metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{benzyl 3-[(1H-indol-3-yl)methyl­­idene]di­thio­carbazato-κ2N3,S}palladium(II) N,N-di­methyl­formamide disolvate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 8 December 2010; accepted 10 December 2010; online 15 December 2010)

In the title compound, [Pd(C17H14N3S2)2]·2C3H7NO, the deprotonated Schiff base ligand acts as an N,S-bidentate chelate, forming a five-membered ring with the metal atom. The PdII ion, located on an inversion center, is four-coordinated by two of the Schiff base ligands in a square-planar geometry. In the crystal, the indolic NH groups are bonded to the dimethyl­formamide (DMF) solvent mol­ecules via an N—H⋯O inter­action. In addition, C—H⋯S inter­actions are observed.

Related literature

For the crystal structure of the ligand, see: Khaledi et al. (2008[Khaledi, H., Mohd Ali, H. & Ng, S. W. (2008). Acta Cryst. E64, o2107.]). For the isotypic Cu(II) analog, see: Khaledi et al. (2009[Khaledi, H., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, m139.]). For the PdII complex of the acetone Schiff base of S-methyl­dithio­carbazate, see: Ali et al. (2002[Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali, A. M. (2002). J. Inorg. Biochem. 92, 141-148.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C17H14N3S2)2]·2C3H7NO

  • Mr = 901.46

  • Monoclinic, P 21 /c

  • a = 10.509 (4) Å

  • b = 20.320 (7) Å

  • c = 10.925 (4) Å

  • β = 117.577 (5)°

  • V = 2067.8 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 296 K

  • 0.30 × 0.15 × 0.03 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.818, Tmax = 0.979

  • 11353 measured reflections

  • 4486 independent reflections

  • 3411 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.074

  • S = 1.02

  • 4486 reflections

  • 255 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.84 (2) 1.91 (2) 2.749 (3) 174 (3)
C9—H9⋯S1i 0.93 2.60 3.279 (2) 130
Symmetry code: (i) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound is isostructural with the CuII complex of the Schiff base ligand (Khaledi et al., 2009). The palladium(II) ion is four-coordinated by two azomethine nitrogen and two thioamide sulfur atoms in a trans-square planar geometry. It has been suggested that the square planar geometry of the Schiff bases of S-alkyldithiocarbazate is trans when they are derived from aldehydes, whereas the ketone derivatives show cis geometry (Ali et al., 2002). Similar to the analogous CuII complex, the indole amino groups in the present structure are hydrogen bonded to the co-crystallized DMF molecules. Moreover, non-classical hydrogen bonds, C—H···N, C—H···O and C—H···S, are observed in the structure.

Related literature top

For the crystal structure of the ligand, see: Khaledi et al. (2008). For the isostructural copper analog, see: Khaledi et al. (2009). For the PdII complex of the acetone Shiff base of S-methyldithiocarbazate, see: Ali et al. (2002).

Experimental top

The Schiff base ligand was prepared as reported previously (Khaledi et al., 2008). A solution of palladium(II) acetate (0.224 g, 1 mmol) in ethanol (30 ml) was added to an ethanolic solution (30 ml) of the ligand (0.65 g, 2 mmol) containing a few drops of triethylamine. The mixture was refluxed for an hour, then cooled to room temperature. The resulting brown solid was filtered, washed with cold ethanol and dried over siliga-gel. The title crystals were obtained by slow evaporation of a solution of the solid in DMF.

Refinement top

The C-bound H atoms were placed at calculated positions (C–H 0.93–0.97 Å) and were treated as riding on their parent C atoms. The N-bound H atom was located in a difference Fourier map, and was refined with a distance restraint of N–H 0.86±0.02. For all H atoms, Uiso(H) was set to 1.2–1.5 Ueq(carrier atom).

Structure description top

The title compound is isostructural with the CuII complex of the Schiff base ligand (Khaledi et al., 2009). The palladium(II) ion is four-coordinated by two azomethine nitrogen and two thioamide sulfur atoms in a trans-square planar geometry. It has been suggested that the square planar geometry of the Schiff bases of S-alkyldithiocarbazate is trans when they are derived from aldehydes, whereas the ketone derivatives show cis geometry (Ali et al., 2002). Similar to the analogous CuII complex, the indole amino groups in the present structure are hydrogen bonded to the co-crystallized DMF molecules. Moreover, non-classical hydrogen bonds, C—H···N, C—H···O and C—H···S, are observed in the structure.

For the crystal structure of the ligand, see: Khaledi et al. (2008). For the isostructural copper analog, see: Khaledi et al. (2009). For the PdII complex of the acetone Shiff base of S-methyldithiocarbazate, see: Ali et al. (2002).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound at the 30% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
Bis{benzyl 3-[(1H-indol-3-yl)methylidene]dithiocarbazato- κ2N3,S}palladium(II) N,N-dimethylformamide disolvate top
Crystal data top
[Pd(C17H14N3S2)2]·2C3H7NOF(000) = 928
Mr = 901.46Dx = 1.448 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3977 reflections
a = 10.509 (4) Åθ = 2.3–29.4°
b = 20.320 (7) ŵ = 0.70 mm1
c = 10.925 (4) ÅT = 296 K
β = 117.577 (5)°Plate, red
V = 2067.8 (12) Å30.30 × 0.15 × 0.03 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
4486 independent reflections
Radiation source: fine-focus sealed tube3411 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1312
Tmin = 0.818, Tmax = 0.979k = 2525
11353 measured reflectionsl = 1113
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0332P)2 + 0.5126P]
where P = (Fo2 + 2Fc2)/3
4486 reflections(Δ/σ)max = 0.001
255 parametersΔρmax = 0.27 e Å3
1 restraintΔρmin = 0.31 e Å3
Crystal data top
[Pd(C17H14N3S2)2]·2C3H7NOV = 2067.8 (12) Å3
Mr = 901.46Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.509 (4) ŵ = 0.70 mm1
b = 20.320 (7) ÅT = 296 K
c = 10.925 (4) Å0.30 × 0.15 × 0.03 mm
β = 117.577 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
4486 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3411 reflections with I > 2σ(I)
Tmin = 0.818, Tmax = 0.979Rint = 0.024
11353 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0301 restraint
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.27 e Å3
4486 reflectionsΔρmin = 0.31 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.50000.50001.00000.03881 (8)
S10.50770 (7)0.38703 (3)1.00654 (7)0.05372 (16)
S20.60819 (8)0.29517 (3)0.86690 (7)0.05937 (18)
N10.7185 (2)0.50542 (10)0.5369 (2)0.0550 (5)
H1N0.753 (3)0.4818 (12)0.496 (3)0.066*
N20.56951 (19)0.48716 (8)0.85694 (19)0.0422 (4)
N30.60342 (19)0.42432 (8)0.82622 (19)0.0438 (4)
C10.6788 (3)0.48235 (11)0.6292 (3)0.0517 (6)
H10.67710.43810.65050.062*
C20.6405 (2)0.53413 (10)0.6881 (2)0.0438 (5)
C30.6598 (2)0.59335 (10)0.6243 (2)0.0434 (5)
C40.6429 (3)0.66054 (11)0.6388 (3)0.0547 (6)
H40.61110.67550.70050.066*
C50.6739 (3)0.70436 (13)0.5604 (3)0.0667 (7)
H50.66420.74930.57030.080*
C60.7198 (3)0.68253 (13)0.4660 (3)0.0692 (8)
H60.73880.71320.41340.083*
C70.7374 (3)0.61730 (13)0.4495 (3)0.0595 (6)
H70.76780.60290.38650.071*
C80.7080 (2)0.57292 (11)0.5304 (2)0.0479 (5)
C90.5902 (2)0.53485 (11)0.7881 (2)0.0449 (5)
H90.56810.57650.80810.054*
C100.5759 (2)0.37785 (10)0.8902 (2)0.0424 (5)
C110.6598 (3)0.29661 (12)0.7301 (3)0.0587 (6)
H11A0.64110.25330.68800.070*
H11B0.59690.32730.66020.070*
C120.8120 (3)0.31475 (10)0.7668 (3)0.0514 (6)
C130.8432 (3)0.32943 (13)0.6598 (3)0.0641 (7)
H130.76990.32840.56940.077*
C140.9801 (3)0.34555 (15)0.6844 (4)0.0792 (9)
H140.99870.35480.61080.095*
C151.0875 (3)0.34793 (16)0.8149 (4)0.0858 (10)
H151.17980.35950.83160.103*
C161.0600 (3)0.33329 (16)0.9226 (4)0.0884 (10)
H161.13400.33481.01260.106*
C170.9222 (3)0.31618 (14)0.8987 (3)0.0706 (7)
H170.90500.30570.97260.085*
O10.8241 (4)0.43495 (13)0.3888 (3)0.1248 (10)
N40.9096 (2)0.42640 (11)0.2347 (2)0.0634 (6)
C180.8601 (4)0.45922 (17)0.3077 (4)0.0946 (11)
H180.85200.50460.29640.113*
C190.9457 (3)0.45852 (16)0.1364 (3)0.0827 (9)
H19A0.93690.50530.14200.124*
H19B0.88150.44380.04480.124*
H19C1.04260.44770.15740.124*
C200.9206 (3)0.35570 (14)0.2455 (3)0.0785 (8)
H20A0.91530.34180.32690.118*
H20B1.01060.34200.25110.118*
H20C0.84320.33630.16560.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.04047 (13)0.04106 (13)0.04411 (14)0.00056 (10)0.02740 (11)0.00044 (11)
S10.0737 (4)0.0436 (3)0.0685 (4)0.0004 (3)0.0537 (4)0.0015 (3)
S20.0807 (4)0.0410 (3)0.0797 (5)0.0021 (3)0.0569 (4)0.0023 (3)
N10.0705 (13)0.0540 (12)0.0608 (13)0.0030 (10)0.0477 (11)0.0044 (10)
N20.0469 (10)0.0428 (10)0.0467 (10)0.0017 (7)0.0301 (9)0.0002 (8)
N30.0503 (10)0.0407 (9)0.0511 (11)0.0002 (8)0.0325 (9)0.0031 (8)
C10.0656 (15)0.0462 (12)0.0603 (15)0.0024 (11)0.0434 (13)0.0003 (11)
C20.0495 (12)0.0444 (12)0.0480 (13)0.0014 (10)0.0314 (11)0.0026 (10)
C30.0426 (11)0.0470 (12)0.0466 (12)0.0015 (10)0.0257 (10)0.0046 (10)
C40.0573 (14)0.0507 (13)0.0664 (16)0.0053 (11)0.0374 (13)0.0056 (12)
C50.0681 (17)0.0505 (14)0.089 (2)0.0026 (12)0.0431 (16)0.0135 (14)
C60.0660 (17)0.0691 (17)0.082 (2)0.0025 (13)0.0426 (16)0.0267 (15)
C70.0599 (15)0.0741 (17)0.0586 (16)0.0024 (13)0.0394 (13)0.0115 (13)
C80.0475 (12)0.0546 (13)0.0490 (13)0.0030 (10)0.0287 (11)0.0032 (11)
C90.0513 (13)0.0404 (11)0.0528 (14)0.0030 (10)0.0323 (12)0.0018 (10)
C100.0432 (11)0.0430 (11)0.0487 (13)0.0026 (9)0.0278 (11)0.0040 (10)
C110.0702 (16)0.0537 (14)0.0667 (16)0.0089 (12)0.0440 (14)0.0186 (12)
C120.0610 (15)0.0404 (11)0.0645 (16)0.0026 (10)0.0389 (14)0.0099 (11)
C130.0680 (17)0.0654 (16)0.0694 (17)0.0005 (13)0.0409 (15)0.0041 (14)
C140.076 (2)0.082 (2)0.101 (3)0.0005 (17)0.059 (2)0.0081 (19)
C150.0625 (19)0.082 (2)0.122 (3)0.0053 (16)0.050 (2)0.009 (2)
C160.0637 (19)0.095 (2)0.089 (2)0.0093 (17)0.0210 (18)0.0057 (19)
C170.0734 (19)0.0774 (18)0.0687 (19)0.0053 (15)0.0393 (17)0.0040 (15)
O10.202 (3)0.120 (2)0.1058 (19)0.0498 (19)0.116 (2)0.0098 (16)
N40.0643 (13)0.0729 (14)0.0570 (13)0.0028 (11)0.0315 (12)0.0111 (11)
C180.136 (3)0.080 (2)0.086 (2)0.026 (2)0.067 (2)0.0029 (19)
C190.079 (2)0.095 (2)0.083 (2)0.0068 (17)0.0451 (19)0.0070 (18)
C200.090 (2)0.0727 (19)0.073 (2)0.0108 (16)0.0386 (18)0.0092 (16)
Geometric parameters (Å, º) top
Pd1—N2i2.0252 (18)C9—H90.9300
Pd1—N22.0252 (18)C11—C121.505 (3)
Pd1—S12.2969 (10)C11—H11A0.9700
Pd1—S1i2.2969 (10)C11—H11B0.9700
S1—C101.735 (2)C12—C171.369 (4)
S2—C101.755 (2)C12—C131.384 (3)
S2—C111.810 (2)C13—C141.376 (4)
N1—C11.342 (3)C13—H130.9300
N1—C81.375 (3)C14—C151.349 (4)
N1—H1N0.840 (16)C14—H140.9300
N2—C91.305 (3)C15—C161.368 (4)
N2—N31.407 (2)C15—H150.9300
N3—C101.285 (3)C16—C171.391 (4)
C1—C21.387 (3)C16—H160.9300
C1—H10.9300C17—H170.9300
C2—C91.417 (3)O1—C181.218 (4)
C2—C31.451 (3)N4—C181.317 (4)
C3—C41.395 (3)N4—C201.442 (3)
C3—C81.401 (3)N4—C191.449 (4)
C4—C51.375 (3)C18—H180.9300
C4—H40.9300C19—H19A0.9600
C5—C61.398 (4)C19—H19B0.9600
C5—H50.9300C19—H19C0.9600
C6—C71.362 (4)C20—H20A0.9600
C6—H60.9300C20—H20B0.9600
C7—C81.394 (3)C20—H20C0.9600
C7—H70.9300
N2i—Pd1—N2179.999 (1)S1—C10—S2112.47 (12)
N2i—Pd1—S197.17 (5)C12—C11—S2118.18 (19)
N2—Pd1—S182.83 (5)C12—C11—H11A107.8
N2i—Pd1—S1i82.83 (5)S2—C11—H11A107.8
N2—Pd1—S1i97.17 (5)C12—C11—H11B107.8
S1—Pd1—S1i180.0S2—C11—H11B107.8
C10—S1—Pd196.04 (7)H11A—C11—H11B107.1
C10—S2—C11104.82 (11)C17—C12—C13118.0 (2)
C1—N1—C8109.95 (19)C17—C12—C11124.2 (2)
C1—N1—H1N123.9 (19)C13—C12—C11117.8 (2)
C8—N1—H1N125.9 (19)C14—C13—C12121.4 (3)
C9—N2—N3114.08 (17)C14—C13—H13119.3
C9—N2—Pd1124.40 (15)C12—C13—H13119.3
N3—N2—Pd1121.50 (12)C15—C14—C13120.2 (3)
C10—N3—N2113.06 (17)C15—C14—H14119.9
N1—C1—C2110.0 (2)C13—C14—H14119.9
N1—C1—H1125.0C14—C15—C16119.6 (3)
C2—C1—H1125.0C14—C15—H15120.2
C1—C2—C9131.1 (2)C16—C15—H15120.2
C1—C2—C3105.77 (19)C15—C16—C17120.6 (3)
C9—C2—C3123.12 (19)C15—C16—H16119.7
C4—C3—C8118.8 (2)C17—C16—H16119.7
C4—C3—C2134.7 (2)C12—C17—C16120.2 (3)
C8—C3—C2106.49 (18)C12—C17—H17119.9
C5—C4—C3118.9 (2)C16—C17—H17119.9
C5—C4—H4120.5C18—N4—C20119.6 (3)
C3—C4—H4120.5C18—N4—C19122.2 (3)
C4—C5—C6121.1 (2)C20—N4—C19118.1 (2)
C4—C5—H5119.5O1—C18—N4125.4 (3)
C6—C5—H5119.5O1—C18—H18117.3
C7—C6—C5121.4 (2)N4—C18—H18117.3
C7—C6—H6119.3N4—C19—H19A109.5
C5—C6—H6119.3N4—C19—H19B109.5
C6—C7—C8117.5 (2)H19A—C19—H19B109.5
C6—C7—H7121.2N4—C19—H19C109.5
C8—C7—H7121.2H19A—C19—H19C109.5
N1—C8—C7129.9 (2)H19B—C19—H19C109.5
N1—C8—C3107.81 (18)N4—C20—H20A109.5
C7—C8—C3122.3 (2)N4—C20—H20B109.5
N2—C9—C2131.1 (2)H20A—C20—H20B109.5
N2—C9—H9114.4N4—C20—H20C109.5
C2—C9—H9114.4H20A—C20—H20C109.5
N3—C10—S1126.36 (16)H20B—C20—H20C109.5
N3—C10—S2121.17 (16)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.84 (2)1.91 (2)2.749 (3)174 (3)
C1—H1···N30.932.402.869 (3)111
C17—H17···S20.932.793.183 (3)107
C20—H20A···O10.962.362.747 (3)104
C9—H9···S1i0.932.603.279 (2)130
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Pd(C17H14N3S2)2]·2C3H7NO
Mr901.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.509 (4), 20.320 (7), 10.925 (4)
β (°) 117.577 (5)
V3)2067.8 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.30 × 0.15 × 0.03
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.818, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
11353, 4486, 3411
Rint0.024
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.074, 1.02
No. of reflections4486
No. of parameters255
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.31

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.840 (16)1.912 (17)2.749 (3)174 (3)
C1—H1···N30.932.402.869 (3)111.4
C17—H17···S20.932.793.183 (3)106.8
C20—H20A···O10.962.362.747 (3)103.6
C9—H9···S1i0.932.603.279 (2)129.9
Symmetry code: (i) x+1, y+1, z+2.
 

Acknowledgements

The authors thank University of Malaya for funding this study (UMRG grant RG024/09BIO).

References

First citationAli, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali, A. M. (2002). J. Inorg. Biochem. 92, 141–148.  CSD CrossRef PubMed Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKhaledi, H., Mohd Ali, H. & Ng, S. W. (2008). Acta Cryst. E64, o2107.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhaledi, H., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, m139.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds