metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{5,5′-Dimeth­­oxy-2,2′-[4,5-di­methyl-o-phenyl­enebis(nitrilo­methyl­­idyne)]diphenolato}nickel(II)

aDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran, bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, cX-ray Crystallography Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran, and dDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: rkia@srbiau.ac.ir, zsrkk@yahoo.com, dmntahir_uos@yahoo.com

(Received 2 December 2010; accepted 10 December 2010; online 15 December 2010)

In the title Schiff base complex, [Ni(C24H22N2O4)], the NiII atom shows a square-planar geometry. The dihedral angles between the central benzene ring and the two outer rings are 4.79 (15) and 7.54 (15)°. In the crystal, mol­ecules are connected through inter­molecular C—H⋯O hydrogen bond, resulting in chains extending along the c axis. The crystal structure is further stabilized by inter­molecular ππ inter­actions, with centroid–centroid distances in the range 3.3760 (15)–3.7196 (17) Å.

Related literature

For background to Schiff base–metal complexes, see: Granovski et al. (1993[Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Blower et al. (1998[Blower, P. J. (1998). Transition Met. Chem. 23, 109-112.]). For related structures, see: Elmali et al. (2000[Elmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 423-424.]); Kargar et al. (2010[Kargar, H., Kia, R., Tahir, M. N. & Sahraei, A. (2010). Acta Cryst. E66, m1246.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C24H22N2O4)]

  • Mr = 461.15

  • Monoclinic, P 21 /c

  • a = 11.3244 (10) Å

  • b = 16.5528 (19) Å

  • c = 12.1622 (11) Å

  • β = 113.261 (6)°

  • V = 2094.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 296 K

  • 0.24 × 0.12 × 0.08 mm

Data collection
  • Stoe IPDS II Image Plate diffractometer

  • Absorption correction: multi-scan (MULABS in PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.872, Tmax = 1.000

  • 13361 measured reflections

  • 4799 independent reflections

  • 3241 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.092

  • S = 0.98

  • 4799 reflections

  • 284 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O2i 0.93 2.41 3.173 (3) 140
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with the ease of preparation and structural variations (Granovski et al., 1993). Metal derivatives of the Schiff bases have been studied extensively, and Ni(II) and Cu(II) complexes play a major role in both synthetic and structurel research (Kargar et al., 2010; Elmali et al., 2000; Blower et al., 1998).

In the title compound (Fig. 1), the geometry around the Ni(II) atom is square-planar which is coordinated by O1/O2/N1/N2 donor atoms of the tetradenate Schiff base ligand. The dihedral angles between the central benzene ring (C8–C13), and the two outer rings (C1–C6 and C15–C20) are 4.79 (15) and 7.54 (15)°. The crystal structure is furhter stabilized by intermolecular ππ interactions [Cg1···Cg2i = 3.4737 (17)Å; Cg2···Cg3i = 3.7196 (17)Å; Cg3···Cg3i = 3.3760 (15)Å; Cg1, Cg2, and Cg3 are the centroids of the Ni1/N1/C8/C13/N2, C15–C20, and Ni1/O2/C20/C15/C14/N2 rings, respectively].

Related literature top

For background to Schiff base–metal complexes, see: Granovski et al. (1993); Blower et al. (1998). For related structures, see: Elmali et al. (2000); Kargar et al. (2010).

Experimental top

The title compound was synthesized by adding bis(4-methoxysalicylidene)-4,5-dimethyl phenylenediamine (2 mmol) to a solution of NiCl2. 6 H2O (2 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant red solution was filtered. Dark-red plate single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvent at room temperature over several days.

Refinement top

All hydrogen atoms were positioned geometrically with C—H = 0.93-0.96 Å and included in a riding model approximation with Uiso (H) = 1.2 or 1.5 Ueq (C). A rotating group model was applied to the methyl groups.

Structure description top

Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with the ease of preparation and structural variations (Granovski et al., 1993). Metal derivatives of the Schiff bases have been studied extensively, and Ni(II) and Cu(II) complexes play a major role in both synthetic and structurel research (Kargar et al., 2010; Elmali et al., 2000; Blower et al., 1998).

In the title compound (Fig. 1), the geometry around the Ni(II) atom is square-planar which is coordinated by O1/O2/N1/N2 donor atoms of the tetradenate Schiff base ligand. The dihedral angles between the central benzene ring (C8–C13), and the two outer rings (C1–C6 and C15–C20) are 4.79 (15) and 7.54 (15)°. The crystal structure is furhter stabilized by intermolecular ππ interactions [Cg1···Cg2i = 3.4737 (17)Å; Cg2···Cg3i = 3.7196 (17)Å; Cg3···Cg3i = 3.3760 (15)Å; Cg1, Cg2, and Cg3 are the centroids of the Ni1/N1/C8/C13/N2, C15–C20, and Ni1/O2/C20/C15/C14/N2 rings, respectively].

For background to Schiff base–metal complexes, see: Granovski et al. (1993); Blower et al. (1998). For related structures, see: Elmali et al. (2000); Kargar et al. (2010).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. The packing of the title compound viewed down the a-axis showing 1-D infinite chains along the c -axis through the intermolecular C—H···O hydrogen bonds shown as dashed lines; H-atoms not involved in hydrogen bonding were excluded for clarity.
{5,5'-Dimethoxy-2,2'-[4,5-dimethyl-o- phenylenebis(nitrilomethylidyne)]diphenolato}nickel(II) top
Crystal data top
[Ni(C24H22N2O4)]F(000) = 960
Mr = 461.15Dx = 1.462 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2525 reflections
a = 11.3244 (10) Åθ = 2.5–29.5°
b = 16.5528 (19) ŵ = 0.96 mm1
c = 12.1622 (11) ÅT = 296 K
β = 113.261 (6)°Block, red
V = 2094.5 (4) Å30.24 × 0.12 × 0.08 mm
Z = 4
Data collection top
Stoe IPDS II Image Plate
diffractometer
4799 independent reflections
Radiation source: fine-focus sealed tube3241 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
Detector resolution: 0.15 mm pixels mm-1θmax = 27.5°, θmin = 2.0°
ω scansh = 1414
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
k = 2120
Tmin = 0.872, Tmax = 1.000l = 1511
13361 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.035P)2]
where P = (Fo2 + 2Fc2)/3
4799 reflections(Δ/σ)max < 0.001
284 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Ni(C24H22N2O4)]V = 2094.5 (4) Å3
Mr = 461.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.3244 (10) ŵ = 0.96 mm1
b = 16.5528 (19) ÅT = 296 K
c = 12.1622 (11) Å0.24 × 0.12 × 0.08 mm
β = 113.261 (6)°
Data collection top
Stoe IPDS II Image Plate
diffractometer
4799 independent reflections
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
3241 reflections with I > 2σ(I)
Tmin = 0.872, Tmax = 1.000Rint = 0.070
13361 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 0.98Δρmax = 0.25 e Å3
4799 reflectionsΔρmin = 0.37 e Å3
284 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.52301 (3)0.15530 (2)0.57365 (3)0.03266 (10)
O10.67263 (16)0.20767 (13)0.58815 (17)0.0422 (5)
O20.52566 (17)0.11985 (13)0.43077 (16)0.0418 (5)
O31.05950 (18)0.35630 (16)0.7684 (2)0.0597 (7)
O40.4090 (3)0.00753 (17)0.0642 (2)0.0735 (8)
N10.51974 (18)0.19646 (15)0.7148 (2)0.0344 (5)
N20.37394 (18)0.10034 (14)0.5568 (2)0.0346 (5)
C10.7477 (2)0.25092 (18)0.6784 (2)0.0334 (6)
C20.8639 (2)0.27954 (18)0.6749 (2)0.0387 (7)
H2A0.88480.26640.61040.046*
C30.9458 (2)0.32637 (19)0.7655 (3)0.0430 (7)
C40.9165 (3)0.3470 (2)0.8639 (3)0.0519 (8)
H4A0.97320.37850.92540.062*
C50.8052 (3)0.3209 (2)0.8688 (3)0.0453 (8)
H5A0.78530.33600.93310.054*
C60.7184 (2)0.27109 (18)0.7778 (2)0.0338 (6)
C70.6055 (2)0.24385 (18)0.7899 (2)0.0357 (6)
H7A0.59170.26120.85660.043*
C80.4111 (2)0.16962 (18)0.7365 (2)0.0357 (7)
C90.3808 (3)0.1909 (2)0.8325 (3)0.0446 (7)
H9A0.43430.22640.88990.053*
C100.2727 (3)0.1607 (2)0.8449 (3)0.0483 (7)
C110.1927 (3)0.1070 (2)0.7575 (3)0.0482 (8)
C120.2238 (2)0.0857 (2)0.6625 (3)0.0453 (7)
H12A0.17070.05010.60510.054*
C130.3324 (2)0.11598 (18)0.6505 (3)0.0363 (6)
C140.3126 (2)0.04987 (18)0.4708 (3)0.0400 (7)
H14A0.24370.02210.47620.048*
C150.3415 (2)0.03359 (18)0.3702 (3)0.0371 (6)
C160.2637 (3)0.0209 (2)0.2821 (3)0.0495 (8)
H16A0.19750.04720.29460.059*
C170.2811 (3)0.0367 (2)0.1799 (3)0.0498 (8)
H17A0.22780.07280.12340.060*
C180.3811 (3)0.0025 (2)0.1622 (3)0.0475 (8)
C190.4612 (3)0.0550 (2)0.2466 (3)0.0462 (7)
H19A0.52770.08000.23310.055*
C200.4444 (2)0.07135 (18)0.3526 (2)0.0354 (6)
C211.0950 (3)0.3371 (3)0.6713 (3)0.0656 (10)
H21A1.17760.36010.68570.098*
H21B1.03220.35870.59850.098*
H21C1.09900.27950.66440.098*
C220.3392 (4)0.0663 (3)0.0224 (3)0.0770 (12)
H22A0.37110.06800.08470.116*
H22B0.24970.05220.05600.116*
H22C0.34990.11840.01510.116*
C230.2426 (3)0.1856 (3)0.9503 (3)0.0672 (11)
H23A0.30580.22370.99840.101*
H23B0.24390.13880.99750.101*
H23C0.15900.21000.92210.101*
C240.0704 (3)0.0742 (3)0.7637 (4)0.0730 (12)
H24A0.03510.03300.70410.110*
H24B0.00920.11720.74930.110*
H24C0.08950.05170.84160.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.03026 (15)0.0399 (2)0.03049 (16)0.00596 (16)0.01484 (12)0.00084 (19)
O10.0399 (9)0.0571 (14)0.0355 (11)0.0172 (9)0.0211 (9)0.0088 (10)
O20.0435 (10)0.0532 (13)0.0317 (10)0.0148 (9)0.0181 (9)0.0081 (10)
O30.0461 (11)0.0767 (19)0.0631 (14)0.0283 (11)0.0289 (10)0.0166 (13)
O40.0989 (18)0.078 (2)0.0524 (15)0.0325 (15)0.0394 (14)0.0308 (14)
N10.0332 (10)0.0406 (14)0.0335 (12)0.0018 (10)0.0177 (10)0.0010 (11)
N20.0293 (10)0.0376 (14)0.0384 (13)0.0007 (9)0.0150 (10)0.0018 (11)
C10.0312 (12)0.0367 (17)0.0318 (14)0.0023 (11)0.0122 (11)0.0044 (12)
C20.0369 (13)0.0477 (19)0.0356 (15)0.0073 (12)0.0185 (12)0.0032 (14)
C30.0364 (13)0.047 (2)0.0480 (17)0.0099 (12)0.0192 (13)0.0003 (14)
C40.0483 (15)0.064 (2)0.0419 (16)0.0203 (16)0.0158 (13)0.0151 (18)
C50.0468 (15)0.056 (2)0.0392 (16)0.0082 (13)0.0231 (13)0.0091 (15)
C60.0329 (12)0.0392 (17)0.0305 (14)0.0028 (11)0.0138 (11)0.0018 (13)
C70.0395 (13)0.0392 (17)0.0344 (14)0.0010 (12)0.0209 (12)0.0004 (13)
C80.0338 (12)0.0397 (19)0.0392 (15)0.0021 (11)0.0203 (12)0.0029 (13)
C90.0430 (15)0.0514 (19)0.0482 (18)0.0059 (13)0.0274 (14)0.0064 (15)
C100.0500 (15)0.050 (2)0.0586 (19)0.0025 (15)0.0364 (15)0.0001 (18)
C110.0424 (15)0.047 (2)0.069 (2)0.0002 (13)0.0370 (16)0.0050 (17)
C120.0353 (13)0.0456 (19)0.060 (2)0.0073 (13)0.0243 (14)0.0015 (16)
C130.0322 (12)0.0386 (17)0.0430 (16)0.0018 (11)0.0201 (12)0.0054 (14)
C140.0300 (12)0.0404 (18)0.0510 (17)0.0052 (12)0.0176 (12)0.0004 (15)
C150.0337 (13)0.0353 (17)0.0409 (16)0.0015 (11)0.0135 (12)0.0026 (13)
C160.0381 (14)0.048 (2)0.060 (2)0.0085 (13)0.0173 (15)0.0112 (17)
C170.0460 (16)0.046 (2)0.0474 (19)0.0041 (14)0.0079 (14)0.0147 (16)
C180.0559 (17)0.045 (2)0.0410 (18)0.0002 (15)0.0185 (15)0.0089 (15)
C190.0530 (16)0.048 (2)0.0401 (16)0.0102 (15)0.0214 (14)0.0059 (15)
C200.0377 (13)0.0348 (17)0.0302 (14)0.0000 (11)0.0097 (12)0.0008 (12)
C210.0509 (16)0.086 (3)0.071 (2)0.0267 (19)0.0368 (17)0.017 (2)
C220.094 (3)0.081 (3)0.053 (2)0.019 (2)0.026 (2)0.029 (2)
C230.069 (2)0.082 (3)0.075 (3)0.0068 (19)0.054 (2)0.009 (2)
C240.0556 (19)0.082 (3)0.103 (3)0.0189 (19)0.055 (2)0.010 (2)
Geometric parameters (Å, º) top
Ni1—O21.8456 (19)C10—C111.407 (5)
Ni1—O11.8485 (17)C10—C231.508 (4)
Ni1—N21.856 (2)C11—C121.380 (4)
Ni1—N11.861 (2)C11—C241.517 (4)
O1—C11.305 (3)C12—C131.388 (3)
O2—C201.306 (3)C12—H12A0.9300
O3—C31.367 (3)C14—C151.411 (4)
O3—C211.425 (4)C14—H14A0.9300
O4—C181.358 (4)C15—C201.411 (4)
O4—C221.422 (4)C15—C161.412 (4)
N1—C71.301 (3)C16—C171.358 (4)
N1—C81.428 (3)C16—H16A0.9300
N2—C141.304 (4)C17—C181.395 (4)
N2—C131.417 (3)C17—H17A0.9300
C1—C61.414 (4)C18—C191.376 (4)
C1—C21.416 (3)C19—C201.402 (4)
C2—C31.367 (4)C19—H19A0.9300
C2—H2A0.9300C21—H21A0.9600
C3—C41.404 (4)C21—H21B0.9600
C4—C51.356 (4)C21—H21C0.9600
C4—H4A0.9300C22—H22A0.9600
C5—C61.417 (4)C22—H22B0.9600
C5—H5A0.9300C22—H22C0.9600
C6—C71.417 (3)C23—H23A0.9600
C7—H7A0.9300C23—H23B0.9600
C8—C91.386 (4)C23—H23C0.9600
C8—C131.393 (4)C24—H24A0.9600
C9—C101.384 (4)C24—H24B0.9600
C9—H9A0.9300C24—H24C0.9600
Cg1···Cg2i3.4737 (17)Cg3···Cg3i3.3760 (15)
Cg2···Cg3i3.7196 (17)
O2—Ni1—O183.33 (8)C11—C12—H12A119.1
O2—Ni1—N295.32 (9)C13—C12—H12A119.1
O1—Ni1—N2178.38 (10)C12—C13—C8118.8 (3)
O2—Ni1—N1177.06 (10)C12—C13—N2127.4 (3)
O1—Ni1—N195.26 (9)C8—C13—N2113.8 (2)
N2—Ni1—N186.13 (10)N2—C14—C15125.9 (2)
C1—O1—Ni1127.25 (17)N2—C14—H14A117.1
C20—O2—Ni1127.75 (17)C15—C14—H14A117.1
C3—O3—C21117.9 (2)C14—C15—C20122.3 (2)
C18—O4—C22118.7 (3)C14—C15—C16119.4 (3)
C7—N1—C8121.1 (2)C20—C15—C16118.2 (3)
C7—N1—Ni1125.95 (18)C17—C16—C15123.1 (3)
C8—N1—Ni1112.92 (17)C17—C16—H16A118.5
C14—N2—C13121.4 (2)C15—C16—H16A118.5
C14—N2—Ni1125.10 (19)C16—C17—C18118.1 (3)
C13—N2—Ni1113.45 (18)C16—C17—H17A121.0
O1—C1—C6123.7 (2)C18—C17—H17A121.0
O1—C1—C2117.5 (2)O4—C18—C19114.7 (3)
C6—C1—C2118.8 (2)O4—C18—C17124.2 (3)
C3—C2—C1120.5 (3)C19—C18—C17121.0 (3)
C3—C2—H2A119.7C18—C19—C20121.2 (3)
C1—C2—H2A119.7C18—C19—H19A119.4
C2—C3—O3123.9 (3)C20—C19—H19A119.4
C2—C3—C4120.8 (2)O2—C20—C19118.4 (3)
O3—C3—C4115.3 (3)O2—C20—C15123.3 (2)
C5—C4—C3119.8 (3)C19—C20—C15118.3 (3)
C5—C4—H4A120.1O3—C21—H21A109.5
C3—C4—H4A120.1O3—C21—H21B109.5
C4—C5—C6121.4 (3)H21A—C21—H21B109.5
C4—C5—H5A119.3O3—C21—H21C109.5
C6—C5—H5A119.3H21A—C21—H21C109.5
C1—C6—C7122.6 (2)H21B—C21—H21C109.5
C1—C6—C5118.7 (2)O4—C22—H22A109.5
C7—C6—C5118.7 (3)O4—C22—H22B109.5
N1—C7—C6125.0 (3)H22A—C22—H22B109.5
N1—C7—H7A117.5O4—C22—H22C109.5
C6—C7—H7A117.5H22A—C22—H22C109.5
C9—C8—C13119.8 (2)H22B—C22—H22C109.5
C9—C8—N1126.5 (3)C10—C23—H23A109.5
C13—C8—N1113.7 (2)C10—C23—H23B109.5
C10—C9—C8121.6 (3)H23A—C23—H23B109.5
C10—C9—H9A119.2C10—C23—H23C109.5
C8—C9—H9A119.2H23A—C23—H23C109.5
C9—C10—C11118.6 (3)H23B—C23—H23C109.5
C9—C10—C23120.0 (3)C11—C24—H24A109.5
C11—C10—C23121.3 (3)C11—C24—H24B109.5
C12—C11—C10119.5 (3)H24A—C24—H24B109.5
C12—C11—C24119.3 (3)C11—C24—H24C109.5
C10—C11—C24121.1 (3)H24A—C24—H24C109.5
C11—C12—C13121.7 (3)H24B—C24—H24C109.5
O2—Ni1—O1—C1177.0 (3)C8—C9—C10—C110.1 (5)
N1—Ni1—O1—C15.6 (3)C8—C9—C10—C23179.7 (3)
O1—Ni1—O2—C20178.4 (2)C9—C10—C11—C120.2 (5)
N2—Ni1—O2—C200.7 (2)C23—C10—C11—C12179.9 (3)
O1—Ni1—N1—C71.8 (3)C9—C10—C11—C24177.7 (3)
N2—Ni1—N1—C7177.3 (3)C23—C10—C11—C242.1 (5)
O1—Ni1—N1—C8179.12 (19)C10—C11—C12—C130.1 (5)
N2—Ni1—N1—C81.71 (19)C24—C11—C12—C13177.9 (3)
O2—Ni1—N2—C145.4 (2)C11—C12—C13—C80.4 (5)
N1—Ni1—N2—C14177.1 (2)C11—C12—C13—N2178.7 (3)
O2—Ni1—N2—C13176.57 (19)C9—C8—C13—C120.7 (4)
N1—Ni1—N2—C130.86 (19)N1—C8—C13—C12179.9 (2)
Ni1—O1—C1—C66.3 (4)C9—C8—C13—N2179.3 (3)
Ni1—O1—C1—C2174.40 (19)N1—C8—C13—N21.6 (4)
O1—C1—C2—C3178.8 (3)C14—N2—C13—C123.3 (5)
C6—C1—C2—C30.5 (4)Ni1—N2—C13—C12178.6 (2)
C1—C2—C3—O3179.9 (3)C14—N2—C13—C8178.3 (3)
C1—C2—C3—C40.0 (5)Ni1—N2—C13—C80.2 (3)
C21—O3—C3—C20.3 (5)C13—N2—C14—C15176.1 (3)
C21—O3—C3—C4179.7 (3)Ni1—N2—C14—C156.0 (4)
C2—C3—C4—C50.6 (5)N2—C14—C15—C200.5 (5)
O3—C3—C4—C5179.4 (3)N2—C14—C15—C16178.0 (3)
C3—C4—C5—C61.7 (5)C14—C15—C16—C17176.6 (3)
O1—C1—C6—C71.9 (5)C20—C15—C16—C172.0 (5)
C2—C1—C6—C7178.8 (3)C15—C16—C17—C180.4 (5)
O1—C1—C6—C5177.8 (3)C22—O4—C18—C19174.1 (3)
C2—C1—C6—C51.6 (4)C22—O4—C18—C175.2 (5)
C4—C5—C6—C12.2 (5)C16—C17—C18—O4179.8 (3)
C4—C5—C6—C7178.2 (3)C16—C17—C18—C191.0 (5)
C8—N1—C7—C6177.6 (3)O4—C18—C19—C20179.9 (3)
Ni1—N1—C7—C61.4 (4)C17—C18—C19—C200.7 (5)
C1—C6—C7—N12.1 (5)Ni1—O2—C20—C19177.2 (2)
C5—C6—C7—N1178.3 (3)Ni1—O2—C20—C153.8 (4)
C7—N1—C8—C92.2 (5)C18—C19—C20—O2178.1 (3)
Ni1—N1—C8—C9178.7 (3)C18—C19—C20—C151.0 (5)
C7—N1—C8—C13176.9 (3)C14—C15—C20—O24.7 (4)
Ni1—N1—C8—C132.2 (3)C16—C15—C20—O2176.8 (3)
C13—C8—C9—C100.6 (5)C14—C15—C20—C19176.3 (3)
N1—C8—C9—C10179.6 (3)C16—C15—C20—C192.2 (4)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O2ii0.932.413.173 (3)140
Symmetry code: (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C24H22N2O4)]
Mr461.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.3244 (10), 16.5528 (19), 12.1622 (11)
β (°) 113.261 (6)
V3)2094.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.24 × 0.12 × 0.08
Data collection
DiffractometerStoe IPDS II Image Plate
diffractometer
Absorption correctionMulti-scan
(MULABS in PLATON; Spek, 2009)
Tmin, Tmax0.872, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13361, 4799, 3241
Rint0.070
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.092, 0.98
No. of reflections4799
No. of parameters284
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.37

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O2i0.932.413.173 (3)140
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

HK and AS thank PNU for financial support. RK thanks Islamic Azad University. MNT thanks GC University of Sargodha, Pakistan, for the research facilities.

References

First citationBlower, P. J. (1998). Transition Met. Chem. 23, 109–112.  CrossRef CAS Google Scholar
First citationElmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 423–424.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGranovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  Google Scholar
First citationKargar, H., Kia, R., Tahir, M. N. & Sahraei, A. (2010). Acta Cryst. E66, m1246.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds