metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[μ2-(1Z,NE)-2-(1,3-benzo­thia­zol-2-ylsulfan­yl)-N′-(2-oxido­benzyl­­idene-κ2O:O)acetohydrazidato-κ2O,N′](pyridine-κN)copper(II)]

aInstitute of General and Inorganic Chemistry, NAS Ukraine, Kyiv, Prosp. Palladina 32/34, 03680, Ukraine
*Correspondence e-mail: orysyk@ionc.kiev.ua

(Received 18 November 2010; accepted 29 November 2010; online 4 December 2010)

In the title compound, [Cu(C16H11N3O2S2)(C5H5N)]n, the CuII atom displays a square-pyramidal CuN2O3 coordination geometry with strong elongation in the vertex direction. The hydrazone mol­ecule is coordinated to the CuII atom in a tridentate manner in the enolic form, creating five- and six-membered chelate metallarings. The pyridine mol­ecule completes the square-planar base of the copper coordination environment. The crystal structure displays zigzag polymeric Cu—O—Cu chains along [001]. Several weak ππ inter­actions between benzothia­zole rings were found in the same direction [centroid–centroid distances = 3.7484 (16), 3.7483 (16), 3.6731 (17) and 3.7649 (17) Å].

Related literature

For general background to the biological activity of hydrazones and their metal complexes, see: Belkheiri et al. (2010[Belkheiri, N., Bouguerne, B., Bedos-Belval, F., Duran, H., Bernis, C., Salvayre, R., Nègre-Salvayre, A. & Baltas, M. (2010). Eur. J. Med. Chem. 45, 3019-3026.]); Pavan et al. (2010[Pavan, F. R., Maia, P. I. da S., Leite, S. R. A., Deflon, V. M., Batista, A. A., Sato, D. N., Franzblau, S. G. & Leite, C. Q. F. (2010). Eur. J. Med. Chem. 45, 1898-1905.]). For related structures, see: Luo et al. (2009[Luo, W., Meng, X.-G., Cheng, G.-Z. & Ji, Z.-P. (2009). Inorg. Chim. Acta, 362, 551-555.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C16H11N3O2S2)(C5H5N)]

  • Mr = 484.04

  • Orthorhombic, P c c n

  • a = 21.6256 (5) Å

  • b = 25.3751 (7) Å

  • c = 7.1230 (2) Å

  • V = 3908.76 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.36 mm−1

  • T = 173 K

  • 0.50 × 0.08 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.550, Tmax = 0.923

  • 18118 measured reflections

  • 4003 independent reflections

  • 2903 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.089

  • S = 1.02

  • 4003 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2010[Brandenburg, K. & Putz, H. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Structure investigation of hydrazones and their metal complexes attract an interest due to their antioxidant, antimycobacterium, antituberculosis activity and cytotoxicity (Belkheiri et al., 2010; Pavan et al., 2010). In the current paper we report the structure investigation of copper(II) one–dimensional coordination polymer obtained at room temperature.

The asymmetric unit of title compound contains one monomeric chain of the polymer. Copper atom displays square–pyramidal CuN2O3 coordination geometry, which is strongly elongated in vertex direction (Fig. 1). Hydrazone molecule is coordinated tridentantly in double deprotonated enolic form creating five– and six–membered chelate metalla rings. The square–planar base of copper coordination polyhedron is complemented by coordinated pyridine molecule. The values of Cu—O and Cu—N bond lengths corresponds to related structures (Luo et al., 2009). The geometry of coordination polyhedron is slightly distorted with adjacent angles in the range 80.71 (9)–99.22 (8)°. The Cu–Cu distance between two copper atoms in the polymeric chain is 3.5640 (5)Å. The valence angles O1–Cu1–O1i and Cu1–O1–Cu1ii have a same value of 99.22 (8)°. Symmetry codes: (i) 3/2-x, y, -1/2+z; (ii) 3/2-x, y, 1/2+z. The five–membered metalla ring Cu1/O2/C4/N2/N1 has a planar geometry with mean deviation from plane 0.0327Å. Contrariwise, the six–membered ring has an envelope conformation with dihedral angle 22.60 (15)° between Cu1/O1/N1 and O1/C1/C2/C3/N1 planes. The pyridine ring is nearly coplanar to square–planar base of copper coordination environment. The dihedral angle between planes Cu1/O1/O2/N1/N2 and N2/C17—C21 creates 11.02 (14)°. Crystal structure of title compound displays 1D zigzag chains (Cu–O–Cu) along [001] direction (Fig. 2). The adjacent polymeric chains in the crystal structure are connected by weak ππ stacking interactions between benzthiazol and phenyl rings: Cg1···Cg1iii = 3.7484 (16)Å, α = 3°; Cg1···Cg1iv = 3.7483 (16)Å, α = 3°; Cg1···Cg2iii = 3.6731 (17)Å, α = 2.18 (14)°; Cg1···Cg2iv = 3.7649 (17)Å, α = 2.18 (14)°; (Cg1 - centroid of the ring S2/N3/C6/C7/C8, Cg2 – centroid of the ring C7–C12, α - dihedral angle between rings. Symmetry codes: (iii) x, 1/2-y, -1/2+z; (iv) x, 1/2-y, 1/2+z.

Related literature top

For general background to the biological activity of hydrazones and their metal complexes, see: Belkheiri et al. (2010); Pavan et al. (2010). For related structures, see: Luo et al. (2009).

Experimental top

Mixture of 20 ml (10 -2 mol/L) aqueous solution of copper(II) acetate with 2 ml of pyridine was stirred with 20 ml (10 -2 mol/L) ethanolic solution of (E)-2-(benzo[d]thiazol-2-ylthio)-N'-(2-hydroxybenzylidene)acetohydrazide for 1 h. The resulted solution was leaved in dark place for evaporation. After 1 week of stating violet needle–like shape crystals were grown.

Refinement top

The positions of all H atoms were calculated regarding with hybridization of the parent atom and refined using riding model with d(C—H) = 0.99Å for CH2, d(C—H) = 0.95Å for CH with Uiso(H) = 1.2Ueq(C).

Structure description top

Structure investigation of hydrazones and their metal complexes attract an interest due to their antioxidant, antimycobacterium, antituberculosis activity and cytotoxicity (Belkheiri et al., 2010; Pavan et al., 2010). In the current paper we report the structure investigation of copper(II) one–dimensional coordination polymer obtained at room temperature.

The asymmetric unit of title compound contains one monomeric chain of the polymer. Copper atom displays square–pyramidal CuN2O3 coordination geometry, which is strongly elongated in vertex direction (Fig. 1). Hydrazone molecule is coordinated tridentantly in double deprotonated enolic form creating five– and six–membered chelate metalla rings. The square–planar base of copper coordination polyhedron is complemented by coordinated pyridine molecule. The values of Cu—O and Cu—N bond lengths corresponds to related structures (Luo et al., 2009). The geometry of coordination polyhedron is slightly distorted with adjacent angles in the range 80.71 (9)–99.22 (8)°. The Cu–Cu distance between two copper atoms in the polymeric chain is 3.5640 (5)Å. The valence angles O1–Cu1–O1i and Cu1–O1–Cu1ii have a same value of 99.22 (8)°. Symmetry codes: (i) 3/2-x, y, -1/2+z; (ii) 3/2-x, y, 1/2+z. The five–membered metalla ring Cu1/O2/C4/N2/N1 has a planar geometry with mean deviation from plane 0.0327Å. Contrariwise, the six–membered ring has an envelope conformation with dihedral angle 22.60 (15)° between Cu1/O1/N1 and O1/C1/C2/C3/N1 planes. The pyridine ring is nearly coplanar to square–planar base of copper coordination environment. The dihedral angle between planes Cu1/O1/O2/N1/N2 and N2/C17—C21 creates 11.02 (14)°. Crystal structure of title compound displays 1D zigzag chains (Cu–O–Cu) along [001] direction (Fig. 2). The adjacent polymeric chains in the crystal structure are connected by weak ππ stacking interactions between benzthiazol and phenyl rings: Cg1···Cg1iii = 3.7484 (16)Å, α = 3°; Cg1···Cg1iv = 3.7483 (16)Å, α = 3°; Cg1···Cg2iii = 3.6731 (17)Å, α = 2.18 (14)°; Cg1···Cg2iv = 3.7649 (17)Å, α = 2.18 (14)°; (Cg1 - centroid of the ring S2/N3/C6/C7/C8, Cg2 – centroid of the ring C7–C12, α - dihedral angle between rings. Symmetry codes: (iii) x, 1/2-y, -1/2+z; (iv) x, 1/2-y, 1/2+z.

For general background to the biological activity of hydrazones and their metal complexes, see: Belkheiri et al. (2010); Pavan et al. (2010). For related structures, see: Luo et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of title compound with the atom numbering scheme. Displacement ellipsoids are shown at 50% probability level. H atoms are presented as a small spheres of arbitrary radius. Atoms O1i and Cu1ii generated using symmetry operators: (i) 3/2-x, y, -1/2+z; (ii) 3/2-x, y, 1/2+z.
[Figure 2] Fig. 2. Crystal structure of title compound. View along a axis.
Poly[[µ2-(1Z,N'E)-2-(1,3-benzothiazol-2-ylsulfanyl)- N'-(2-oxidobenzylidene-κ2O:O)acetohydrazidato- κ2O,N'](pyridine-κN)copper(II)] top
Crystal data top
[Cu(C16H11N3O2S2)(C5H5N)]Dx = 1.645 Mg m3
Mr = 484.04Melting point: 553 K
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 2558 reflections
a = 21.6256 (5) Åθ = 2.5–25.0°
b = 25.3751 (7) ŵ = 1.36 mm1
c = 7.1230 (2) ÅT = 173 K
V = 3908.76 (18) Å3Needle, violet
Z = 80.50 × 0.08 × 0.06 mm
F(000) = 1976
Data collection top
Bruker APEXII CCD
diffractometer
4003 independent reflections
Radiation source: fine-focus sealed tube2903 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
φ and ω scansθmax = 26.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2724
Tmin = 0.550, Tmax = 0.923k = 2731
18118 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0326P)2 + 3.0387P]
where P = (Fo2 + 2Fc2)/3
4003 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Cu(C16H11N3O2S2)(C5H5N)]V = 3908.76 (18) Å3
Mr = 484.04Z = 8
Orthorhombic, PccnMo Kα radiation
a = 21.6256 (5) ŵ = 1.36 mm1
b = 25.3751 (7) ÅT = 173 K
c = 7.1230 (2) Å0.50 × 0.08 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
4003 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2903 reflections with I > 2σ(I)
Tmin = 0.550, Tmax = 0.923Rint = 0.055
18118 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.02Δρmax = 0.38 e Å3
4003 reflectionsΔρmin = 0.33 e Å3
271 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.753102 (15)0.037321 (13)0.25835 (5)0.02055 (11)
S10.60090 (3)0.11100 (3)0.02890 (11)0.02363 (19)
S20.53776 (3)0.21393 (3)0.09219 (12)0.02583 (19)
N10.66488 (10)0.03048 (9)0.2427 (3)0.0187 (5)
N20.64317 (10)0.01688 (9)0.1648 (4)0.0200 (5)
N30.65432 (11)0.20772 (9)0.0010 (4)0.0237 (6)
N40.84545 (10)0.04057 (9)0.2569 (3)0.0205 (5)
O10.74669 (8)0.09381 (8)0.4338 (3)0.0256 (5)
O20.74812 (8)0.02913 (7)0.1199 (3)0.0251 (5)
C10.69993 (13)0.12735 (11)0.4391 (4)0.0215 (7)
C20.64019 (12)0.11621 (11)0.3652 (4)0.0204 (6)
C30.62496 (13)0.06622 (11)0.2816 (4)0.0207 (7)
H30.58280.05930.25350.025*
C40.69083 (12)0.04394 (11)0.1080 (4)0.0194 (6)
C50.68084 (12)0.09696 (11)0.0213 (5)0.0246 (7)
H5A0.70480.09900.09690.030*
H5B0.69700.12430.10740.030*
C60.60595 (13)0.17951 (11)0.0371 (4)0.0213 (7)
C70.57858 (13)0.27236 (11)0.0661 (4)0.0222 (7)
C80.63975 (13)0.26134 (11)0.0164 (4)0.0225 (7)
C90.68083 (14)0.30265 (12)0.0145 (5)0.0282 (7)
H90.72260.29580.04830.034*
C100.65983 (14)0.35356 (12)0.0049 (5)0.0295 (7)
H100.68740.38210.01650.035*
C110.59887 (14)0.36401 (12)0.0552 (4)0.0270 (7)
H110.58570.39950.06800.032*
C120.55732 (13)0.32394 (12)0.0868 (4)0.0247 (7)
H120.51570.33110.12140.030*
C130.59384 (13)0.15471 (12)0.3780 (5)0.0291 (8)
H130.55410.14750.32720.035*
C140.60447 (15)0.20236 (13)0.4619 (5)0.0371 (9)
H140.57270.22820.46660.045*
C150.66156 (15)0.21258 (13)0.5395 (5)0.0382 (9)
H150.66880.24530.60020.046*
C160.70815 (14)0.17588 (12)0.5300 (5)0.0313 (8)
H160.74690.18360.58650.038*
C170.87917 (12)0.00032 (11)0.1905 (4)0.0221 (7)
H170.85840.02930.13840.027*
C180.94300 (13)0.00042 (12)0.1953 (5)0.0273 (7)
H180.96540.02870.14630.033*
C190.97394 (14)0.04243 (12)0.2708 (4)0.0294 (8)
H191.01780.04260.27880.035*
C200.93942 (13)0.08465 (12)0.3352 (5)0.0271 (7)
H200.95940.11490.38500.033*
C210.87554 (13)0.08248 (12)0.3266 (4)0.0239 (7)
H210.85220.11160.37150.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01372 (17)0.02016 (19)0.0278 (2)0.00024 (15)0.00072 (15)0.00473 (17)
S10.0198 (4)0.0180 (4)0.0331 (5)0.0017 (3)0.0009 (3)0.0003 (3)
S20.0218 (4)0.0219 (4)0.0337 (5)0.0014 (3)0.0039 (3)0.0008 (4)
N10.0177 (12)0.0178 (13)0.0207 (13)0.0016 (9)0.0006 (10)0.0018 (11)
N20.0203 (12)0.0161 (12)0.0235 (14)0.0037 (10)0.0000 (10)0.0000 (11)
N30.0259 (13)0.0174 (13)0.0277 (15)0.0019 (10)0.0008 (11)0.0019 (12)
N40.0175 (12)0.0225 (13)0.0214 (14)0.0007 (10)0.0025 (10)0.0027 (11)
O10.0198 (10)0.0220 (11)0.0349 (13)0.0019 (8)0.0029 (9)0.0093 (10)
O20.0160 (10)0.0221 (11)0.0372 (13)0.0000 (8)0.0009 (9)0.0070 (10)
C10.0224 (15)0.0187 (16)0.0234 (17)0.0005 (12)0.0056 (12)0.0024 (13)
C20.0185 (14)0.0203 (15)0.0224 (17)0.0019 (12)0.0039 (12)0.0012 (13)
C30.0157 (14)0.0227 (16)0.0236 (18)0.0006 (11)0.0002 (12)0.0032 (13)
C40.0208 (14)0.0191 (15)0.0183 (15)0.0019 (12)0.0000 (12)0.0038 (13)
C50.0169 (14)0.0205 (16)0.036 (2)0.0009 (11)0.0047 (13)0.0048 (14)
C60.0222 (15)0.0196 (16)0.0221 (17)0.0031 (12)0.0010 (12)0.0007 (13)
C70.0233 (15)0.0247 (16)0.0185 (16)0.0009 (12)0.0004 (12)0.0002 (14)
C80.0224 (15)0.0205 (17)0.0247 (17)0.0035 (11)0.0011 (13)0.0010 (13)
C90.0235 (15)0.0271 (17)0.034 (2)0.0004 (13)0.0044 (14)0.0029 (15)
C100.0317 (17)0.0223 (17)0.035 (2)0.0039 (13)0.0018 (14)0.0022 (15)
C110.0355 (17)0.0188 (16)0.0266 (18)0.0073 (13)0.0027 (14)0.0030 (14)
C120.0239 (15)0.0278 (17)0.0223 (17)0.0061 (12)0.0007 (13)0.0034 (15)
C130.0216 (15)0.0272 (18)0.039 (2)0.0052 (13)0.0017 (14)0.0050 (16)
C140.0324 (18)0.0233 (18)0.056 (3)0.0090 (14)0.0096 (16)0.0027 (17)
C150.0387 (19)0.0196 (17)0.056 (3)0.0029 (14)0.0136 (17)0.0086 (17)
C160.0268 (16)0.0256 (18)0.041 (2)0.0035 (13)0.0063 (15)0.0091 (16)
C170.0205 (14)0.0185 (15)0.0274 (17)0.0001 (12)0.0019 (12)0.0024 (13)
C180.0205 (15)0.0271 (18)0.0341 (19)0.0011 (13)0.0030 (13)0.0019 (15)
C190.0186 (15)0.040 (2)0.0300 (19)0.0041 (13)0.0023 (13)0.0022 (16)
C200.0246 (16)0.0266 (17)0.0302 (18)0.0081 (13)0.0035 (14)0.0011 (15)
C210.0245 (15)0.0236 (17)0.0236 (17)0.0014 (13)0.0012 (13)0.0005 (14)
Geometric parameters (Å, º) top
Cu1—O11.906 (2)C7—C121.395 (4)
Cu1—N11.919 (2)C7—C81.398 (4)
Cu1—O21.9566 (19)C8—C91.391 (4)
Cu1—N41.999 (2)C9—C101.376 (4)
Cu1—O1i2.720 (2)C9—H90.9500
S1—C61.743 (3)C10—C111.392 (4)
S1—C51.801 (3)C10—H100.9500
S2—C71.736 (3)C11—C121.375 (4)
S2—C61.758 (3)C11—H110.9500
N1—C31.282 (3)C12—H120.9500
N1—N21.405 (3)C13—C141.368 (4)
N2—C41.303 (3)C13—H130.9500
N3—C61.293 (4)C14—C151.377 (5)
N3—C81.401 (4)C14—H140.9500
N4—C171.341 (4)C15—C161.374 (4)
N4—C211.342 (4)C15—H150.9500
O1—C11.322 (3)C16—H160.9500
O2—C41.298 (3)C17—C181.381 (4)
C1—C161.403 (4)C17—H170.9500
C1—C21.423 (4)C18—C191.369 (4)
C2—C131.403 (4)C18—H180.9500
C2—C31.440 (4)C19—C201.384 (4)
C3—H30.9500C19—H190.9500
C4—C51.496 (4)C20—C211.384 (4)
C5—H5A0.9900C20—H200.9500
C5—H5B0.9900C21—H210.9500
O1—Cu1—N191.94 (9)C12—C7—S2128.5 (2)
O1—Cu1—O2167.00 (9)C8—C7—S2109.7 (2)
N1—Cu1—O280.68 (9)C9—C8—C7119.6 (3)
O1—Cu1—N492.59 (9)C9—C8—N3125.1 (3)
N1—Cu1—N4175.39 (10)C7—C8—N3115.3 (3)
O2—Cu1—N495.04 (9)C10—C9—C8118.7 (3)
O1—Cu1—O1i99.26 (8)C10—C9—H9120.6
N1—Cu1—O1i89.99 (8)C8—C9—H9120.6
O2—Cu1—O1i91.47 (8)C9—C10—C11121.1 (3)
N4—Cu1—O1i88.40 (8)C9—C10—H10119.4
C6—S1—C598.27 (13)C11—C10—H10119.4
C7—S2—C688.50 (14)C12—C11—C10121.3 (3)
C3—N1—N2117.7 (2)C12—C11—H11119.3
C3—N1—Cu1126.36 (19)C10—C11—H11119.3
N2—N1—Cu1115.64 (16)C11—C12—C7117.4 (3)
C4—N2—N1108.0 (2)C11—C12—H12121.3
C6—N3—C8109.9 (2)C7—C12—H12121.3
C17—N4—C21118.1 (2)C14—C13—C2121.6 (3)
C17—N4—Cu1120.92 (19)C14—C13—H13119.2
C21—N4—Cu1121.00 (19)C2—C13—H13119.2
C1—O1—Cu1123.95 (19)C13—C14—C15119.5 (3)
C4—O2—Cu1109.57 (17)C13—C14—H14120.3
O1—C1—C16118.8 (3)C15—C14—H14120.3
O1—C1—C2123.8 (3)C16—C15—C14120.7 (3)
C16—C1—C2117.4 (3)C16—C15—H15119.7
C13—C2—C1119.1 (3)C14—C15—H15119.7
C13—C2—C3118.5 (3)C15—C16—C1121.7 (3)
C1—C2—C3122.4 (2)C15—C16—H16119.2
N1—C3—C2123.9 (3)C1—C16—H16119.2
N1—C3—H3118.0N4—C17—C18122.2 (3)
C2—C3—H3118.0N4—C17—H17118.9
O2—C4—N2125.6 (3)C18—C17—H17118.9
O2—C4—C5115.2 (2)C19—C18—C17120.0 (3)
N2—C4—C5119.2 (2)C19—C18—H18120.0
C4—C5—S1113.48 (19)C17—C18—H18120.0
C4—C5—H5A108.9C18—C19—C20118.0 (3)
S1—C5—H5A108.9C18—C19—H19121.0
C4—C5—H5B108.9C20—C19—H19121.0
S1—C5—H5B108.9C21—C20—C19119.5 (3)
H5A—C5—H5B107.7C21—C20—H20120.2
N3—C6—S1126.6 (2)C19—C20—H20120.2
N3—C6—S2116.6 (2)N4—C21—C20122.1 (3)
S1—C6—S2116.77 (16)N4—C21—H21118.9
C12—C7—C8121.8 (3)C20—C21—H21118.9
O1—Cu1—N1—C322.8 (3)C6—S1—C5—C4158.5 (2)
O2—Cu1—N1—C3168.0 (3)C8—N3—C6—S1178.0 (2)
O1i—Cu1—N1—C376.5 (2)C8—N3—C6—S20.3 (3)
O1—Cu1—N1—N2163.35 (19)C5—S1—C6—N34.6 (3)
O2—Cu1—N1—N25.89 (19)C5—S1—C6—S2177.81 (18)
O1i—Cu1—N1—N297.38 (19)C7—S2—C6—N30.6 (3)
C3—N1—N2—C4169.8 (3)C7—S2—C6—S1178.43 (19)
Cu1—N1—N2—C44.6 (3)C6—S2—C7—C12180.0 (3)
O1—Cu1—N4—C17163.1 (2)C6—S2—C7—C80.6 (2)
O2—Cu1—N4—C176.4 (2)C12—C7—C8—C90.3 (5)
O1i—Cu1—N4—C1797.7 (2)S2—C7—C8—C9179.1 (2)
O1—Cu1—N4—C2115.2 (2)C12—C7—C8—N3180.0 (3)
O2—Cu1—N4—C21175.4 (2)S2—C7—C8—N30.6 (3)
O1i—Cu1—N4—C2184.0 (2)C6—N3—C8—C9179.5 (3)
N1—Cu1—O1—C129.8 (2)C6—N3—C8—C70.2 (4)
O2—Cu1—O1—C184.8 (4)C7—C8—C9—C100.0 (5)
N4—Cu1—O1—C1149.3 (2)N3—C8—C9—C10179.6 (3)
O1i—Cu1—O1—C160.5 (2)C8—C9—C10—C110.3 (5)
O1—Cu1—O2—C450.3 (5)C9—C10—C11—C120.2 (5)
N1—Cu1—O2—C45.74 (19)C10—C11—C12—C70.1 (5)
N4—Cu1—O2—C4175.98 (19)C8—C7—C12—C110.4 (5)
O1i—Cu1—O2—C495.49 (19)S2—C7—C12—C11178.9 (2)
Cu1—O1—C1—C16160.3 (2)C1—C2—C13—C140.9 (5)
Cu1—O1—C1—C222.8 (4)C3—C2—C13—C14177.6 (3)
O1—C1—C2—C13179.9 (3)C2—C13—C14—C151.4 (5)
C16—C1—C2—C133.2 (4)C13—C14—C15—C161.3 (6)
O1—C1—C2—C31.7 (5)C14—C15—C16—C11.1 (5)
C16—C1—C2—C3175.3 (3)O1—C1—C16—C15179.6 (3)
N2—N1—C3—C2178.7 (3)C2—C1—C16—C153.3 (5)
Cu1—N1—C3—C27.5 (4)C21—N4—C17—C181.3 (4)
C13—C2—C3—N1171.6 (3)Cu1—N4—C17—C18177.0 (2)
C1—C2—C3—N110.0 (5)N4—C17—C18—C190.4 (5)
Cu1—O2—C4—N25.4 (4)C17—C18—C19—C202.0 (5)
Cu1—O2—C4—C5174.4 (2)C18—C19—C20—C211.9 (5)
N1—N2—C4—O20.7 (4)C17—N4—C21—C201.4 (4)
N1—N2—C4—C5179.1 (3)Cu1—N4—C21—C20176.9 (2)
O2—C4—C5—S1170.0 (2)C19—C20—C21—N40.2 (5)
N2—C4—C5—S110.2 (4)
Symmetry code: (i) x+3/2, y, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C16H11N3O2S2)(C5H5N)]
Mr484.04
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)173
a, b, c (Å)21.6256 (5), 25.3751 (7), 7.1230 (2)
V3)3908.76 (18)
Z8
Radiation typeMo Kα
µ (mm1)1.36
Crystal size (mm)0.50 × 0.08 × 0.06
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.550, 0.923
No. of measured, independent and
observed [I > 2σ(I)] reflections
18118, 4003, 2903
Rint0.055
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.089, 1.02
No. of reflections4003
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.33

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2010), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the Ukrainian National Academy of Sciences for support of this study (project No 20–10).

References

First citationBelkheiri, N., Bouguerne, B., Bedos-Belval, F., Duran, H., Bernis, C., Salvayre, R., Nègre–Salvayre, A. & Baltas, M. (2010). Eur. J. Med. Chem. 45, 3019–3026.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLuo, W., Meng, X.-G., Cheng, G.-Z. & Ji, Z.-P. (2009). Inorg. Chim. Acta, 362, 551–555.  Web of Science CSD CrossRef CAS Google Scholar
First citationPavan, F. R., Maia, P. I. da S., Leite, S. R. A., Deflon, V. M., Batista, A. A., Sato, D. N., Franzblau, S. G. & Leite, C. Q. F. (2010). Eur. J. Med. Chem. 45, 1898–1905.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds