organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-{[5-(4-Bromo­phen­yl)imidazo[2,1-b][1,3,4]thia­diazol-2-yl]meth­yl}-1,2-benzoxazole

aDepartment of Studies in Chemistry, Bangalore University, Bangalore 560 001, India, and bDepartment of Chemistry, Karnatak University, Dharwad 580 003, India
*Correspondence e-mail: noorsb@rediffmail.com

(Received 15 November 2010; accepted 13 December 2010; online 18 December 2010)

In the title compound, C18H11BrN4OS, the imidazothia­diazole and benzisoxazole rings are individually planar with maximum deviations of 0.025 (3) 0.015 (4) Å, respectively, and are inclined at an angle of 23.51 (7)° with respect to each other. The planes of the imidazothia­diazole and bromo­phenyl rings are inclined at an angle of 27.34 (3)°. In the crystal, inter­molecular C—H⋯N inter­actions result in chains of mol­ecules along the b and c axes. Moreover, C—H⋯O inter­actions result in centrosymmetric head-to-head dimers with R22(24) graph-set motifs. The mol­ecular packing is further stabilized by ππ stacking inter­actions between the imidazole rings with a shortest centroid–centroid distance of 3.492 (3) Å. In addition, C—H⋯π inter­actions are observed in the crystal structure.

Related literature

For the biological activity of benzisoxazole derivatives, see: Priya et al. (2005[Priya, B. S., Basappa., Swamy, S. N., Rangappa, K. S. (2005). Bioorg. Med. Chem. 13, 2623-2628.]). For the preparation of the title compound, see: Lamani et al. (2009[Lamani, R. S., Shetty, N. S., Ravindra, R. & Khazi, I. A. M. (2009). Eur. J. Med. Chem. 44, 2828-2833.]). For a related structure, see: Sun & Zhang (2009[Sun, Y. & Zhang, H.-H. (2009). Acta Cryst. E65, o1647.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H11BrN4OS

  • Mr = 411.28

  • Monoclinic, C 2/c

  • a = 38.985 (17) Å

  • b = 5.764 (3) Å

  • c = 14.925 (6) Å

  • β = 109.191 (13)°

  • V = 3167 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.74 mm−1

  • T = 423 K

  • 0.18 × 0.16 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconcin, USA.]) Tmin = 0.638, Tmax = 0.668

  • 8879 measured reflections

  • 3432 independent reflections

  • 2534 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.142

  • S = 1.02

  • 3432 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 1.10 e Å−3

  • Δρmin = −1.02 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 and Cg5 are the centroids of the C1–C6 and C13–C18 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.38 3.219 (6) 150
C8—H8⋯N1ii 0.93 2.60 3.469 (6) 156
C11—H11B⋯N1iii 0.97 2.48 3.358 (6) 150
C4—H4⋯Cg5iii 0.93 2.96 3.554 (5) 123
C18—H18⋯Cg4iii 0.93 2.83 3.496 (5) 130
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) x, y+1, z; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconcin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconcin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1996)[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]; software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Benzisoxazole derivatives are known to possess important biological activities (Priya et al., 2005). In view of increasing importance of the heterocycles in pharmaceutical and biological fields, it was considered of interest to synthesize some new chemical entities incorporating two active pharmacophores in a single molecular frame work and to evaluate their biological activities. In the title compound (Fig. 1), the fused imidazothiadiazole ring system is linked to a benzisoxazole and a bromophenyl moieties. The imidazothiadiazole (S1/N1–N3/C7–C10) and benzisoxazole (O1/N4/C12–C18) rings are individually planar similar to those reported earlier (Sun & Zhang, 2009) with maximum deviations 0.025 (3) Å for N2 and 0.015 (4) Å for C17, respectively. The mean-plane of benzisoxazole makes a dihedral angle of 23.51 (7)° with the mean-plane of the imidazothiadiazole ring. The planes of the imidazothiadiazole and bromophenyl rings are inclined at an angle 27.34 (3)° with each other. The differences in bond lengths S1—C9 (1.734 (5) Å) and S1—C10 (1.757 (5) Å) indicate that the resonance effect caused by the imidazole ring is stronger than that caused by the thiadiazole ring. In the crystal structure, intermolecular interactions C8—H8···N1 result in chains of molecules along the c-axis and C11—H11B···N1 interactions result in chains of molecules along the b-axis. Moreover, C2—H2···O1 interactions result in centrosymmetric head-to-head dimers corresponding to R22(24) graph set motif (Bernstein et al., 1995) (Fig. 2). The molecular packing is further stabilized by π-π stacking interactions between imidazo rings (Cg3) with the shortest centroid–centroid distance 3.492 (3) Å. In addition, π-ring interactions of the type C—H···Cg (Cg being the centroids of rings C1–C6 and C13–C18) are also observed in the crystal structure; details have been provided in Table 1.

Related literature top

For the biological activity of benzisoxazole derivatives, see: Priya et al. (2005). For the preparation of the title compound, see: Lamani et al. (2009). For a related structure, see: Sun & Zhang (2009). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized by following the procedure reported earlier (Lamani et al., 2009) and suitable crystals for X-ray crystallographic analysis were grown from a solution of dimethylformamide by slow evaporation at room temperature.

Refinement top

The H atoms were placed at calculated positions in the riding model approximation with N—H = 0.86 and C—H = 0.97 Å, and Uiso(H) = 1.2Ueq(N/C).

Structure description top

Benzisoxazole derivatives are known to possess important biological activities (Priya et al., 2005). In view of increasing importance of the heterocycles in pharmaceutical and biological fields, it was considered of interest to synthesize some new chemical entities incorporating two active pharmacophores in a single molecular frame work and to evaluate their biological activities. In the title compound (Fig. 1), the fused imidazothiadiazole ring system is linked to a benzisoxazole and a bromophenyl moieties. The imidazothiadiazole (S1/N1–N3/C7–C10) and benzisoxazole (O1/N4/C12–C18) rings are individually planar similar to those reported earlier (Sun & Zhang, 2009) with maximum deviations 0.025 (3) Å for N2 and 0.015 (4) Å for C17, respectively. The mean-plane of benzisoxazole makes a dihedral angle of 23.51 (7)° with the mean-plane of the imidazothiadiazole ring. The planes of the imidazothiadiazole and bromophenyl rings are inclined at an angle 27.34 (3)° with each other. The differences in bond lengths S1—C9 (1.734 (5) Å) and S1—C10 (1.757 (5) Å) indicate that the resonance effect caused by the imidazole ring is stronger than that caused by the thiadiazole ring. In the crystal structure, intermolecular interactions C8—H8···N1 result in chains of molecules along the c-axis and C11—H11B···N1 interactions result in chains of molecules along the b-axis. Moreover, C2—H2···O1 interactions result in centrosymmetric head-to-head dimers corresponding to R22(24) graph set motif (Bernstein et al., 1995) (Fig. 2). The molecular packing is further stabilized by π-π stacking interactions between imidazo rings (Cg3) with the shortest centroid–centroid distance 3.492 (3) Å. In addition, π-ring interactions of the type C—H···Cg (Cg being the centroids of rings C1–C6 and C13–C18) are also observed in the crystal structure; details have been provided in Table 1.

For the biological activity of benzisoxazole derivatives, see: Priya et al. (2005). For the preparation of the title compound, see: Lamani et al. (2009). For a related structure, see: Sun & Zhang (2009). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP (Farrugia, 1997) view of the title compound, showing 50% probability ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. A unit cell packing of the title compound showing intermolecular interactions with dotted lines. H-atoms not involved in hydrogen bonding have been excluded.
3-{[5-(4-Bromophenyl)imidazo[2,1-b][1,3,4]thiadiazol-2-yl]methyl}- 1,2-benzoxazole top
Crystal data top
C18H11BrN4OSF(000) = 1648
Mr = 411.28Dx = 1.725 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3432 reflections
a = 38.985 (17) Åθ = 2.2–27.0°
b = 5.764 (3) ŵ = 2.74 mm1
c = 14.925 (6) ÅT = 423 K
β = 109.191 (13)°Block, yellow
V = 3167 (2) Å30.18 × 0.16 × 0.16 mm
Z = 8
Data collection top
Bruker SMART APEX CCD detector
diffractometer
3432 independent reflections
Radiation source: Enhance (Mo) X-ray Source2534 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 4449
Tmin = 0.638, Tmax = 0.668k = 77
8879 measured reflectionsl = 1619
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0787P)2]
where P = (Fo2 + 2Fc2)/3
3432 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 1.10 e Å3
0 restraintsΔρmin = 1.02 e Å3
Crystal data top
C18H11BrN4OSV = 3167 (2) Å3
Mr = 411.28Z = 8
Monoclinic, C2/cMo Kα radiation
a = 38.985 (17) ŵ = 2.74 mm1
b = 5.764 (3) ÅT = 423 K
c = 14.925 (6) Å0.18 × 0.16 × 0.16 mm
β = 109.191 (13)°
Data collection top
Bruker SMART APEX CCD detector
diffractometer
3432 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2534 reflections with I > 2σ(I)
Tmin = 0.638, Tmax = 0.668Rint = 0.081
8879 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.02Δρmax = 1.10 e Å3
3432 reflectionsΔρmin = 1.02 e Å3
226 parameters
Special details top

Experimental. The compound was synthesized by following the procedure given in Lamani et al., (2009)

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.14779 (11)0.5054 (7)0.4239 (3)0.0178 (8)
H10.16360.38130.44530.021*
C20.11246 (11)0.4910 (8)0.4268 (3)0.0213 (9)
H20.10480.35930.45070.026*
C30.08923 (11)0.6744 (7)0.3938 (3)0.0193 (9)
C40.10031 (12)0.8734 (7)0.3593 (3)0.0222 (9)
H40.08440.99720.33820.027*
C50.13517 (11)0.8857 (7)0.3567 (3)0.0200 (9)
H50.14261.01830.33270.024*
C60.15970 (11)0.7034 (7)0.3892 (3)0.0163 (8)
C70.19675 (11)0.7159 (7)0.3855 (3)0.0165 (8)
C80.21618 (11)0.9130 (7)0.3817 (3)0.0175 (8)
H80.20911.06670.38310.021*
C90.24700 (11)0.5928 (7)0.3759 (3)0.0166 (8)
C100.30080 (11)0.7731 (7)0.3592 (3)0.0178 (8)
C110.33397 (10)0.8402 (7)0.3361 (3)0.0168 (8)
H11A0.34210.98970.36510.020*
H11B0.32690.86160.26790.020*
C120.36595 (11)0.6779 (7)0.3653 (3)0.0178 (8)
C130.40073 (11)0.7153 (7)0.3545 (3)0.0162 (8)
C140.41996 (11)0.5140 (7)0.3897 (3)0.0187 (9)
C150.45543 (11)0.4746 (8)0.3946 (3)0.0212 (9)
H150.46770.33870.41970.025*
C160.47149 (12)0.6516 (8)0.3594 (3)0.0236 (9)
H160.49530.63410.36020.028*
C170.45273 (11)0.8557 (8)0.3228 (3)0.0216 (9)
H170.46430.97010.29940.026*
C180.41745 (12)0.8920 (8)0.3207 (3)0.0207 (9)
H180.40531.02950.29740.025*
Br10.040967 (11)0.65163 (8)0.39690 (3)0.02724 (18)
N10.21625 (9)0.5149 (6)0.3825 (2)0.0171 (7)
N20.24852 (9)0.8310 (6)0.3753 (2)0.0172 (7)
N30.27848 (9)0.9330 (6)0.3650 (2)0.0198 (7)
N40.36389 (9)0.4744 (6)0.4012 (2)0.0210 (8)
O10.39822 (8)0.3642 (5)0.4181 (2)0.0221 (7)
S10.28738 (3)0.48552 (18)0.36718 (7)0.0188 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0170 (19)0.009 (2)0.027 (2)0.0004 (16)0.0056 (16)0.0014 (15)
C20.022 (2)0.019 (2)0.024 (2)0.0042 (18)0.0089 (17)0.0014 (17)
C30.0144 (19)0.022 (2)0.0217 (19)0.0019 (17)0.0057 (16)0.0048 (16)
C40.022 (2)0.016 (2)0.027 (2)0.0043 (18)0.0051 (18)0.0010 (16)
C50.020 (2)0.015 (2)0.027 (2)0.0028 (17)0.0088 (17)0.0008 (16)
C60.0138 (19)0.015 (2)0.0197 (19)0.0023 (16)0.0050 (15)0.0014 (15)
C70.0150 (19)0.015 (2)0.0200 (19)0.0008 (16)0.0056 (16)0.0012 (15)
C80.0155 (19)0.013 (2)0.025 (2)0.0029 (16)0.0085 (17)0.0007 (15)
C90.017 (2)0.012 (2)0.0201 (19)0.0007 (16)0.0043 (16)0.0005 (14)
C100.016 (2)0.013 (2)0.022 (2)0.0030 (17)0.0033 (16)0.0018 (16)
C110.0127 (19)0.014 (2)0.024 (2)0.0023 (16)0.0063 (16)0.0041 (16)
C120.017 (2)0.011 (2)0.0223 (19)0.0011 (16)0.0028 (16)0.0012 (15)
C130.016 (2)0.011 (2)0.0196 (19)0.0012 (16)0.0028 (16)0.0006 (14)
C140.018 (2)0.012 (2)0.026 (2)0.0009 (16)0.0072 (16)0.0017 (16)
C150.017 (2)0.014 (2)0.030 (2)0.0055 (17)0.0052 (17)0.0019 (17)
C160.018 (2)0.025 (3)0.027 (2)0.0016 (19)0.0060 (17)0.0013 (18)
C170.019 (2)0.020 (2)0.027 (2)0.0024 (18)0.0091 (17)0.0020 (17)
C180.021 (2)0.016 (2)0.024 (2)0.0013 (17)0.0063 (17)0.0019 (16)
Br10.0161 (2)0.0308 (3)0.0357 (3)0.00248 (19)0.00975 (18)0.00722 (19)
N10.0158 (16)0.0112 (18)0.0244 (17)0.0023 (14)0.0066 (14)0.0005 (13)
N20.0159 (17)0.0112 (18)0.0254 (17)0.0007 (14)0.0082 (14)0.0012 (13)
N30.0128 (16)0.0151 (19)0.0324 (19)0.0055 (14)0.0089 (15)0.0014 (15)
N40.0151 (17)0.018 (2)0.0303 (19)0.0007 (15)0.0085 (14)0.0026 (14)
O10.0177 (15)0.0107 (15)0.0403 (17)0.0047 (12)0.0127 (13)0.0085 (12)
S10.0156 (5)0.0106 (5)0.0308 (5)0.0009 (4)0.0085 (4)0.0002 (4)
Geometric parameters (Å, º) top
C1—C61.393 (6)C10—C111.495 (5)
C1—C21.395 (6)C10—S11.754 (4)
C1—H10.9300C11—C121.504 (5)
C2—C31.374 (6)C11—H11A0.9700
C2—H20.9300C11—H11B0.9700
C3—C41.383 (6)C12—N41.303 (5)
C3—Br11.902 (4)C12—C131.433 (6)
C4—C51.374 (6)C13—C141.387 (5)
C4—H40.9300C13—C181.390 (6)
C5—C61.396 (6)C14—O11.371 (5)
C5—H50.9300C14—C151.379 (6)
C6—C71.465 (5)C15—C161.387 (6)
C7—C81.377 (6)C15—H150.9300
C7—N11.395 (5)C16—C171.398 (6)
C8—N21.379 (5)C16—H160.9300
C8—H80.9300C17—C181.381 (6)
C9—N11.314 (5)C17—H170.9300
C9—N21.374 (5)C18—H180.9300
C9—S11.736 (4)N2—N31.360 (5)
C10—N31.290 (5)N4—O11.427 (4)
C6—C1—C2120.9 (4)C10—C11—H11B107.8
C6—C1—H1119.6C12—C11—H11B107.8
C2—C1—H1119.6H11A—C11—H11B107.1
C3—C2—C1119.0 (4)N4—C12—C13111.7 (4)
C3—C2—H2120.5N4—C12—C11121.5 (4)
C1—C2—H2120.5C13—C12—C11126.7 (4)
C2—C3—C4121.5 (4)C14—C13—C18119.4 (4)
C2—C3—Br1118.6 (3)C14—C13—C12104.2 (3)
C4—C3—Br1119.9 (3)C18—C13—C12136.4 (4)
C5—C4—C3119.1 (4)O1—C14—C15126.2 (4)
C5—C4—H4120.5O1—C14—C13109.4 (3)
C3—C4—H4120.5C15—C14—C13124.4 (4)
C4—C5—C6121.5 (4)C14—C15—C16115.4 (4)
C4—C5—H5119.3C14—C15—H15122.3
C6—C5—H5119.3C16—C15—H15122.3
C1—C6—C5118.1 (4)C15—C16—C17121.6 (4)
C1—C6—C7120.5 (4)C15—C16—H16119.2
C5—C6—C7121.4 (4)C17—C16—H16119.2
C8—C7—N1111.8 (4)C18—C17—C16121.7 (4)
C8—C7—C6127.2 (4)C18—C17—H17119.2
N1—C7—C6121.0 (4)C16—C17—H17119.2
C7—C8—N2104.4 (4)C17—C18—C13117.6 (4)
C7—C8—H8127.8C17—C18—H18121.2
N2—C8—H8127.8C13—C18—H18121.2
N1—C9—N2112.6 (4)C9—N1—C7103.8 (3)
N1—C9—S1139.1 (3)N3—N2—C9118.2 (3)
N2—C9—S1108.3 (3)N3—N2—C8134.3 (4)
N3—C10—C11119.0 (4)C9—N2—C8107.4 (3)
N3—C10—S1116.6 (3)C10—N3—N2108.8 (3)
C11—C10—S1124.1 (3)C12—N4—O1107.0 (3)
C10—C11—C12118.0 (3)C14—O1—N4107.7 (3)
C10—C11—H11A107.8C9—S1—C1088.1 (2)
C12—C11—H11A107.8
C6—C1—C2—C30.8 (6)C13—C14—C15—C161.3 (6)
C1—C2—C3—C41.0 (6)C14—C15—C16—C170.7 (6)
C1—C2—C3—Br1179.3 (3)C15—C16—C17—C180.6 (6)
C2—C3—C4—C51.1 (6)C16—C17—C18—C131.3 (6)
Br1—C3—C4—C5179.3 (3)C14—C13—C18—C170.8 (6)
C3—C4—C5—C60.9 (6)C12—C13—C18—C17179.8 (4)
C2—C1—C6—C50.7 (6)N2—C9—N1—C70.5 (4)
C2—C1—C6—C7179.4 (3)S1—C9—N1—C7179.3 (4)
C4—C5—C6—C10.7 (6)C8—C7—N1—C90.6 (4)
C4—C5—C6—C7179.4 (4)C6—C7—N1—C9177.6 (3)
C1—C6—C7—C8158.6 (4)N1—C9—N2—N3177.5 (3)
C5—C6—C7—C822.8 (6)S1—C9—N2—N32.4 (4)
C1—C6—C7—N123.5 (5)N1—C9—N2—C80.2 (4)
C5—C6—C7—N1155.2 (4)S1—C9—N2—C8179.7 (3)
N1—C7—C8—N20.5 (4)C7—C8—N2—N3176.5 (4)
C6—C7—C8—N2177.6 (4)C7—C8—N2—C90.2 (4)
N3—C10—C11—C12156.9 (4)C11—C10—N3—N2172.8 (3)
S1—C10—C11—C1230.0 (5)S1—C10—N3—N20.8 (4)
C10—C11—C12—N46.7 (6)C9—N2—N3—C101.1 (5)
C10—C11—C12—C13176.4 (4)C8—N2—N3—C10177.5 (4)
N4—C12—C13—C141.2 (4)C13—C12—N4—O10.9 (4)
C11—C12—C13—C14178.4 (4)C11—C12—N4—O1178.3 (3)
N4—C12—C13—C18179.3 (4)C15—C14—O1—N4179.5 (4)
C11—C12—C13—C182.2 (7)C13—C14—O1—N40.5 (4)
C18—C13—C14—O1179.4 (3)C12—N4—O1—C140.3 (4)
C12—C13—C14—O11.0 (4)N1—C9—S1—C10177.7 (5)
C18—C13—C14—C150.5 (6)N2—C9—S1—C102.1 (3)
C12—C13—C14—C15179.0 (4)N3—C10—S1—C91.8 (3)
O1—C14—C15—C16178.7 (4)C11—C10—S1—C9171.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg4 and Cg5 are the centroids of the C1–C6 and C13–C18 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.383.219 (6)150
C8—H8···N1ii0.932.603.469 (6)156
C11—H11B···N1iii0.972.483.358 (6)150
C4—H4···Cg5iii0.932.963.554 (5)123
C18—H18···Cg4iii0.932.833.496 (5)130
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H11BrN4OS
Mr411.28
Crystal system, space groupMonoclinic, C2/c
Temperature (K)423
a, b, c (Å)38.985 (17), 5.764 (3), 14.925 (6)
β (°) 109.191 (13)
V3)3167 (2)
Z8
Radiation typeMo Kα
µ (mm1)2.74
Crystal size (mm)0.18 × 0.16 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.638, 0.668
No. of measured, independent and
observed [I > 2σ(I)] reflections
8879, 3432, 2534
Rint0.081
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.142, 1.02
No. of reflections3432
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.10, 1.02

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg4 and Cg5 are the centroids of the C1–C6 and C13–C18 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.383.219 (6)150
C8—H8···N1ii0.932.603.469 (6)156
C11—H11B···N1iii0.972.483.358 (6)150
C4—H4···Cg5iii0.932.963.554 (5)123
C18—H18···Cg4iii0.932.833.496 (5)130
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

NSB is thankful to the University Grants Commission (UGC), India, for financial assistance and the Department of Science and Technology, (DST), India, for the data collection facility under the IRHPA–DST program.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconcin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLamani, R. S., Shetty, N. S., Ravindra, R. & Khazi, I. A. M. (2009). Eur. J. Med. Chem. 44, 2828–2833.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPriya, B. S., Basappa., Swamy, S. N., Rangappa, K. S. (2005). Bioorg. Med. Chem. 13, 2623–2628.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y. & Zhang, H.-H. (2009). Acta Cryst. E65, o1647.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds