organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Bromo­propyl 2-(2-chloro­phen­yl)-2-(4,5,6,7-tetra­hydro­thieno[3,2-c]pyridin-5-yl)acetate

aMaterials Science and Engineering, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China, and bTianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China
*Correspondence e-mail: liudk@tjipr.com

(Received 14 October 2010; accepted 17 December 2010; online 24 December 2010)

In the crystal structure of the title compound, C18H19BrClNO2S, weak C—H⋯O inter­actions help to establish the packing.

Related literature

The title compound is a derivative of the anti­platelet agent clopidogrel [systematic name (+)-(S)-methyl 2-(2-chloro­phen­yl)-2-(6,7-dihydro­thieno[3,2-c]pyridin-5(4H)-yl)acetate]. For background to the bioactivity and applications of clopidogrel, see: Muller et al. (2003[Muller, I., Besta, F., Schulz, C., Li, Z., Massberg, S. & Gawaz, M. (2003). Circulation, 108, 2195-2197.]); Savi et al. (1994[Savi, P., Combalbert, J., Gaich, C., Rouchon, M. C., Maffrand, J. P., Berger, Y. & Herbert, J. M. (1994). Thromb. Haemost. 72, 313-317.]); Sharis et al. (1998[Sharis, P. J., Cannon, C. P. & Loscalzo, J. (1998). Ann. Intern. Med. 129, 394-405.]). For the synthesis of other derivatives with thienopyridine, see: Aubert et al. (1985[Aubert, D., Ferrand, C. & Maffrand, J. P. (1985). US Patent 4 529 596.]); Bouisset & Radisson (1991[Bouisset, M. & Radisson, J. (1991). US Patent 5 036 156.]); Savi et al. (1992[Savi, P., Herbert, J. M., Pflieger, A. M., Dol, F., Delebassee, D., Combalbert, J., Defreyn, G. & Maffrand, J. P. (1992). Biochem. Pharmacol. 44, 527-532.]); Bipin et al. (2002[Bipin, P., Bhushan, L. V. & Bhushan, L. B. (2002). WO Patent 02/059128 A2.]); Eric & Hiralal (1989[Eric, L. & Hiralal, N. K. (1989). Eur. Patent 0 342 118 A1.]); Liu et al. (2008[Liu, D. K., Liu, Y., Liu, M., Zhang, S. J., Cheng, D., Jin, L. Y., Xu, W. R. & Liu, C. X. (2008). CN Patent 101284838A.]); Silva (2004[Silva, R. A. (2004). WO Patent 2004/094374 A2.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19BrClNO2S

  • Mr = 428.76

  • Monoclinic, P 21 /n

  • a = 8.5707 (17) Å

  • b = 18.414 (4) Å

  • c = 12.206 (2) Å

  • β = 106.89 (3)°

  • V = 1843.3 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 5.52 mm−1

  • T = 113 K

  • 0.22 × 0.18 × 0.14 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) Tmin = 0.377, Tmax = 0.512

  • 18506 measured reflections

  • 3546 independent reflections

  • 3220 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.097

  • S = 1.04

  • 3546 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.95 2.43 3.340 (3) 161
C7—H7A⋯O1 0.99 2.50 3.103 (3) 119
C8—H8⋯Cl1 1.00 2.58 3.110 (2) 113
C16—H16B⋯Br1 0.99 2.91 3.323 (3) 106
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005)[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas,USA.]; cell refinement: CrystalClear[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas,USA.]; data reduction: CrystalClear[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas,USA.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005)[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas,USA.].

Supporting information


Comment top

Clopidogrel is an oral, thienopyridine class antiplatelet agent used to inhibit blood clots in coronary artery disease, peripheral vascular disease, and cerebrovascular disease (Muller et al., 2003; Aubert et al., 1985; Bipin et al., 2002; Bouisset & Radisson, 1991; Eric & Hiralal, 1989; Liu et al., 2008; Silva 2004; Savi et al., 1992; Savi et al., 1994; Sharis et al., 1998). The molecular structure of the title compound (Fig. 1), a derivative of clopidogrel, is reported here.

As shown in Fig. 1, there is a chiral carbon (C8) in the compound, and the benzene ring, the ester chain and the thienopyridine group are all linked to C8 and a molecular chiral center is formed. The thiophene ring of the thienopyridine group forms a plane and the C9–C14 benzen ring forms another plane. The dihedral angle formed between them is 65.46 (9)°. The packing molecules in crystal is consolidated by weak C—H···O, C—H···Cl and C—H···Br interactions.

Related literature top

The title compound is a derivative of the antiplatelet agent clopidogrel [systematic name (+)-(S)-methyl 2-(2-chlorophenyl)-2-(6,7-dihydrothieno[3,2-c]pyridin-5(4H)-yl)acetate]. For background to the bioactivity and applications of clopidogrel, see: Muller et al. (2003); Savi et al. (1994); Sharis et al. (1998). For the synthesis of other derivatives with thienopyridine, see: Aubert et al. (1985); Bouisset & Radisson (1991); Savi et al. (1992); Bipin et al. (2002); Eric & Hiralal (1989); Liu et al. (2008); Silva (2004).

Experimental top

The title compound was prepared according to the literature (Aubert et al., 1985). A mixture of α–bromo(2–chloro)phenyl acetic acid (5 g, 20 mmol), 3–bromo–1–propanol (20 g, 144 mmol) and p–toluenesulfonic acid (1.0 g, 5.8 mmol) in toluene (50 ml) was refluxed for 2 h. The reaction mixture was washed with saturated sodium bicarbonate (100 ml) and then with distilled water (50 ml), dried with sodium sulfate and evaporated, to give colourless oil (98% yield). The colourless oil obtained above, K2CO3 (36 mmol) and 4,5,6,7–tetrahydro thieno[3,2–c] pyridin (22 mmol) in toluene (50 ml) were stirred at room temperature for 3 h. After removing the insoluble solid by filtration, the filtrate was concentrated and separated by flash chromatography to provide the target compound (yield 87%). Colourless single crystals were grown from a solution of petroleum ether and ethyl acetate (1:1 v/v).

Refinement top

All the H atoms were positioned geometrically and refined as riding atoms, with C—H = 1.00Å for methine, 0.99Å for methylene and C—H = 0.95Å for the other groups with Uiso(H) = 1.2Ueq(C).

Structure description top

Clopidogrel is an oral, thienopyridine class antiplatelet agent used to inhibit blood clots in coronary artery disease, peripheral vascular disease, and cerebrovascular disease (Muller et al., 2003; Aubert et al., 1985; Bipin et al., 2002; Bouisset & Radisson, 1991; Eric & Hiralal, 1989; Liu et al., 2008; Silva 2004; Savi et al., 1992; Savi et al., 1994; Sharis et al., 1998). The molecular structure of the title compound (Fig. 1), a derivative of clopidogrel, is reported here.

As shown in Fig. 1, there is a chiral carbon (C8) in the compound, and the benzene ring, the ester chain and the thienopyridine group are all linked to C8 and a molecular chiral center is formed. The thiophene ring of the thienopyridine group forms a plane and the C9–C14 benzen ring forms another plane. The dihedral angle formed between them is 65.46 (9)°. The packing molecules in crystal is consolidated by weak C—H···O, C—H···Cl and C—H···Br interactions.

The title compound is a derivative of the antiplatelet agent clopidogrel [systematic name (+)-(S)-methyl 2-(2-chlorophenyl)-2-(6,7-dihydrothieno[3,2-c]pyridin-5(4H)-yl)acetate]. For background to the bioactivity and applications of clopidogrel, see: Muller et al. (2003); Savi et al. (1994); Sharis et al. (1998). For the synthesis of other derivatives with thienopyridine, see: Aubert et al. (1985); Bouisset & Radisson (1991); Savi et al. (1992); Bipin et al. (2002); Eric & Hiralal (1989); Liu et al. (2008); Silva (2004).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
3-Bromopropyl 2-(2-chlorophenyl)-2-(4,5,6,7- tetrahydrothieno[3,2-c]pyridin-5-yl)acetate top
Crystal data top
C18H19BrClNO2SF(000) = 872
Mr = 428.76Dx = 1.545 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ynCell parameters from 2390 reflections
a = 8.5707 (17) Åθ = 27.5–72.3°
b = 18.414 (4) ŵ = 5.52 mm1
c = 12.206 (2) ÅT = 113 K
β = 106.89 (3)°Prism, colourless
V = 1843.3 (7) Å30.22 × 0.18 × 0.14 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
3546 independent reflections
Radiation source: fine-focus sealed tube3220 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.055
Detector resolution: 14.63 pixels mm-1θmax = 72.5°, θmin = 4.5°
ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2222
Tmin = 0.377, Tmax = 0.512l = 1411
18506 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0543P)2 + 1.1251P]
where P = (Fo2 + 2Fc2)/3
3546 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
C18H19BrClNO2SV = 1843.3 (7) Å3
Mr = 428.76Z = 4
Monoclinic, P21/nCu Kα radiation
a = 8.5707 (17) ŵ = 5.52 mm1
b = 18.414 (4) ÅT = 113 K
c = 12.206 (2) Å0.22 × 0.18 × 0.14 mm
β = 106.89 (3)°
Data collection top
Rigaku Saturn
diffractometer
3546 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3220 reflections with I > 2σ(I)
Tmin = 0.377, Tmax = 0.512Rint = 0.055
18506 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.04Δρmax = 0.34 e Å3
3546 reflectionsΔρmin = 0.69 e Å3
217 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.70621 (4)0.800075 (19)0.63501 (3)0.04494 (13)
Cl10.63184 (7)0.55788 (3)0.47473 (5)0.02681 (15)
S10.70637 (7)0.51762 (3)0.19215 (5)0.02410 (14)
O10.7341 (2)0.75560 (8)0.22244 (14)0.0255 (3)
O20.57129 (19)0.72271 (8)0.32887 (14)0.0229 (3)
N10.7310 (2)0.60648 (9)0.15415 (15)0.0160 (3)
C10.5719 (3)0.58635 (13)0.2481 (2)0.0247 (5)
H10.53130.59650.32760.030*
C20.5302 (3)0.62460 (12)0.16565 (19)0.0215 (4)
H20.45660.66440.18070.026*
C30.6102 (2)0.59768 (11)0.05354 (18)0.0173 (4)
C40.7094 (3)0.54013 (11)0.05401 (18)0.0186 (4)
C50.8122 (3)0.50420 (12)0.05215 (19)0.0212 (4)
H5A0.92760.51880.06650.025*
H5B0.80520.45080.04300.025*
C60.7515 (3)0.52699 (11)0.15262 (18)0.0190 (4)
H6A0.64590.50300.14640.023*
H6B0.83060.51120.22520.023*
C70.5925 (3)0.62862 (11)0.05604 (18)0.0190 (4)
H7A0.58790.68230.05090.023*
H7B0.48920.61130.06790.023*
C80.6982 (2)0.62768 (11)0.26063 (17)0.0168 (4)
H80.59980.60120.26800.020*
C90.8421 (3)0.61285 (11)0.36541 (18)0.0181 (4)
C100.8233 (3)0.58555 (11)0.46718 (19)0.0205 (4)
C110.9545 (3)0.57802 (12)0.5653 (2)0.0263 (5)
H110.93840.55940.63380.032*
C121.1084 (3)0.59798 (13)0.5619 (2)0.0300 (5)
H121.19860.59400.62870.036*
C131.1313 (3)0.62372 (14)0.4615 (2)0.0310 (5)
H131.23780.63600.45890.037*
C140.9995 (3)0.63170 (12)0.3643 (2)0.0245 (5)
H141.01660.65030.29610.029*
C150.6710 (3)0.70946 (11)0.26505 (19)0.0185 (4)
C160.5484 (4)0.79869 (12)0.3521 (2)0.0314 (6)
H16A0.49780.82500.27980.038*
H16B0.65450.82170.39070.038*
C170.4393 (3)0.80103 (14)0.4279 (2)0.0340 (6)
H17A0.33160.78110.38490.041*
H17B0.42280.85250.44550.041*
C180.4994 (3)0.76028 (14)0.5389 (2)0.0302 (5)
H18A0.51450.70850.52270.036*
H18B0.41650.76310.58090.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02728 (18)0.0748 (3)0.03292 (19)0.01154 (13)0.00900 (13)0.00602 (13)
Cl10.0272 (3)0.0339 (3)0.0236 (3)0.0020 (2)0.0142 (2)0.0024 (2)
S10.0222 (3)0.0319 (3)0.0195 (3)0.0020 (2)0.0081 (2)0.0041 (2)
O10.0295 (9)0.0216 (7)0.0257 (8)0.0053 (6)0.0086 (7)0.0009 (6)
O20.0255 (8)0.0222 (7)0.0237 (8)0.0041 (6)0.0116 (7)0.0012 (6)
N10.0140 (8)0.0195 (8)0.0148 (9)0.0004 (6)0.0047 (7)0.0018 (6)
C10.0228 (11)0.0338 (12)0.0172 (11)0.0044 (9)0.0051 (9)0.0004 (9)
C20.0176 (11)0.0251 (10)0.0203 (11)0.0000 (8)0.0029 (8)0.0013 (8)
C30.0130 (10)0.0218 (10)0.0173 (10)0.0031 (8)0.0045 (8)0.0007 (8)
C40.0153 (10)0.0225 (10)0.0185 (10)0.0015 (8)0.0059 (8)0.0014 (8)
C50.0195 (11)0.0246 (10)0.0196 (11)0.0047 (8)0.0059 (9)0.0009 (8)
C60.0179 (10)0.0196 (10)0.0189 (11)0.0018 (8)0.0047 (8)0.0008 (8)
C70.0163 (10)0.0234 (10)0.0167 (10)0.0024 (8)0.0038 (8)0.0010 (8)
C80.0148 (10)0.0201 (10)0.0163 (10)0.0036 (7)0.0058 (8)0.0014 (8)
C90.0178 (10)0.0180 (9)0.0176 (11)0.0003 (8)0.0036 (8)0.0026 (7)
C100.0232 (11)0.0203 (10)0.0192 (11)0.0017 (8)0.0081 (9)0.0031 (8)
C110.0326 (13)0.0258 (11)0.0175 (11)0.0011 (9)0.0025 (9)0.0016 (8)
C120.0286 (13)0.0293 (12)0.0245 (12)0.0009 (10)0.0042 (10)0.0032 (9)
C130.0186 (12)0.0335 (12)0.0363 (14)0.0035 (9)0.0007 (10)0.0006 (10)
C140.0189 (11)0.0291 (11)0.0252 (12)0.0042 (9)0.0058 (9)0.0020 (9)
C150.0152 (10)0.0215 (10)0.0163 (10)0.0006 (8)0.0008 (8)0.0022 (8)
C160.0432 (16)0.0220 (11)0.0302 (14)0.0103 (10)0.0128 (12)0.0002 (9)
C170.0275 (13)0.0368 (13)0.0380 (15)0.0113 (10)0.0102 (11)0.0063 (11)
C180.0208 (12)0.0403 (13)0.0321 (13)0.0035 (10)0.0118 (10)0.0084 (10)
Geometric parameters (Å, º) top
Br1—C181.961 (3)C7—H7B0.9900
Cl1—C101.746 (2)C8—C91.522 (3)
S1—C11.714 (2)C8—C151.527 (3)
S1—C41.729 (2)C8—H81.0000
O1—C151.204 (3)C9—C101.392 (3)
O2—C151.335 (3)C9—C141.397 (3)
O2—C161.452 (3)C10—C111.391 (3)
N1—C81.461 (3)C11—C121.382 (4)
N1—C61.475 (3)C11—H110.9500
N1—C71.478 (3)C12—C131.380 (4)
C1—C21.358 (3)C12—H120.9500
C1—H10.9500C13—C141.388 (3)
C2—C31.429 (3)C13—H130.9500
C2—H20.9500C14—H140.9500
C3—C41.359 (3)C16—C171.495 (4)
C3—C71.502 (3)C16—H16A0.9900
C4—C51.494 (3)C16—H16B0.9900
C5—C61.524 (3)C17—C181.503 (4)
C5—H5A0.9900C17—H17A0.9900
C5—H5B0.9900C17—H17B0.9900
C6—H6A0.9900C18—H18A0.9900
C6—H6B0.9900C18—H18B0.9900
C7—H7A0.9900
C1—S1—C491.66 (11)C15—C8—H8109.6
C15—O2—C16115.84 (18)C10—C9—C14117.4 (2)
C8—N1—C6109.32 (16)C10—C9—C8122.62 (19)
C8—N1—C7109.27 (16)C14—C9—C8119.78 (19)
C6—N1—C7109.52 (16)C9—C10—C11122.0 (2)
C2—C1—S1112.29 (17)C9—C10—Cl1120.45 (17)
C2—C1—H1123.9C11—C10—Cl1117.54 (18)
S1—C1—H1123.9C12—C11—C10119.2 (2)
C1—C2—C3111.9 (2)C12—C11—H11120.4
C1—C2—H2124.1C10—C11—H11120.4
C3—C2—H2124.1C13—C12—C11120.1 (2)
C4—C3—C2113.13 (19)C13—C12—H12119.9
C4—C3—C7121.65 (19)C11—C12—H12119.9
C2—C3—C7125.21 (19)C12—C13—C14120.3 (2)
C3—C4—C5123.63 (19)C12—C13—H13119.8
C3—C4—S1111.03 (16)C14—C13—H13119.8
C5—C4—S1125.28 (16)C13—C14—C9120.9 (2)
C4—C5—C6108.83 (17)C13—C14—H14119.5
C4—C5—H5A109.9C9—C14—H14119.5
C6—C5—H5A109.9O1—C15—O2124.55 (19)
C4—C5—H5B109.9O1—C15—C8126.0 (2)
C6—C5—H5B109.9O2—C15—C8109.33 (17)
H5A—C5—H5B108.3O2—C16—C17107.0 (2)
N1—C6—C5110.68 (17)O2—C16—H16A110.3
N1—C6—H6A109.5C17—C16—H16A110.3
C5—C6—H6A109.5O2—C16—H16B110.3
N1—C6—H6B109.5C17—C16—H16B110.3
C5—C6—H6B109.5H16A—C16—H16B108.6
H6A—C6—H6B108.1C16—C17—C18115.6 (2)
N1—C7—C3110.59 (17)C16—C17—H17A108.4
N1—C7—H7A109.5C18—C17—H17A108.4
C3—C7—H7A109.5C16—C17—H17B108.4
N1—C7—H7B109.5C18—C17—H17B108.4
C3—C7—H7B109.5H17A—C17—H17B107.4
H7A—C7—H7B108.1C17—C18—Br1111.47 (18)
N1—C8—C9112.41 (17)C17—C18—H18A109.3
N1—C8—C15111.46 (17)Br1—C18—H18A109.3
C9—C8—C15104.01 (16)C17—C18—H18B109.3
N1—C8—H8109.6Br1—C18—H18B109.3
C9—C8—H8109.6H18A—C18—H18B108.0
C4—S1—C1—C20.33 (18)C15—C8—C9—C1099.5 (2)
S1—C1—C2—C30.3 (2)N1—C8—C9—C1445.0 (3)
C1—C2—C3—C40.1 (3)C15—C8—C9—C1475.8 (2)
C1—C2—C3—C7179.0 (2)C14—C9—C10—C111.0 (3)
C2—C3—C4—C5177.21 (19)C8—C9—C10—C11174.4 (2)
C7—C3—C4—C52.0 (3)C14—C9—C10—Cl1177.92 (16)
C2—C3—C4—S10.1 (2)C8—C9—C10—Cl16.7 (3)
C7—C3—C4—S1179.26 (15)C9—C10—C11—C120.2 (3)
C1—S1—C4—C30.24 (17)Cl1—C10—C11—C12178.70 (18)
C1—S1—C4—C5177.02 (19)C10—C11—C12—C131.2 (4)
C3—C4—C5—C616.2 (3)C11—C12—C13—C141.9 (4)
S1—C4—C5—C6166.92 (16)C12—C13—C14—C91.1 (4)
C8—N1—C6—C5171.04 (17)C10—C9—C14—C130.3 (3)
C7—N1—C6—C569.3 (2)C8—C9—C14—C13175.2 (2)
C4—C5—C6—N148.6 (2)C16—O2—C15—O13.8 (3)
C8—N1—C7—C3171.30 (16)C16—O2—C15—C8173.21 (19)
C6—N1—C7—C351.6 (2)N1—C8—C15—O132.0 (3)
C4—C3—C7—N119.3 (3)C9—C8—C15—O189.4 (3)
C2—C3—C7—N1159.78 (19)N1—C8—C15—O2151.02 (17)
C6—N1—C8—C965.3 (2)C9—C8—C15—O287.6 (2)
C7—N1—C8—C9174.82 (16)C15—O2—C16—C17177.7 (2)
C6—N1—C8—C15178.34 (17)O2—C16—C17—C1857.6 (3)
C7—N1—C8—C1558.5 (2)C16—C17—C18—Br161.8 (3)
N1—C8—C9—C10139.74 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.433.340 (3)161
C7—H7A···O10.992.503.103 (3)119
C8—H8···Cl11.002.583.110 (2)113
C16—H16B···Br10.992.913.323 (3)106
Symmetry code: (i) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H19BrClNO2S
Mr428.76
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)8.5707 (17), 18.414 (4), 12.206 (2)
β (°) 106.89 (3)
V3)1843.3 (7)
Z4
Radiation typeCu Kα
µ (mm1)5.52
Crystal size (mm)0.22 × 0.18 × 0.14
Data collection
DiffractometerRigaku Saturn
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.377, 0.512
No. of measured, independent and
observed [I > 2σ(I)] reflections
18506, 3546, 3220
Rint0.055
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.097, 1.04
No. of reflections3546
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.69

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.433.340 (3)161.1
C7—H7A···O10.992.503.103 (3)119.0
C8—H8···Cl11.002.583.110 (2)112.6
C16—H16B···Br10.992.913.323 (3)105.9
Symmetry code: (i) x1/2, y+3/2, z1/2.
 

Acknowledgements

The authors thank Mr Hai-Bin Song of Nankai University, for the X-ray crystallographic determination and for helpful suggestions.

References

First citationAubert, D., Ferrand, C. & Maffrand, J. P. (1985). US Patent 4 529 596.  Google Scholar
First citationBipin, P., Bhushan, L. V. & Bhushan, L. B. (2002). WO Patent 02/059128 A2.  Google Scholar
First citationBouisset, M. & Radisson, J. (1991). US Patent 5 036 156.  Google Scholar
First citationEric, L. & Hiralal, N. K. (1989). Eur. Patent 0 342 118 A1.  Google Scholar
First citationLiu, D. K., Liu, Y., Liu, M., Zhang, S. J., Cheng, D., Jin, L. Y., Xu, W. R. & Liu, C. X. (2008). CN Patent 101284838A.  Google Scholar
First citationMuller, I., Besta, F., Schulz, C., Li, Z., Massberg, S. & Gawaz, M. (2003). Circulation, 108, 2195–2197.  Web of Science CrossRef PubMed Google Scholar
First citationRigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas,USA.  Google Scholar
First citationSavi, P., Combalbert, J., Gaich, C., Rouchon, M. C., Maffrand, J. P., Berger, Y. & Herbert, J. M. (1994). Thromb. Haemost. 72, 313–317.  CAS PubMed Web of Science Google Scholar
First citationSavi, P., Herbert, J. M., Pflieger, A. M., Dol, F., Delebassee, D., Combalbert, J., Defreyn, G. & Maffrand, J. P. (1992). Biochem. Pharmacol. 44, 527–532.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSharis, P. J., Cannon, C. P. & Loscalzo, J. (1998). Ann. Intern. Med. 129, 394–405.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, R. A. (2004). WO Patent 2004/094374 A2.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds