organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[3-(2-Chloro­phen­yl)-5-oxo-1,5-di­phenyl­pentyl­­idene]malono­nitrile

aSchool of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou Jiangsu 221116, People's Republic of China
*Correspondence e-mail: dbx19722@xznu.edu.cn

(Received 25 November 2010; accepted 3 December 2010; online 11 December 2010)

In the title compound, C26H19ClN2O, the 2-chloro­phenyl group forms dihedral angles of 59.6 (1) and 31.9 (1)° with the phenyl rings. The two phenyl rings are inclined at a dihedral angle of 32.9 (1)° with respect to each other. In the crystal, an inter­molecular C—H⋯N hydrogen bond links the mol­ecules into a polymeric chain running along the c axis.

Related literature

For water as an attractive medium for organic reactions, see: Breslow (1991[Breslow, R. (1991). Acc. Chem. Res. 24, 159-164.]). For a related structure, see: Zhou et al. (2007[Zhou, J.-X., Wang, X.-S. & Shi, D.-Q. (2007). Acta Cryst. E63, o2082-o2083.]).

[Scheme 1]

Experimental

Crystal data
  • C26H19ClN2O

  • Mr = 410.88

  • Orthorhombic, P b c a

  • a = 12.4450 (3) Å

  • b = 14.3866 (3) Å

  • c = 24.1913 (5) Å

  • V = 4331.24 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.50 × 0.39 × 0.29 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 34193 measured reflections

  • 5019 independent reflections

  • 2972 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.153

  • S = 1.04

  • 5019 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯N1i 0.97 2.62 3.502 (3) 152
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There has been a growing recognition that water has become an attractive medium for many organic reactions (Breslow, 1991). Recently, we have demonstrated the Michal addition reaction between 2-(1-phenylethylidene)malononitrile and 1-phenyl-3-(2-chlorophenyl)propen-1-one in water without a catalyst and synthesized the title compound which is reported in this article.

In the title compound (Fig. 1), 2-chlorophenyl group forms dihedral angles of 59.6 (1) and 31.9 (1) ° with benzene rings (C1—C6) and (C15—C20), respectively. The two benzene rings are inclined with respect to each other at a dihedral angle of 32.9 (1) °. There is an intermolecular hydrogen bond C8—H8A···N1 (Table 1) resulting in a polymeric chain along the c-axis. In addition, two intramolecular interactions further stabilize the structure (Fig. 2).

Related literature top

For water as an attractive medium for organic reactions, see: Breslow (1991). For a related structure, see: Zhou et al. (2007).

Experimental top

The title compound was prepared by the reaction of 2-(1-phenylethylidene)malononitrile (0.168 g, 1.0 mmol) and 1-phenyl-3-(2-chlorophenyl)propen-1-one (0.242 g, 1.0 mmol) in water (10 ml) at reflux for 14 h (yield 82%, mp. 438–439 K). Crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a dimethylformamide solution.

Refinement top

The H atoms were calculated geometrically and refined as riding, with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(parent atom).

Structure description top

There has been a growing recognition that water has become an attractive medium for many organic reactions (Breslow, 1991). Recently, we have demonstrated the Michal addition reaction between 2-(1-phenylethylidene)malononitrile and 1-phenyl-3-(2-chlorophenyl)propen-1-one in water without a catalyst and synthesized the title compound which is reported in this article.

In the title compound (Fig. 1), 2-chlorophenyl group forms dihedral angles of 59.6 (1) and 31.9 (1) ° with benzene rings (C1—C6) and (C15—C20), respectively. The two benzene rings are inclined with respect to each other at a dihedral angle of 32.9 (1) °. There is an intermolecular hydrogen bond C8—H8A···N1 (Table 1) resulting in a polymeric chain along the c-axis. In addition, two intramolecular interactions further stabilize the structure (Fig. 2).

For water as an attractive medium for organic reactions, see: Breslow (1991). For a related structure, see: Zhou et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure drawing for the title compound; displacement ellipsoids are drawn at 20% probability level.
[Figure 2] Fig. 2. The molecular packing diagram of the title compound showing intermolecular and intramolecular interactions by dashed lines.
2-[3-(2-Chlorophenyl)-5-oxo-1,5-diphenylpentylidene]malononitrile top
Crystal data top
C26H19ClN2ODx = 1.260 Mg m3
Mr = 410.88Melting point = 438–439 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5457 reflections
a = 12.4450 (3) Åθ = 2.7–22.0°
b = 14.3866 (3) ŵ = 0.20 mm1
c = 24.1913 (5) ÅT = 296 K
V = 4331.24 (16) Å3Block, orange
Z = 80.50 × 0.39 × 0.29 mm
F(000) = 1712
Data collection top
Bruker SMART CCD area-detector
diffractometer
2972 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 27.6°, θmin = 1.7°
φ and ω scansh = 1416
34193 measured reflectionsk = 1618
5019 independent reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0713P)2 + 0.4979P]
where P = (Fo2 + 2Fc2)/3
5019 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C26H19ClN2OV = 4331.24 (16) Å3
Mr = 410.88Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.4450 (3) ŵ = 0.20 mm1
b = 14.3866 (3) ÅT = 296 K
c = 24.1913 (5) Å0.50 × 0.39 × 0.29 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2972 reflections with I > 2σ(I)
34193 measured reflectionsRint = 0.042
5019 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
5019 reflectionsΔρmin = 0.27 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.39311 (5)0.00962 (5)0.68110 (3)0.0971 (3)
C90.21419 (13)0.09876 (11)0.61061 (7)0.0520 (4)
H9A0.24280.11390.64730.062*
C80.10322 (13)0.05493 (12)0.61832 (8)0.0560 (4)
H8A0.06920.04880.58240.067*
H8B0.11210.00710.63340.067*
C210.29056 (14)0.03111 (11)0.58342 (8)0.0556 (5)
C100.20485 (14)0.18975 (11)0.57755 (8)0.0557 (4)
H10A0.18120.17510.54030.067*
H10B0.15010.22840.59450.067*
C110.30676 (14)0.24393 (10)0.57417 (8)0.0544 (4)
C60.08495 (15)0.08221 (13)0.66065 (8)0.0572 (5)
C220.37359 (15)0.01196 (12)0.61140 (10)0.0678 (5)
C120.34607 (16)0.27063 (12)0.52452 (8)0.0625 (5)
C150.35978 (16)0.27215 (12)0.62569 (8)0.0610 (5)
O10.06454 (13)0.17514 (13)0.68188 (7)0.1005 (6)
C70.03017 (16)0.10937 (13)0.65567 (8)0.0615 (5)
N10.50586 (17)0.38254 (14)0.51232 (9)0.0950 (6)
C130.43597 (18)0.33273 (14)0.51864 (9)0.0727 (6)
C240.4281 (2)0.09442 (16)0.53127 (15)0.0962 (8)
H24A0.47450.13570.51370.115*
C10.12962 (17)0.00934 (14)0.63200 (10)0.0752 (6)
H1A0.08760.02500.60760.090*
C200.2988 (2)0.30836 (13)0.66865 (8)0.0747 (6)
H20A0.22440.31140.66540.090*
C160.4708 (2)0.26488 (16)0.63205 (11)0.0878 (7)
H16A0.51280.23940.60410.105*
C260.27768 (18)0.00750 (12)0.52708 (10)0.0721 (6)
H26A0.22210.03410.50690.087*
C140.2967 (2)0.24452 (15)0.47332 (11)0.0852 (7)
C50.14936 (19)0.13109 (16)0.69652 (9)0.0805 (6)
H5A0.12020.17990.71670.097*
C230.44248 (17)0.07472 (15)0.58579 (13)0.0880 (7)
H23A0.49760.10280.60570.106*
C250.3458 (2)0.05403 (15)0.50173 (11)0.0889 (7)
H25A0.33650.06850.46460.107*
C20.2366 (2)0.01304 (19)0.63923 (12)0.0981 (8)
H2A0.26630.06240.61970.118*
C30.2987 (2)0.0365 (2)0.67466 (11)0.0947 (8)
H3A0.37050.02070.67950.114*
C40.25626 (19)0.1091 (2)0.70305 (10)0.0921 (7)
H4A0.29920.14380.72680.111*
C180.4571 (4)0.3335 (2)0.72144 (15)0.1327 (15)
H18A0.49000.35500.75350.159*
N20.2593 (3)0.22584 (17)0.43153 (10)0.1295 (10)
C170.5177 (3)0.2960 (2)0.68043 (17)0.1288 (13)
H17A0.59170.29120.68490.155*
C190.3479 (3)0.33966 (17)0.71595 (11)0.1089 (10)
H19A0.30680.36510.74430.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0767 (4)0.1071 (5)0.1076 (5)0.0193 (3)0.0259 (3)0.0111 (4)
C90.0472 (10)0.0470 (9)0.0617 (10)0.0028 (7)0.0016 (8)0.0037 (7)
C80.0494 (10)0.0497 (9)0.0687 (11)0.0002 (8)0.0018 (8)0.0032 (8)
C210.0473 (10)0.0425 (8)0.0771 (12)0.0043 (7)0.0066 (9)0.0054 (8)
C100.0528 (11)0.0448 (9)0.0695 (11)0.0022 (7)0.0056 (9)0.0027 (8)
C110.0537 (11)0.0370 (8)0.0724 (12)0.0059 (7)0.0006 (9)0.0003 (8)
C60.0515 (11)0.0589 (10)0.0611 (11)0.0043 (8)0.0024 (8)0.0024 (8)
C220.0484 (11)0.0523 (10)0.1027 (16)0.0010 (8)0.0065 (10)0.0106 (10)
C120.0688 (12)0.0474 (9)0.0714 (12)0.0021 (9)0.0110 (10)0.0048 (9)
C150.0651 (12)0.0435 (9)0.0744 (13)0.0092 (8)0.0103 (10)0.0107 (8)
O10.0712 (10)0.1136 (13)0.1167 (13)0.0219 (9)0.0164 (9)0.0566 (11)
C70.0538 (11)0.0636 (11)0.0671 (12)0.0002 (9)0.0001 (9)0.0066 (9)
N10.0909 (15)0.0822 (13)0.1118 (16)0.0147 (11)0.0316 (12)0.0016 (11)
C130.0747 (14)0.0588 (12)0.0846 (15)0.0030 (11)0.0227 (12)0.0024 (10)
C240.0767 (17)0.0579 (13)0.154 (3)0.0045 (12)0.0416 (18)0.0098 (15)
C10.0578 (13)0.0751 (13)0.0927 (15)0.0047 (10)0.0077 (11)0.0159 (11)
C200.0963 (17)0.0591 (12)0.0689 (13)0.0124 (11)0.0060 (12)0.0020 (10)
C160.0694 (15)0.0785 (14)0.1154 (19)0.0124 (12)0.0217 (14)0.0221 (13)
C260.0755 (14)0.0498 (10)0.0912 (15)0.0016 (9)0.0152 (12)0.0004 (10)
C140.118 (2)0.0643 (13)0.0733 (15)0.0065 (12)0.0138 (14)0.0044 (11)
C50.0680 (14)0.0882 (15)0.0854 (15)0.0005 (12)0.0126 (12)0.0168 (12)
C230.0545 (13)0.0653 (13)0.144 (2)0.0088 (10)0.0151 (14)0.0067 (15)
C250.1003 (19)0.0621 (13)0.1042 (18)0.0081 (13)0.0309 (15)0.0117 (12)
C20.0648 (15)0.1060 (19)0.124 (2)0.0228 (13)0.0044 (15)0.0243 (16)
C30.0535 (14)0.124 (2)0.1068 (19)0.0112 (14)0.0122 (13)0.0044 (17)
C40.0614 (14)0.1157 (19)0.0992 (17)0.0068 (14)0.0222 (13)0.0104 (15)
C180.194 (4)0.107 (2)0.098 (2)0.067 (3)0.067 (3)0.0279 (19)
N20.206 (3)0.1064 (17)0.0766 (15)0.0285 (19)0.0054 (16)0.0090 (13)
C170.110 (3)0.121 (3)0.155 (3)0.048 (2)0.071 (2)0.050 (2)
C190.173 (3)0.0812 (16)0.0730 (16)0.0366 (19)0.0189 (19)0.0037 (12)
Geometric parameters (Å, º) top
Cl1—C221.732 (3)C24—C251.378 (4)
C9—C211.511 (2)C24—H24A0.9300
C9—C81.530 (2)C1—C21.381 (3)
C9—C101.538 (2)C1—H1A0.9300
C9—H9A0.9800C20—C191.373 (3)
C8—C71.502 (3)C20—H20A0.9300
C8—H8A0.9700C16—C171.382 (4)
C8—H8B0.9700C16—H16A0.9300
C21—C221.382 (3)C26—C251.371 (3)
C21—C261.414 (3)C26—H26A0.9300
C10—C111.491 (2)C14—N21.145 (3)
C10—H10A0.9700C5—C41.377 (3)
C10—H10B0.9700C5—H5A0.9300
C11—C121.353 (2)C23—H23A0.9300
C11—C151.468 (3)C25—H25A0.9300
C6—C11.374 (3)C2—C31.357 (4)
C6—C51.375 (3)C2—H2A0.9300
C6—C71.490 (3)C3—C41.356 (4)
C22—C231.391 (3)C3—H3A0.9300
C12—C141.433 (3)C4—H4A0.9300
C12—C131.439 (3)C18—C171.357 (5)
C15—C201.388 (3)C18—C191.369 (5)
C15—C161.394 (3)C18—H18A0.9300
O1—C71.217 (2)C17—H17A0.9300
N1—C131.137 (3)C19—H19A0.9300
C24—C231.361 (4)
C21—C9—C8110.83 (13)C25—C24—H24A119.6
C21—C9—C10111.67 (14)C6—C1—C2120.3 (2)
C8—C9—C10110.24 (13)C6—C1—H1A119.9
C21—C9—H9A108.0C2—C1—H1A119.9
C8—C9—H9A108.0C19—C20—C15120.2 (3)
C10—C9—H9A108.0C19—C20—H20A119.9
C7—C8—C9113.89 (15)C15—C20—H20A119.9
C7—C8—H8A108.8C17—C16—C15119.2 (3)
C9—C8—H8A108.8C17—C16—H16A120.4
C7—C8—H8B108.8C15—C16—H16A120.4
C9—C8—H8B108.8C25—C26—C21121.1 (2)
H8A—C8—H8B107.7C25—C26—H26A119.5
C22—C21—C26116.69 (18)C21—C26—H26A119.5
C22—C21—C9123.08 (18)N2—C14—C12177.7 (3)
C26—C21—C9120.21 (17)C6—C5—C4121.2 (2)
C11—C10—C9114.15 (14)C6—C5—H5A119.4
C11—C10—H10A108.7C4—C5—H5A119.4
C9—C10—H10A108.7C24—C23—C22119.1 (2)
C11—C10—H10B108.7C24—C23—H23A120.5
C9—C10—H10B108.7C22—C23—H23A120.5
H10A—C10—H10B107.6C26—C25—C24120.0 (3)
C12—C11—C15120.85 (17)C26—C25—H25A120.0
C12—C11—C10120.33 (17)C24—C25—H25A120.0
C15—C11—C10118.72 (16)C3—C2—C1120.4 (2)
C1—C6—C5118.21 (19)C3—C2—H2A119.8
C1—C6—C7123.25 (17)C1—C2—H2A119.8
C5—C6—C7118.53 (18)C2—C3—C4120.2 (2)
C21—C22—C23122.3 (2)C2—C3—H3A119.9
C21—C22—Cl1120.10 (16)C4—C3—H3A119.9
C23—C22—Cl1117.62 (18)C3—C4—C5119.7 (2)
C11—C12—C14122.55 (18)C3—C4—H4A120.2
C11—C12—C13123.06 (19)C5—C4—H4A120.2
C14—C12—C13114.25 (19)C17—C18—C19120.4 (3)
C20—C15—C16119.2 (2)C17—C18—H18A119.8
C20—C15—C11119.59 (18)C19—C18—H18A119.8
C16—C15—C11121.2 (2)C18—C17—C16120.8 (3)
O1—C7—C6119.99 (18)C18—C17—H17A119.6
O1—C7—C8120.41 (18)C16—C17—H17A119.6
C6—C7—C8119.60 (16)C18—C19—C20120.1 (3)
N1—C13—C12177.8 (3)C18—C19—H19A120.0
C23—C24—C25120.8 (2)C20—C19—H19A120.0
C23—C24—H24A119.6
C21—C9—C8—C7167.52 (15)C11—C12—C13—N1157 (6)
C10—C9—C8—C768.3 (2)C14—C12—C13—N119 (6)
C8—C9—C21—C22107.58 (19)C5—C6—C1—C20.4 (3)
C10—C9—C21—C22129.09 (17)C7—C6—C1—C2179.0 (2)
C8—C9—C21—C2671.0 (2)C16—C15—C20—C192.4 (3)
C10—C9—C21—C2652.3 (2)C11—C15—C20—C19176.51 (18)
C21—C9—C10—C1163.88 (19)C20—C15—C16—C171.6 (3)
C8—C9—C10—C11172.46 (15)C11—C15—C16—C17177.3 (2)
C9—C10—C11—C12126.58 (17)C22—C21—C26—C251.0 (3)
C9—C10—C11—C1556.9 (2)C9—C21—C26—C25179.72 (17)
C26—C21—C22—C230.7 (3)C11—C12—C14—N2166 (8)
C9—C21—C22—C23179.38 (17)C13—C12—C14—N29 (8)
C26—C21—C22—Cl1177.92 (13)C1—C6—C5—C41.1 (3)
C9—C21—C22—Cl10.7 (2)C7—C6—C5—C4179.8 (2)
C15—C11—C12—C14179.97 (18)C25—C24—C23—C220.9 (4)
C10—C11—C12—C143.6 (3)C21—C22—C23—C240.2 (3)
C15—C11—C12—C134.6 (3)Cl1—C22—C23—C24178.89 (18)
C10—C11—C12—C13171.84 (16)C21—C26—C25—C240.4 (3)
C12—C11—C15—C20132.33 (19)C23—C24—C25—C260.6 (3)
C10—C11—C15—C2044.1 (2)C6—C1—C2—C30.0 (4)
C12—C11—C15—C1646.5 (2)C1—C2—C3—C40.5 (4)
C10—C11—C15—C16137.02 (17)C2—C3—C4—C51.2 (4)
C1—C6—C7—O1179.4 (2)C6—C5—C4—C31.6 (4)
C5—C6—C7—O12.0 (3)C19—C18—C17—C161.1 (5)
C1—C6—C7—C80.8 (3)C15—C16—C17—C180.1 (4)
C5—C6—C7—C8177.80 (18)C17—C18—C19—C200.3 (4)
C9—C8—C7—O18.8 (3)C15—C20—C19—C181.4 (4)
C9—C8—C7—C6171.45 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···N1i0.972.623.502 (3)152
C9—H9A···Cl10.982.533.083 (3)115
C10—H10B···O10.972.483.071 (4)119
Symmetry code: (i) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC26H19ClN2O
Mr410.88
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)12.4450 (3), 14.3866 (3), 24.1913 (5)
V3)4331.24 (16)
Z8
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.50 × 0.39 × 0.29
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
34193, 5019, 2972
Rint0.042
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.153, 1.04
No. of reflections5019
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.27

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···N1i0.972.623.502 (3)151.8
C9—H9A···Cl10.982.533.083 (3)115.3
C10—H10B···O10.972.483.071 (4)119.1
Symmetry code: (i) x1/2, y+1/2, z+1.
 

Acknowledgements

We are grateful to the Natural Science Foundation (08KJD150019) and the Qing Lan Project (08QLT001) of the Jiangsu Education Committee for financial support.

References

First citationBreslow, R. (1991). Acc. Chem. Res. 24, 159–164.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, J.-X., Wang, X.-S. & Shi, D.-Q. (2007). Acta Cryst. E63, o2082–o2083.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds