organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 1-(2,6-di­fluoro­benz­yl)-1H-1,2,3-triazole-4-carboxyl­ate

aSchool of Pharmaceutical Sciences, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China and Jiangsu Provincial Institute of Materia Medica, Nanjing University of Technology, No. 26 Majia Street, Nanjing 210009, People's Republic of China
*Correspondence e-mail: jiajing.jj@gmail.com

(Received 25 November 2010; accepted 30 November 2010; online 15 December 2010)

In the title compound, C12H11F2N3O2, the dihedral angle between the triazole and phenyl rings is 73.74 (9)°. In the crystal, mol­ecules are linked into chains along [010] via weak C—H⋯O and C—H⋯N hydrogen bonds.

Related literature

The title compound is an inter­mediate in the synthesis of rufinamide, a new anti-epilepsy drug (Herranz, 2008[Herranz, J. L. (2008). Rev. Neurol. 47, 369-373.]). For synthetic procedures, see: Abu-Orabi et al. (1989[Abu-Orabi, S. T., Atfah, M. A., Jibril, I., Mari'i, F. M. & Ali, A. A.-S. (1989). J. Heterocycl. Chem. 26, 1461-1468.]); Wang & Xie (2004[Wang, J. M. & Xie, Z. F. (2004). J. Med. Sci. Yanbian Univ. 27, 264-266.]). For a related structure, see: Xiao et al. (2008[Xiao, J., Wang, W. X. & Zhao, H. (2008). Acta Cryst. E64, o2085.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11F2N3O2

  • Mr = 267.24

  • Monoclinic, P 21 /c

  • a = 9.4540 (19) Å

  • b = 10.963 (2) Å

  • c = 12.167 (2) Å

  • β = 93.21 (3)°

  • V = 1259.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.965, Tmax = 0.977

  • 3270 measured reflections

  • 2316 independent reflections

  • 1629 reflections with I > 2σ(I)

  • Rint = 0.026

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.163

  • S = 1.03

  • 2316 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯O1i 0.97 2.47 3.415 (3) 166
C8—H8⋯N3i 0.93 2.61 3.536 (3) 172
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Epilepsia has been a common disease for a long time and has been on an increase year after year. Rufinamide is a new drug to cure epilepsia; it is a triazole derivative (Herranz et al., 2008). We report herein the crystal structure of the title compound which is a key intermediate in the synthesis of rufinamide. In the title compound (Fig. 1), the planes of the triazole and phenyl rings are not coplanar [dihedral angle 73.74 (9)°]. The discrete molecules are linked through weak C—H···O and C—H···N hydrogen bonds, forming one-dimensional chains along [010] direction (Fig. 2 and Tab. 1). In the structure of the title compound, the bond lengths and angles agree with the corresponding values reported for a related compound (Xiao et al., 2008).

Related literature top

The title compound is an intermediate in the synthesis of rufinamide, a new anti-epilepsy drug (Herranz, 2008). For synthetic procedures, see: Abu-Orabi et al. (1989); Wang & Xie (2004). For a related structure, see: Xiao et al. (2008).

Experimental top

The title compound, was prepared by following procedures reported earlier (Wang et al., 2004; Abu-Orabi et al., 1989). To a solution of 2-(azidomethyl)-1,3-difluorobenzene (1.69 g, 10 mmol) in etanol (50 mL), ethyl propiolate (0.98 g, 10 mmol) was added and the mixture was heated under reflux for 10 h. After removing the solvent under reduced pressure the residue was dissolved and the title compound recrystallized from petroleum ether-methanol mixture (15:2), to provide crystals suitable for X-ray diffraction (yield 2.31 g, 86.3%).

Refinement top

H atoms were palced in geometrically calculated position and were refined using a riding model, with C—H = 0.93, 0.96 and 0.97 Å, for aryl, methyl and methylene type H-atoms, respectively, and Uiso(H) = 1.5 and 1.2 Ueq(C) for methyl and nonmethyl H-atoms, respectively.

Structure description top

Epilepsia has been a common disease for a long time and has been on an increase year after year. Rufinamide is a new drug to cure epilepsia; it is a triazole derivative (Herranz et al., 2008). We report herein the crystal structure of the title compound which is a key intermediate in the synthesis of rufinamide. In the title compound (Fig. 1), the planes of the triazole and phenyl rings are not coplanar [dihedral angle 73.74 (9)°]. The discrete molecules are linked through weak C—H···O and C—H···N hydrogen bonds, forming one-dimensional chains along [010] direction (Fig. 2 and Tab. 1). In the structure of the title compound, the bond lengths and angles agree with the corresponding values reported for a related compound (Xiao et al., 2008).

The title compound is an intermediate in the synthesis of rufinamide, a new anti-epilepsy drug (Herranz, 2008). For synthetic procedures, see: Abu-Orabi et al. (1989); Wang & Xie (2004). For a related structure, see: Xiao et al. (2008).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound. The dispalcement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. A one-dimensional chain of the title compound.
Ethyl 1-(2,6-difluorobenzyl)-1H-1,2,3-triazole-4-carboxylate top
Crystal data top
C12H11F2N3O2F(000) = 552
Mr = 267.24Dx = 1.410 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 9.4540 (19) Åθ = 9–13°
b = 10.963 (2) ŵ = 0.12 mm1
c = 12.167 (2) ÅT = 293 K
β = 93.21 (3)°Block, colorless
V = 1259.1 (4) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1629 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 25.4°, θmin = 2.2°
ω/2θ scansh = 011
Absorption correction: ψ scan
(North et al., 1968)
k = 313
Tmin = 0.965, Tmax = 0.977l = 1414
3270 measured reflections3 standard reflections every 200 reflections
2316 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.0873P)2 + 0.337P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2316 reflectionsΔρmax = 0.32 e Å3
174 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.029 (5)
Crystal data top
C12H11F2N3O2V = 1259.1 (4) Å3
Mr = 267.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4540 (19) ŵ = 0.12 mm1
b = 10.963 (2) ÅT = 293 K
c = 12.167 (2) Å0.30 × 0.20 × 0.20 mm
β = 93.21 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1629 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.026
Tmin = 0.965, Tmax = 0.9773 standard reflections every 200 reflections
3270 measured reflections intensity decay: 1%
2316 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.03Δρmax = 0.32 e Å3
2316 reflectionsΔρmin = 0.22 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.94152 (18)0.27880 (14)0.02828 (16)0.0890 (6)
F20.78127 (17)0.61613 (15)0.22000 (14)0.0829 (6)
O10.4165 (2)0.20776 (17)0.46337 (16)0.0744 (6)
O20.3594 (2)0.39959 (17)0.41799 (17)0.0776 (6)
N10.62925 (19)0.35347 (16)0.16945 (17)0.0537 (5)
N20.6558 (3)0.2343 (2)0.1898 (2)0.0751 (7)
N30.5829 (2)0.20178 (19)0.2728 (2)0.0709 (7)
C10.9678 (3)0.3771 (2)0.0933 (2)0.0618 (7)
C21.1060 (3)0.4031 (3)0.1262 (3)0.0733 (8)
H21.17960.35380.10490.088*
C31.1325 (3)0.5034 (3)0.1910 (3)0.0751 (8)
H31.22520.52200.21460.090*
C41.0243 (3)0.5767 (3)0.2217 (2)0.0687 (7)
H41.04260.64590.26440.082*
C50.8887 (3)0.5456 (2)0.1878 (2)0.0583 (6)
C60.8534 (2)0.4459 (2)0.12140 (19)0.0522 (6)
C70.7032 (3)0.4176 (2)0.0843 (2)0.0593 (7)
H7B0.65380.49300.06580.071*
H7A0.70230.36760.01850.071*
C80.5379 (2)0.3966 (2)0.2397 (2)0.0524 (6)
H80.50150.47530.24280.063*
C90.5093 (2)0.3001 (2)0.3059 (2)0.0538 (6)
C100.4248 (3)0.2941 (2)0.4032 (2)0.0577 (6)
C110.2781 (4)0.4100 (3)0.5169 (3)0.1053 (13)
H11A0.20560.34730.51620.126*
H11B0.34040.39880.58220.126*
C120.2137 (4)0.5286 (3)0.5186 (3)0.0955 (11)
H12A0.14820.53730.45590.143*
H12C0.28570.59010.51630.143*
H12B0.16410.53760.58490.143*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0929 (12)0.0560 (10)0.1202 (14)0.0053 (8)0.0250 (10)0.0258 (9)
F20.0797 (11)0.0754 (11)0.0936 (12)0.0159 (9)0.0056 (9)0.0255 (9)
O10.0857 (13)0.0520 (11)0.0853 (13)0.0042 (9)0.0038 (10)0.0175 (10)
O20.0897 (14)0.0537 (11)0.0929 (14)0.0125 (10)0.0351 (11)0.0150 (10)
N10.0500 (11)0.0360 (10)0.0751 (13)0.0006 (8)0.0039 (9)0.0005 (9)
N20.0744 (15)0.0421 (12)0.1107 (18)0.0101 (11)0.0221 (14)0.0037 (12)
N30.0678 (14)0.0404 (12)0.1064 (18)0.0058 (10)0.0220 (13)0.0086 (12)
C10.0709 (17)0.0402 (12)0.0759 (16)0.0045 (12)0.0198 (13)0.0027 (11)
C20.0581 (16)0.0583 (17)0.105 (2)0.0027 (13)0.0198 (15)0.0076 (15)
C30.0602 (16)0.0719 (19)0.093 (2)0.0104 (15)0.0015 (15)0.0048 (16)
C40.0718 (17)0.0629 (16)0.0706 (17)0.0111 (14)0.0030 (13)0.0067 (13)
C50.0621 (15)0.0524 (14)0.0607 (14)0.0023 (12)0.0061 (12)0.0008 (11)
C60.0562 (13)0.0444 (12)0.0563 (13)0.0040 (11)0.0066 (10)0.0055 (10)
C70.0614 (15)0.0506 (14)0.0658 (15)0.0042 (11)0.0018 (12)0.0001 (12)
C80.0439 (12)0.0359 (12)0.0769 (16)0.0018 (9)0.0008 (11)0.0022 (11)
C90.0460 (12)0.0375 (12)0.0775 (16)0.0028 (10)0.0004 (11)0.0011 (11)
C100.0534 (13)0.0434 (13)0.0759 (16)0.0046 (11)0.0003 (12)0.0039 (12)
C110.141 (3)0.077 (2)0.103 (3)0.020 (2)0.058 (2)0.0216 (19)
C120.105 (2)0.095 (3)0.088 (2)0.018 (2)0.0283 (18)0.0080 (19)
Geometric parameters (Å, º) top
F1—C11.352 (3)C4—C51.368 (4)
F2—C51.352 (3)C4—H40.9300
O1—C101.202 (3)C5—C61.390 (3)
O2—C101.329 (3)C6—C71.498 (3)
O2—C111.468 (4)C7—H7B0.9700
N1—C81.335 (3)C7—H7A0.9700
N1—N21.351 (3)C8—C91.366 (3)
N1—C71.462 (3)C8—H80.9300
N2—N31.304 (3)C9—C101.466 (4)
N3—C91.356 (3)C11—C121.437 (4)
C1—C21.374 (4)C11—H11A0.9700
C1—C61.377 (3)C11—H11B0.9700
C2—C31.368 (4)C12—H12A0.9600
C2—H20.9300C12—H12C0.9600
C3—C41.369 (4)C12—H12B0.9600
C3—H30.9300
C10—O2—C11116.6 (2)C6—C7—H7B109.3
C8—N1—N2110.2 (2)N1—C7—H7A109.3
C8—N1—C7129.4 (2)C6—C7—H7A109.3
N2—N1—C7120.2 (2)H7B—C7—H7A108.0
N3—N2—N1107.8 (2)N1—C8—C9105.03 (19)
N2—N3—C9108.3 (2)N1—C8—H8127.5
F1—C1—C2118.4 (2)C9—C8—H8127.5
F1—C1—C6117.4 (2)N3—C9—C8108.6 (2)
C2—C1—C6124.2 (2)N3—C9—C10121.0 (2)
C3—C2—C1118.3 (3)C8—C9—C10130.2 (2)
C3—C2—H2120.8O1—C10—O2123.7 (2)
C1—C2—H2120.8O1—C10—C9125.8 (2)
C2—C3—C4120.9 (3)O2—C10—C9110.4 (2)
C2—C3—H3119.5C12—C11—O2108.9 (3)
C4—C3—H3119.5C12—C11—H11A109.9
C5—C4—C3118.2 (3)O2—C11—H11A109.9
C5—C4—H4120.9C12—C11—H11B109.9
C3—C4—H4120.9O2—C11—H11B109.9
F2—C5—C4118.5 (2)H11A—C11—H11B108.3
F2—C5—C6117.3 (2)C11—C12—H12A109.5
C4—C5—C6124.2 (2)C11—C12—H12C109.5
C1—C6—C5114.1 (2)H12A—C12—H12C109.5
C1—C6—C7123.8 (2)C11—C12—H12B109.5
C5—C6—C7122.0 (2)H12A—C12—H12B109.5
N1—C7—C6111.7 (2)H12C—C12—H12B109.5
N1—C7—H7B109.3
C8—N1—N2—N30.5 (3)C8—N1—C7—C6100.9 (3)
C7—N1—N2—N3176.4 (2)N2—N1—C7—C675.2 (3)
N1—N2—N3—C90.0 (3)C1—C6—C7—N199.0 (3)
F1—C1—C2—C3179.3 (3)C5—C6—C7—N181.2 (3)
C6—C1—C2—C30.1 (4)N2—N1—C8—C90.7 (3)
C1—C2—C3—C40.6 (4)C7—N1—C8—C9175.8 (2)
C2—C3—C4—C51.4 (4)N2—N3—C9—C80.4 (3)
C3—C4—C5—F2178.5 (3)N2—N3—C9—C10175.6 (2)
C3—C4—C5—C61.9 (4)N1—C8—C9—N30.7 (3)
F1—C1—C6—C5179.7 (2)N1—C8—C9—C10174.9 (2)
C2—C1—C6—C50.5 (4)C11—O2—C10—O12.7 (4)
F1—C1—C6—C70.1 (4)C11—O2—C10—C9176.0 (3)
C2—C1—C6—C7179.4 (2)N3—C9—C10—O13.0 (4)
F2—C5—C6—C1179.0 (2)C8—C9—C10—O1172.1 (3)
C4—C5—C6—C11.4 (4)N3—C9—C10—O2178.3 (2)
F2—C5—C6—C71.2 (3)C8—C9—C10—O26.6 (4)
C4—C5—C6—C7178.4 (2)C10—O2—C11—C12179.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···F10.972.462.833 (3)103
C7—H7B···O1i0.972.473.415 (3)166
C8—H8···N3i0.932.613.536 (3)172
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H11F2N3O2
Mr267.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.4540 (19), 10.963 (2), 12.167 (2)
β (°) 93.21 (3)
V3)1259.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.965, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
3270, 2316, 1629
Rint0.026
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.163, 1.03
No. of reflections2316
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.22

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···F10.972.462.833 (3)102.6
C7—H7B···O1i0.972.473.415 (3)165.8
C8—H8···N3i0.932.613.536 (3)172.2
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAbu-Orabi, S. T., Atfah, M. A., Jibril, I., Mari'i, F. M. & Ali, A. A.-S. (1989). J. Heterocycl. Chem. 26, 1461–1468.  CrossRef CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHerranz, J. L. (2008). Rev. Neurol. 47, 369–373.  Web of Science PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J. M. & Xie, Z. F. (2004). J. Med. Sci. Yanbian Univ. 27, 264-266.  CAS Google Scholar
First citationXiao, J., Wang, W. X. & Zhao, H. (2008). Acta Cryst. E64, o2085.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds