metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido{2-morpholino-N-[1-(2-pyrid­yl)ethyl­­idene]ethanamine-κ3N,N′,N′′}zinc(II)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 30 November 2010; accepted 3 December 2010; online 11 December 2010)

In the title compound, [ZnCl2(C13H19N3O)], the Schiff base ligand acts as an N,N′,N′′-tridentate chelating agent, making two five-membered rings with the ZnII ion. The metal atom is five-coordinated by the Schiff base ligand and two Cl atoms in a distorted square-pyramidal geometry. An intra­molecular C—H⋯Cl inter­action occurs. In the crystal, adjacent mol­ecules are linked together via C—H⋯Cl hydrogen-bonding and long range C—H⋯O and C—H⋯Cl inter­actions into a three-dimensional network.

Related literature

For the crystal structure of an analogous CdII complex, see: Ikmal Hisham et al. (2010[Ikmal Hisham, N., Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2010). Acta Cryst. E66, m1471.]). For crystal structures of similar ZnII complexes, see: Chattopadhyay et al. (2009[Chattopadhyay, T., Mukherjee, M., Banu, K. S., Banerjee, A., Suresh, E., Zangrando, E. & Das, D. (2009). J. Coord. Chem. 62, 967-979.]); Sun (2005[Sun, Y.-X. (2005). Acta Cryst. E61, m373-m374.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C13H19N3O)]

  • Mr = 369.58

  • Monoclinic, P 21 /n

  • a = 9.5737 (12) Å

  • b = 13.7064 (17) Å

  • c = 12.0766 (15) Å

  • β = 106.643 (2)°

  • V = 1518.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.97 mm−1

  • T = 100 K

  • 0.35 × 0.21 × 0.05 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.546, Tmax = 0.908

  • 13693 measured reflections

  • 2979 independent reflections

  • 2552 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.091

  • S = 1.08

  • 2979 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 1.03 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Cl1i 0.95 2.71 3.625 (3) 161
C7—H7C⋯Cl2ii 0.98 2.77 3.619 (3) 146
C12—H12B⋯Cl1 0.99 2.73 3.526 (3) 138
C10—H10A⋯O1iii 0.99 2.61 3.408 (3) 137
C9—H9B⋯Cl1iv 0.99 2.88 3.665 (3) 137
C7—H7B⋯Cl1i 0.98 2.85 3.807 (3) 166
C8—H8A⋯Cl2iv 0.99 2.87 3.750 (3) 149
Symmetry codes: (i) -x+2, -y, -z; (ii) -x+1, -y, -z; (iii) -x+1, -y, -z+1; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound is isostructural with the analogous CdII complex (Ikmal Hisham et al., 2010). The Schiff base, 2-morpholino-N-[1-(2-pyridyl)ethylidene]ethanamine and two Cl atoms coordinate the ZnII ion in a distorted square-pyramidal geometry (τ = 0.22). The Zn—Cl and Zn—N bond lengths in the structure are in agreement with the values reported in the literature (Chattopadhyay et al., 2009; Sun, 2005). In the crystal structure, intermolecular C—H···Cl hydrogen bonding and long range C—H···O and C—H···Cl interactions link the adjacent molecules into a three-dimensional network. An intramolecular C—H···Cl hydrogen bonding has also been observed.

Related literature top

For the crystal structure of an analogous CdII complex, see: Ikmal Hisham et al. (2010). For crystal structures of similar ZnII complexes, see: Chattopadhyay et al. (2009); Sun (2005).

Experimental top

A mixture of 2-acetylpyridine (0.20 g, 1.65 mmol) and 4-(2-aminoethyl)morpholine (0.21 g, 1.65 mmol) in the presence of a few drops of HCl (37%) in ethanol (20 ml) was refluxed. After 2 hr a solution of zinc(II) acetate dihydrate (0.36 g, 1.65 mmol) in a minimum amount of water was added and the resulting solution was refluxed for 30 min, then set aside at room temperature. The crystals of the title complex were obtained after a few days.

Refinement top

The hydrogen atoms were placed at calculated positions (C—H 0.95 - 0.99 Å) and were treated as riding on their parent atoms with U(H) set to 1.2–1.5 Ueq(C). The final difference map was essentially featurless with residual electron density close to the metal atom.

Structure description top

The title compound is isostructural with the analogous CdII complex (Ikmal Hisham et al., 2010). The Schiff base, 2-morpholino-N-[1-(2-pyridyl)ethylidene]ethanamine and two Cl atoms coordinate the ZnII ion in a distorted square-pyramidal geometry (τ = 0.22). The Zn—Cl and Zn—N bond lengths in the structure are in agreement with the values reported in the literature (Chattopadhyay et al., 2009; Sun, 2005). In the crystal structure, intermolecular C—H···Cl hydrogen bonding and long range C—H···O and C—H···Cl interactions link the adjacent molecules into a three-dimensional network. An intramolecular C—H···Cl hydrogen bonding has also been observed.

For the crystal structure of an analogous CdII complex, see: Ikmal Hisham et al. (2010). For crystal structures of similar ZnII complexes, see: Chattopadhyay et al. (2009); Sun (2005).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot of the title compound at the 50% probability level. G atoms are drawn as spheres of arbitrary radius.
Dichlorido{2-morpholino-N-[1-(2-pyridyl)ethylidene]ethanamine- κ3N,N',N''}zinc(II) top
Crystal data top
[ZnCl2(C13H19N3O)]F(000) = 760
Mr = 369.58Dx = 1.617 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3471 reflections
a = 9.5737 (12) Åθ = 2.3–27.5°
b = 13.7064 (17) ŵ = 1.97 mm1
c = 12.0766 (15) ÅT = 100 K
β = 106.643 (2)°Plate, yellow
V = 1518.3 (3) Å30.35 × 0.21 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2979 independent reflections
Radiation source: fine-focus sealed tube2552 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
φ and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.546, Tmax = 0.908k = 1616
13693 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.4492P]
where P = (Fo2 + 2Fc2)/3
2979 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 1.03 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[ZnCl2(C13H19N3O)]V = 1518.3 (3) Å3
Mr = 369.58Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.5737 (12) ŵ = 1.97 mm1
b = 13.7064 (17) ÅT = 100 K
c = 12.0766 (15) Å0.35 × 0.21 × 0.05 mm
β = 106.643 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2979 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2552 reflections with I > 2σ(I)
Tmin = 0.546, Tmax = 0.908Rint = 0.047
13693 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.08Δρmax = 1.03 e Å3
2979 reflectionsΔρmin = 0.39 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.72733 (3)0.08854 (2)0.16005 (3)0.01368 (12)
Cl10.95230 (7)0.13655 (5)0.26836 (6)0.01677 (16)
Cl20.54542 (7)0.19943 (5)0.13205 (6)0.01828 (17)
O10.6851 (2)0.06197 (15)0.51473 (16)0.0224 (4)
N10.7630 (2)0.11923 (16)0.01195 (19)0.0156 (5)
N20.7468 (2)0.04614 (15)0.08710 (18)0.0145 (5)
N30.6560 (2)0.01499 (15)0.28543 (18)0.0146 (5)
C10.7536 (3)0.20493 (19)0.0655 (2)0.0183 (6)
H10.72190.26010.03170.022*
C20.7881 (3)0.2169 (2)0.1689 (2)0.0208 (6)
H20.77880.27880.20570.025*
C30.8363 (3)0.1366 (2)0.2170 (2)0.0191 (6)
H30.86330.14300.28650.023*
C40.8449 (3)0.0468 (2)0.1625 (2)0.0172 (6)
H40.87640.00950.19460.021*
C50.8064 (3)0.04073 (18)0.0604 (2)0.0147 (6)
C60.7974 (3)0.05297 (19)0.0006 (2)0.0148 (6)
C70.8414 (3)0.14742 (19)0.0420 (2)0.0178 (6)
H7A0.89540.18700.02400.027*
H7B0.90340.13420.09220.027*
H7C0.75410.18290.08560.027*
C80.7172 (3)0.13162 (19)0.1493 (2)0.0186 (6)
H8A0.80780.15420.20640.022*
H8B0.67820.18560.09470.022*
C90.6064 (3)0.10075 (19)0.2097 (2)0.0184 (6)
H9A0.51340.08470.15110.022*
H9B0.58790.15580.25670.022*
C100.5308 (3)0.0196 (2)0.3241 (2)0.0181 (6)
H10A0.48850.03600.35570.022*
H10B0.45460.04590.25700.022*
C110.5765 (3)0.0979 (2)0.4155 (2)0.0217 (6)
H11A0.61570.15460.38330.026*
H11B0.49050.12000.43860.026*
C120.8104 (3)0.0335 (2)0.4810 (2)0.0208 (6)
H12A0.88650.00920.54950.025*
H12B0.85010.09100.45070.025*
C130.7736 (3)0.0452 (2)0.3896 (2)0.0197 (6)
H13A0.86210.06160.36660.024*
H13B0.74250.10460.42260.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01259 (19)0.01472 (18)0.01459 (18)0.00019 (11)0.00529 (13)0.00150 (11)
Cl10.0128 (3)0.0199 (3)0.0179 (3)0.0021 (2)0.0048 (3)0.0023 (2)
Cl20.0152 (3)0.0206 (3)0.0194 (3)0.0037 (3)0.0056 (3)0.0007 (2)
O10.0203 (11)0.0347 (11)0.0144 (10)0.0023 (9)0.0085 (9)0.0005 (8)
N10.0126 (12)0.0185 (11)0.0154 (11)0.0004 (9)0.0037 (9)0.0002 (9)
N20.0138 (12)0.0159 (11)0.0133 (11)0.0016 (9)0.0030 (9)0.0005 (9)
N30.0142 (12)0.0156 (11)0.0145 (11)0.0015 (9)0.0051 (9)0.0004 (9)
C10.0172 (14)0.0179 (13)0.0186 (14)0.0009 (11)0.0033 (12)0.0023 (10)
C20.0228 (16)0.0228 (14)0.0146 (13)0.0042 (12)0.0019 (12)0.0021 (10)
C30.0148 (14)0.0292 (15)0.0135 (13)0.0032 (12)0.0044 (11)0.0010 (11)
C40.0108 (14)0.0222 (14)0.0186 (14)0.0002 (11)0.0044 (11)0.0034 (11)
C50.0119 (13)0.0168 (13)0.0137 (13)0.0013 (10)0.0010 (11)0.0018 (10)
C60.0099 (13)0.0187 (13)0.0139 (13)0.0015 (10)0.0005 (11)0.0010 (10)
C70.0171 (14)0.0179 (13)0.0201 (14)0.0003 (11)0.0081 (12)0.0026 (10)
C80.0248 (16)0.0147 (13)0.0174 (14)0.0013 (11)0.0077 (12)0.0003 (10)
C90.0171 (15)0.0190 (13)0.0203 (14)0.0056 (11)0.0070 (12)0.0013 (11)
C100.0110 (14)0.0257 (15)0.0190 (14)0.0028 (11)0.0065 (11)0.0018 (11)
C110.0212 (16)0.0268 (15)0.0196 (15)0.0055 (12)0.0099 (13)0.0007 (11)
C120.0113 (14)0.0355 (16)0.0149 (13)0.0003 (12)0.0028 (11)0.0017 (12)
C130.0166 (15)0.0231 (14)0.0194 (14)0.0026 (11)0.0052 (12)0.0039 (11)
Geometric parameters (Å, º) top
Zn1—N22.077 (2)C4—H40.9500
Zn1—N12.239 (2)C5—C61.495 (4)
Zn1—Cl22.2628 (7)C6—C71.497 (4)
Zn1—Cl12.2736 (7)C7—H7A0.9800
Zn1—N32.316 (2)C7—H7B0.9800
O1—C121.427 (3)C7—H7C0.9800
O1—C111.430 (3)C8—C91.510 (4)
N1—C11.331 (3)C8—H8A0.9900
N1—C51.346 (3)C8—H8B0.9900
N2—C61.274 (3)C9—H9A0.9900
N2—C81.463 (3)C9—H9B0.9900
N3—C91.482 (3)C10—C111.511 (4)
N3—C101.484 (3)C10—H10A0.9900
N3—C131.487 (3)C10—H10B0.9900
C1—C21.390 (4)C11—H11A0.9900
C1—H10.9500C11—H11B0.9900
C2—C31.384 (4)C12—C131.511 (4)
C2—H20.9500C12—H12A0.9900
C3—C41.387 (4)C12—H12B0.9900
C3—H30.9500C13—H13A0.9900
C4—C51.387 (4)C13—H13B0.9900
N2—Zn1—N173.58 (8)C6—C7—H7B109.5
N2—Zn1—Cl2133.83 (6)H7A—C7—H7B109.5
N1—Zn1—Cl292.90 (6)C6—C7—H7C109.5
N2—Zn1—Cl1108.41 (6)H7A—C7—H7C109.5
N1—Zn1—Cl196.22 (6)H7B—C7—H7C109.5
Cl2—Zn1—Cl1116.95 (3)N2—C8—C9106.9 (2)
N2—Zn1—N379.16 (8)N2—C8—H8A110.4
N1—Zn1—N3150.85 (8)C9—C8—H8A110.4
Cl2—Zn1—N398.68 (6)N2—C8—H8B110.4
Cl1—Zn1—N3102.08 (6)C9—C8—H8B110.4
C12—O1—C11108.9 (2)H8A—C8—H8B108.6
C1—N1—C5118.7 (2)N3—C9—C8112.0 (2)
C1—N1—Zn1127.53 (19)N3—C9—H9A109.2
C5—N1—Zn1113.63 (17)C8—C9—H9A109.2
C6—N2—C8122.5 (2)N3—C9—H9B109.2
C6—N2—Zn1120.96 (18)C8—C9—H9B109.2
C8—N2—Zn1116.09 (17)H9A—C9—H9B107.9
C9—N3—C10107.6 (2)N3—C10—C11111.5 (2)
C9—N3—C13109.5 (2)N3—C10—H10A109.3
C10—N3—C13107.9 (2)C11—C10—H10A109.3
C9—N3—Zn1100.66 (15)N3—C10—H10B109.3
C10—N3—Zn1115.21 (16)C11—C10—H10B109.3
C13—N3—Zn1115.49 (16)H10A—C10—H10B108.0
N1—C1—C2122.7 (3)O1—C11—C10110.9 (2)
N1—C1—H1118.7O1—C11—H11A109.5
C2—C1—H1118.7C10—C11—H11A109.5
C3—C2—C1118.5 (3)O1—C11—H11B109.5
C3—C2—H2120.8C10—C11—H11B109.5
C1—C2—H2120.8H11A—C11—H11B108.1
C2—C3—C4119.2 (3)O1—C12—C13111.4 (2)
C2—C3—H3120.4O1—C12—H12A109.4
C4—C3—H3120.4C13—C12—H12A109.4
C3—C4—C5118.7 (3)O1—C12—H12B109.4
C3—C4—H4120.6C13—C12—H12B109.4
C5—C4—H4120.6H12A—C12—H12B108.0
N1—C5—C4122.1 (2)N3—C13—C12112.4 (2)
N1—C5—C6113.8 (2)N3—C13—H13A109.1
C4—C5—C6123.9 (2)C12—C13—H13A109.1
N2—C6—C5115.5 (2)N3—C13—H13B109.1
N2—C6—C7123.8 (2)C12—C13—H13B109.1
C5—C6—C7120.8 (2)H13A—C13—H13B107.9
C6—C7—H7A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cl1i0.952.713.625 (3)161
C7—H7C···Cl2ii0.982.773.619 (3)146
C12—H12B···Cl10.992.733.526 (3)138
C10—H10A···O1iii0.992.613.408 (3)137
C9—H9B···Cl1iv0.992.883.665 (3)137
C7—H7B···Cl1i0.982.853.807 (3)166
C8—H8A···Cl2iv0.992.873.750 (3)149
Symmetry codes: (i) x+2, y, z; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[ZnCl2(C13H19N3O)]
Mr369.58
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.5737 (12), 13.7064 (17), 12.0766 (15)
β (°) 106.643 (2)
V3)1518.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.97
Crystal size (mm)0.35 × 0.21 × 0.05
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.546, 0.908
No. of measured, independent and
observed [I > 2σ(I)] reflections
13693, 2979, 2552
Rint0.047
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.091, 1.08
No. of reflections2979
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.03, 0.39

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXL97 and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cl1i0.952.713.625 (3)161
C7—H7C···Cl2ii0.982.773.619 (3)146
C12—H12B···Cl10.992.733.526 (3)138
C10—H10A···O1iii0.992.613.408 (3)137
C9—H9B···Cl1iv0.992.883.665 (3)137
C7—H7B···Cl1i0.982.853.807 (3)166
C8—H8A···Cl2iv0.992.873.750 (3)149
Symmetry codes: (i) x+2, y, z; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank University of Malaya for funding this study (UMRG grant RG024/09BIO).

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChattopadhyay, T., Mukherjee, M., Banu, K. S., Banerjee, A., Suresh, E., Zangrando, E. & Das, D. (2009). J. Coord. Chem. 62, 967–979.  Web of Science CSD CrossRef CAS Google Scholar
First citationIkmal Hisham, N., Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2010). Acta Cryst. E66, m1471.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-X. (2005). Acta Cryst. E61, m373–m374.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds