terphenyl were previously reported (Hino et al., 2005; Duttwyler et al., 2008).

The crystal structure (Fig. 1) of the title compound is similar to the structures of other 2,6-diarylphenyliodides. The C—I bond length [2.099 (4) Å] is slightly smaller than those found in 2,6-(2,4,6 - iPr3C6H2)2C6H3I [2.102 (6) Å] (Twamley et al., 2000), 2,6-Ph2C6H3I [2.122 (4) Å] (Niemeyer, 1998), and 2,6-Mes2C6H3I [2.102 (5) Å] (Zakharov et al., 2003).

Similar to the other 2,6-diarylphenyliodides, the dihedral angles between the flanking groups and the central benzene ring are close to 90° (Niemeyer, 1998; Twamley et al., 2000; Zakharov et al., 2003). This arrangement permits the presence of an intramolecular I···Cg contact [3.955 (1) Å]. The I···Cg interaction is reflected in the difference [Δ = 2.9°] at the C1 bonding angles.

In the crystal structure symmetry related molecules are linked into dimers through C—I···π interactions (Table 1 and Fig. 2). In addition there are C—H···π interactions (Table 2 and Fig. 2) that link the dimeric units and the solvent molecules into a three dimensional network.

Related literature top

For the synthesis and spectroscopic characterization of 2'-iodo-2,2'',3,3'',4,4'',5,5'',6,6''-decamethyl-1,1':3',1''-terphenyl, see: Hino et al. (2005); Duttwyler et al. (2008). For related m-terphenyl iodides, see: Niemeyer (1998); Twamley et al. (2000); Zakharov et al. (2003). For general background to compounds with m-terphenyl substituents, see: Power (2004).

Experimental top

The synthesis of 2'-iodo-2,2'',3,3'',4,4'',5,5'',6,6''-decamethyl-1,1':3',1''-terphenyl was carried out according to a previously described method (Hino et al., 2005). Crystals of the title compound were obtained by slow evaporation of the solvent from a solution of 2'-iodo-2,2'',3,3'',4,4'',5,5'',6,6''-decamethyl-1,1':3',1''-terphenyl in chloroform.

Refinement top

Hydrogen atoms were placed in calculated positions with isotropic thermal parameters set at 1.2 times the carbon atoms directly attached for aromatic and methine hydrogen atoms and 1.5 for hydrogen atoms of the methyl groups. Methyl hydrogen atoms were allowed to rotate but not to tip.

Structure description top

m-Terphenyl substituents are sterrically crowded ligands used in stabilizing labile bonds and unusual geometries (Power, 2004).

We report herein the crystal structure of the title compound. The synthesis and the spectroscopic characterization of 2'-iodo-2,2'',3,3'',4,4'',5,5'',6,6''-decamethyl-1,1':3',1''-terphenyl were previously reported (Hino et al., 2005; Duttwyler et al., 2008).

The crystal structure (Fig. 1) of the title compound is similar to the structures of other 2,6-diarylphenyliodides. The C—I bond length [2.099 (4) Å] is slightly smaller than those found in 2,6-(2,4,6 - iPr3C6H2)2C6H3I [2.102 (6) Å] (Twamley et al., 2000), 2,6-Ph2C6H3I [2.122 (4) Å] (Niemeyer, 1998), and 2,6-Mes2C6H3I [2.102 (5) Å] (Zakharov et al., 2003).

Similar to the other 2,6-diarylphenyliodides, the dihedral angles between the flanking groups and the central benzene ring are close to 90° (Niemeyer, 1998; Twamley et al., 2000; Zakharov et al., 2003). This arrangement permits the presence of an intramolecular I···Cg contact [3.955 (1) Å]. The I···Cg interaction is reflected in the difference [Δ = 2.9°] at the C1 bonding angles.

In the crystal structure symmetry related molecules are linked into dimers through C—I···π interactions (Table 1 and Fig. 2). In addition there are C—H···π interactions (Table 2 and Fig. 2) that link the dimeric units and the solvent molecules into a three dimensional network.

For the synthesis and spectroscopic characterization of 2'-iodo-2,2'',3,3'',4,4'',5,5'',6,6''-decamethyl-1,1':3',1''-terphenyl, see: Hino et al. (2005); Duttwyler et al. (2008). For related m-terphenyl iodides, see: Niemeyer (1998); Twamley et al. (2000); Zakharov et al. (2003). For general background to compounds with m-terphenyl substituents, see: Power (2004).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labelling and displacement ellipsoids of C, Cl and I atoms drawn at 25% probability level.
[Figure 2] Fig. 2. Intermolecular C—H···π and C—I···π interactions in the structure of the title compound. Symmetry codes: (i) 2 - x,-y,1 - z; (ii) 1/2 + x,1/2 - y,1/2 + z; (iii) -1/2 + x,1/2 - y,-1/2 + z; (iv) 3/2 - x, -1/2 + y, 1/2 - z; (v) 5/2 - x, -1/2 + y, 3/2 - z. Cg2 and Cg3 are the centroids of the benzene rings C7–C12 and C18–C23, respectively.
2'-Iodo-2,2'',3,3'',4,4'',5,5'',6,6''-decamethyl-1,1':3',1''-terphenyl chloroform monosolvate top
Crystal data top
C28H33I·CHCl3F(000) = 1248
Mr = 615.81Dx = 1.415 Mg m3
Monoclinic, P21/nMelting point = 498–497 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 12.0294 (10) ÅCell parameters from 3032 reflections
b = 16.0651 (13) Åθ = 2.3–19.9°
c = 15.3762 (12) ŵ = 1.40 mm1
β = 103.385 (1)°T = 297 K
V = 2890.8 (4) Å3Block, colourless
Z = 40.32 × 0.28 × 0.26 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5896 independent reflections
Radiation source: fine-focus sealed tube4698 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
φ and ω scansθmax = 26.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1515
Tmin = 0.663, Tmax = 0.712k = 2020
22910 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0465P)2 + 3.6212P]
where P = (Fo2 + 2Fc2)/3
5896 reflections(Δ/σ)max = 0.031
308 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
C28H33I·CHCl3V = 2890.8 (4) Å3
Mr = 615.81Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.0294 (10) ŵ = 1.40 mm1
b = 16.0651 (13) ÅT = 297 K
c = 15.3762 (12) Å0.32 × 0.28 × 0.26 mm
β = 103.385 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5896 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4698 reflections with I > 2σ(I)
Tmin = 0.663, Tmax = 0.712Rint = 0.056
22910 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.13Δρmax = 0.83 e Å3
5896 reflectionsΔρmin = 0.68 e Å3
308 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7505 (4)0.1344 (3)0.4780 (3)0.0364 (11)
C20.6846 (4)0.1920 (3)0.4197 (3)0.0383 (11)
C30.6011 (5)0.2346 (3)0.4498 (3)0.0499 (13)
H30.55560.2730.41220.06*
C40.5835 (5)0.2216 (4)0.5341 (4)0.0570 (15)
H40.52780.25180.55350.068*
C50.6487 (5)0.1637 (3)0.5897 (3)0.0490 (13)
H50.63540.15440.64610.059*
C60.7338 (4)0.1191 (3)0.5631 (3)0.0377 (11)
C70.6986 (4)0.2074 (3)0.3265 (3)0.0377 (11)
C80.6370 (4)0.1577 (3)0.2572 (3)0.0422 (12)
C90.6476 (4)0.1740 (3)0.1698 (3)0.0476 (13)
C100.7155 (5)0.2388 (3)0.1525 (3)0.0493 (13)
C110.7780 (4)0.2865 (3)0.2222 (3)0.0473 (12)
C120.7713 (4)0.2701 (3)0.3103 (3)0.0422 (12)
C130.5589 (6)0.0903 (4)0.2764 (4)0.0680 (17)
H13A0.48230.10090.24310.102*
H13B0.56070.08980.33910.102*
H13C0.58390.03740.25920.102*
C140.5810 (7)0.1203 (5)0.0945 (4)0.084 (2)
H14A0.61450.12440.04380.125*
H14B0.50310.1390.07820.125*
H14C0.58310.06340.11390.125*
C150.7196 (6)0.2594 (5)0.0568 (4)0.084 (2)
H15A0.65840.23140.01630.127*
H15B0.79140.24150.0460.127*
H15C0.71170.31840.04760.127*
C160.8538 (6)0.3562 (4)0.2035 (5)0.079 (2)
H16A0.8130.38860.15380.118*
H16B0.92110.33310.18950.118*
H16C0.87530.39110.25530.118*
C170.8413 (5)0.3199 (4)0.3880 (4)0.0681 (17)
H17A0.82680.29970.4430.102*
H17B0.82040.37760.38070.102*
H17C0.92110.31390.38930.102*
C180.8017 (4)0.0550 (3)0.6229 (3)0.0368 (11)
C190.7593 (4)0.0266 (3)0.6220 (3)0.0396 (11)
C200.8242 (5)0.0875 (3)0.6762 (3)0.0468 (13)
C210.9318 (5)0.0657 (3)0.7299 (3)0.0489 (13)
C220.9726 (4)0.0152 (3)0.7312 (3)0.0459 (12)
C230.9068 (4)0.0763 (3)0.6789 (3)0.0447 (12)
C240.6463 (5)0.0464 (4)0.5600 (4)0.0608 (16)
H24A0.63580.10560.55650.091*
H24B0.6450.02480.50150.091*
H24C0.58590.02140.58220.091*
C250.7790 (6)0.1748 (3)0.6782 (4)0.076 (2)
H25A0.69950.1760.64840.114*
H25B0.78790.19240.73910.114*
H25C0.82080.21170.64830.114*
C261.0042 (6)0.1318 (4)0.7865 (4)0.078 (2)
H26A1.06820.14510.76160.117*
H26B0.95910.18090.78760.117*
H26C1.03140.11130.84630.117*
C271.0888 (5)0.0364 (5)0.7901 (4)0.0730 (18)
H27A1.14330.00510.78280.109*
H27B1.08370.0380.85150.109*
H27C1.11280.08990.77330.109*
C280.9492 (6)0.1650 (4)0.6799 (4)0.0728 (19)
H28A1.02360.16550.66710.109*
H28B0.95360.1890.73780.109*
H28C0.89730.19690.63540.109*
I10.87935 (3)0.06968 (3)0.43456 (2)0.05850 (16)
C290.2774 (6)0.4708 (4)0.3696 (4)0.0684 (17)
H290.29960.48020.3130.082*
Cl10.14519 (19)0.41957 (14)0.34585 (16)0.1030 (7)
Cl20.3802 (2)0.40834 (19)0.43583 (18)0.1351 (10)
Cl30.2678 (3)0.56550 (15)0.4179 (2)0.1352 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.037 (3)0.036 (3)0.036 (2)0.008 (2)0.008 (2)0.002 (2)
C20.046 (3)0.038 (3)0.030 (2)0.002 (2)0.006 (2)0.000 (2)
C30.057 (3)0.048 (3)0.044 (3)0.021 (3)0.012 (3)0.006 (2)
C40.065 (4)0.056 (4)0.055 (3)0.024 (3)0.024 (3)0.005 (3)
C50.059 (3)0.056 (3)0.035 (3)0.008 (3)0.016 (2)0.002 (2)
C60.040 (3)0.036 (3)0.036 (3)0.000 (2)0.006 (2)0.001 (2)
C70.037 (3)0.041 (3)0.033 (2)0.014 (2)0.005 (2)0.007 (2)
C80.039 (3)0.047 (3)0.037 (3)0.007 (2)0.002 (2)0.006 (2)
C90.047 (3)0.053 (3)0.039 (3)0.011 (3)0.004 (2)0.000 (2)
C100.060 (3)0.054 (3)0.036 (3)0.016 (3)0.016 (3)0.008 (2)
C110.044 (3)0.049 (3)0.049 (3)0.006 (2)0.012 (2)0.015 (3)
C120.040 (3)0.041 (3)0.044 (3)0.006 (2)0.007 (2)0.003 (2)
C130.072 (4)0.064 (4)0.065 (4)0.013 (3)0.009 (3)0.006 (3)
C140.104 (6)0.096 (5)0.044 (3)0.010 (4)0.005 (4)0.015 (4)
C150.104 (6)0.109 (6)0.046 (4)0.002 (5)0.028 (4)0.015 (4)
C160.084 (5)0.080 (5)0.077 (5)0.008 (4)0.028 (4)0.025 (4)
C170.067 (4)0.072 (4)0.061 (4)0.011 (3)0.006 (3)0.003 (3)
C180.039 (3)0.040 (3)0.031 (2)0.004 (2)0.008 (2)0.007 (2)
C190.047 (3)0.044 (3)0.029 (2)0.000 (2)0.011 (2)0.002 (2)
C200.067 (4)0.038 (3)0.039 (3)0.003 (2)0.018 (3)0.002 (2)
C210.057 (3)0.055 (3)0.038 (3)0.020 (3)0.017 (2)0.011 (2)
C220.042 (3)0.062 (4)0.035 (3)0.004 (2)0.010 (2)0.005 (2)
C230.049 (3)0.049 (3)0.033 (2)0.003 (2)0.004 (2)0.004 (2)
C240.057 (4)0.060 (4)0.063 (4)0.012 (3)0.010 (3)0.006 (3)
C250.119 (6)0.037 (3)0.070 (4)0.006 (3)0.019 (4)0.005 (3)
C260.079 (5)0.078 (5)0.073 (4)0.032 (4)0.008 (4)0.028 (4)
C270.049 (4)0.103 (5)0.059 (4)0.005 (3)0.003 (3)0.011 (4)
C280.074 (4)0.065 (4)0.070 (4)0.023 (3)0.002 (3)0.008 (3)
I10.0572 (2)0.0742 (3)0.0485 (2)0.03317 (19)0.02111 (17)0.01532 (19)
C290.072 (4)0.068 (4)0.070 (4)0.006 (3)0.027 (3)0.014 (3)
Cl10.0842 (14)0.1114 (17)0.1078 (16)0.0161 (12)0.0108 (12)0.0079 (13)
Cl20.0936 (17)0.165 (3)0.144 (2)0.0425 (16)0.0228 (16)0.0602 (19)
Cl30.160 (3)0.1012 (18)0.150 (2)0.0052 (16)0.048 (2)0.0496 (16)
Geometric parameters (Å, º) top
C1—C61.392 (6)C16—H16C0.96
C1—C21.400 (6)C17—H17A0.96
C1—I12.099 (4)C17—H17B0.96
C2—C31.381 (6)C17—H17C0.96
C2—C71.501 (6)C18—C231.398 (7)
C3—C41.377 (7)C18—C191.406 (7)
C3—H30.93C19—C201.400 (7)
C4—C51.379 (7)C19—C241.503 (7)
C4—H40.93C20—C211.408 (8)
C5—C61.386 (7)C20—C251.507 (7)
C5—H50.93C21—C221.389 (7)
C6—C181.492 (6)C21—C261.514 (7)
C7—C121.394 (7)C22—C231.393 (7)
C7—C81.398 (7)C22—C271.518 (8)
C8—C91.403 (7)C23—C281.513 (7)
C8—C131.507 (7)C24—H24A0.96
C9—C101.386 (7)C24—H24B0.96
C9—C141.516 (8)C24—H24C0.96
C10—C111.389 (7)C25—H25A0.96
C10—C151.521 (7)C25—H25B0.96
C11—C121.401 (7)C25—H25C0.96
C11—C161.512 (8)C26—H26A0.96
C12—C171.520 (7)C26—H26B0.96
C13—H13A0.96C26—H26C0.96
C13—H13B0.96C27—H27A0.96
C13—H13C0.96C27—H27B0.96
C14—H14A0.96C27—H27C0.96
C14—H14B0.96C28—H28A0.96
C14—H14C0.96C28—H28B0.96
C15—H15A0.96C28—H28C0.96
C15—H15B0.96C29—Cl31.708 (7)
C15—H15C0.96C29—Cl21.729 (7)
C16—H16A0.96C29—Cl11.753 (7)
C16—H16B0.96C29—H290.98
C6—C1—C2122.3 (4)C12—C17—H17A109.5
C6—C1—I1119.4 (3)C12—C17—H17B109.5
C2—C1—I1118.3 (3)H17A—C17—H17B109.5
C3—C2—C1117.5 (4)C12—C17—H17C109.5
C3—C2—C7119.3 (4)H17A—C17—H17C109.5
C1—C2—C7123.2 (4)H17B—C17—H17C109.5
C4—C3—C2121.5 (5)C23—C18—C19120.6 (4)
C4—C3—H3119.3C23—C18—C6119.9 (4)
C2—C3—H3119.3C19—C18—C6119.5 (4)
C3—C4—C5119.8 (5)C20—C19—C18119.7 (5)
C3—C4—H4120.1C20—C19—C24121.9 (5)
C5—C4—H4120.1C18—C19—C24118.5 (4)
C4—C5—C6121.2 (5)C19—C20—C21119.0 (5)
C4—C5—H5119.4C19—C20—C25120.5 (5)
C6—C5—H5119.4C21—C20—C25120.4 (5)
C5—C6—C1117.7 (4)C22—C21—C20121.0 (5)
C5—C6—C18120.8 (4)C22—C21—C26119.6 (5)
C1—C6—C18121.5 (4)C20—C21—C26119.4 (5)
C12—C7—C8121.3 (4)C21—C22—C23120.0 (5)
C12—C7—C2120.2 (4)C21—C22—C27119.5 (5)
C8—C7—C2118.5 (4)C23—C22—C27120.5 (5)
C7—C8—C9118.3 (5)C22—C23—C18119.7 (5)
C7—C8—C13120.3 (5)C22—C23—C28120.9 (5)
C9—C8—C13121.3 (5)C18—C23—C28119.5 (5)
C10—C9—C8120.8 (5)C19—C24—H24A109.5
C10—C9—C14120.8 (5)C19—C24—H24B109.5
C8—C9—C14118.4 (5)H24A—C24—H24B109.5
C9—C10—C11120.3 (5)C19—C24—H24C109.5
C9—C10—C15120.2 (5)H24A—C24—H24C109.5
C11—C10—C15119.6 (5)H24B—C24—H24C109.5
C10—C11—C12120.0 (5)C20—C25—H25A109.5
C10—C11—C16120.3 (5)C20—C25—H25B109.5
C12—C11—C16119.7 (5)H25A—C25—H25B109.5
C7—C12—C11119.2 (5)C20—C25—H25C109.5
C7—C12—C17119.8 (5)H25A—C25—H25C109.5
C11—C12—C17121.0 (5)H25B—C25—H25C109.5
C8—C13—H13A109.5C21—C26—H26A109.5
C8—C13—H13B109.5C21—C26—H26B109.5
H13A—C13—H13B109.5H26A—C26—H26B109.5
C8—C13—H13C109.5C21—C26—H26C109.5
H13A—C13—H13C109.5H26A—C26—H26C109.5
H13B—C13—H13C109.5H26B—C26—H26C109.5
C9—C14—H14A109.5C22—C27—H27A109.5
C9—C14—H14B109.5C22—C27—H27B109.5
H14A—C14—H14B109.5H27A—C27—H27B109.5
C9—C14—H14C109.5C22—C27—H27C109.5
H14A—C14—H14C109.5H27A—C27—H27C109.5
H14B—C14—H14C109.5H27B—C27—H27C109.5
C10—C15—H15A109.5C23—C28—H28A109.5
C10—C15—H15B109.5C23—C28—H28B109.5
H15A—C15—H15B109.5H28A—C28—H28B109.5
C10—C15—H15C109.5C23—C28—H28C109.5
H15A—C15—H15C109.5H28A—C28—H28C109.5
H15B—C15—H15C109.5H28B—C28—H28C109.5
C11—C16—H16A109.5Cl3—C29—Cl2111.9 (4)
C11—C16—H16B109.5Cl3—C29—Cl1111.1 (4)
H16A—C16—H16B109.5Cl2—C29—Cl1110.0 (4)
C11—C16—H16C109.5Cl3—C29—H29107.9
H16A—C16—H16C109.5Cl2—C29—H29107.9
H16B—C16—H16C109.5Cl1—C29—H29107.9
C6—C1—C2—C30.3 (7)C2—C7—C12—C11176.4 (4)
I1—C1—C2—C3179.4 (4)C8—C7—C12—C17176.9 (5)
C6—C1—C2—C7177.9 (4)C2—C7—C12—C173.3 (7)
I1—C1—C2—C72.5 (6)C10—C11—C12—C72.0 (7)
C1—C2—C3—C40.5 (8)C16—C11—C12—C7178.1 (5)
C7—C2—C3—C4178.8 (5)C10—C11—C12—C17178.3 (5)
C2—C3—C4—C51.3 (9)C16—C11—C12—C171.5 (8)
C3—C4—C5—C61.3 (9)C5—C6—C18—C2394.7 (6)
C4—C5—C6—C10.5 (8)C1—C6—C18—C2387.5 (6)
C4—C5—C6—C18178.3 (5)C5—C6—C18—C1985.6 (6)
C2—C1—C6—C50.3 (7)C1—C6—C18—C1992.2 (6)
I1—C1—C6—C5179.3 (4)C23—C18—C19—C201.4 (7)
C2—C1—C6—C18177.5 (4)C6—C18—C19—C20178.3 (4)
I1—C1—C6—C182.8 (6)C23—C18—C19—C24179.5 (5)
C3—C2—C7—C1289.3 (6)C6—C18—C19—C240.2 (7)
C1—C2—C7—C1292.5 (6)C18—C19—C20—C210.8 (7)
C3—C2—C7—C890.5 (6)C24—C19—C20—C21177.2 (5)
C1—C2—C7—C887.7 (6)C18—C19—C20—C25178.3 (5)
C12—C7—C8—C91.7 (7)C24—C19—C20—C253.7 (8)
C2—C7—C8—C9178.1 (4)C19—C20—C21—C221.5 (7)
C12—C7—C8—C13179.9 (5)C25—C20—C21—C22177.6 (5)
C2—C7—C8—C130.2 (7)C19—C20—C21—C26178.1 (5)
C7—C8—C9—C101.4 (7)C25—C20—C21—C262.8 (8)
C13—C8—C9—C10176.8 (5)C20—C21—C22—C230.1 (7)
C7—C8—C9—C14180.0 (5)C26—C21—C22—C23179.7 (5)
C13—C8—C9—C141.8 (8)C20—C21—C22—C27179.8 (5)
C8—C9—C10—C112.7 (8)C26—C21—C22—C270.6 (8)
C14—C9—C10—C11178.7 (5)C21—C22—C23—C182.3 (7)
C8—C9—C10—C15175.7 (5)C27—C22—C23—C18178.0 (5)
C14—C9—C10—C152.8 (8)C21—C22—C23—C28179.5 (5)
C9—C10—C11—C121.0 (8)C27—C22—C23—C280.2 (8)
C15—C10—C11—C12177.5 (5)C19—C18—C23—C223.0 (7)
C9—C10—C11—C16178.8 (5)C6—C18—C23—C22176.7 (4)
C15—C10—C11—C162.7 (8)C19—C18—C23—C28178.7 (5)
C8—C7—C12—C113.4 (7)C6—C18—C23—C281.5 (7)
Hydrogen-bond geometry (Å, º) top
Cg2 and C3 are the centroids of the C7–C12 and C18–C23 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C26—H26A···Cg2i0.963.86 (1)2.97155
C28—H28A···Cg2ii0.963.53 (1)2.87127
C29—H29···Cg3iii0.983.42 (1)2.44177
Symmetry codes: (i) x+2, y, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC28H33I·CHCl3
Mr615.81
Crystal system, space groupMonoclinic, P21/n
Temperature (K)297
a, b, c (Å)12.0294 (10), 16.0651 (13), 15.3762 (12)
β (°) 103.385 (1)
V3)2890.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.40
Crystal size (mm)0.32 × 0.28 × 0.26
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.663, 0.712
No. of measured, independent and
observed [I > 2σ(I)] reflections
22910, 5896, 4698
Rint0.056
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.137, 1.13
No. of reflections5896
No. of parameters308
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 0.68

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 and C3 are the centroids of the C7–C12 and C18–C23 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C26—H26A···Cg2i0.963.861 (8)2.97155
C28—H28A···Cg2ii0.963.532 (7)2.87127
C29—H29···Cg3iii0.983.422 (6)2.44177
Symmetry codes: (i) x+2, y, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z1/2.
C—I···π interactions (Å, °) top
Cg3 is the centroid of the C18–C23 benzene ring.
YX···CgYXX···CgY···CgYX···Cg
C1—I1···Cg3i2.099 (4)3.975 (2)6.026 (5)164.67 (13)
Symmetry code: (i) 2-x, -y, 1-z.
 

Acknowledgements

This work was supported by the National University Research Council (CNCSIS) of Romania (project TE 295/2010).

References

First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDuttwyler, S., Do, Q.-Q., Linden, A., Baldrige, K. K. & Siegel, J. S. (2008). Angew. Chem. Int. Ed. 47, 1719–1722.  Web of Science CSD CrossRef CAS Google Scholar
First citationHino, S., Olmstead, M. M., Fettinger, J. C. & Power, P. P. (2005). J. Organomet. Chem. 690, 1638–1644.  Web of Science CSD CrossRef CAS Google Scholar
First citationNiemeyer, M. (1998). Organometallics, 17, 4649–4656.  Web of Science CSD CrossRef CAS Google Scholar
First citationPower, P. P. (2004). J. Organomet. Chem. 689, 3904–3919.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTwamley, B., Hardman, N. J. & Power, P. P. (2000). Acta Cryst. C56, e514–e515.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZakharov, L. N., Rheingold, A. L. & Protasiewicz, J. D. (2003). Private Communication (refcode: TUWZAM). CCDC, Cambridge, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds