metal-organic compounds
Chlorido[1-(4,5-dihydro-1,3-thiazol-2-yl-κN)ethanone thiosemicarbazonato-κ2N1,S]nickel(II)
aDepartamento de Quimica Organica e Inorganica, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
*Correspondence e-mail: emilvin@unex.es
In the title compound, [Ni(C6H9N4S2)Cl], the Ni atom is in a slightly distorted square-planar environment coordinated by a Cl atom and a deprotonated thiosemicarbazone ligand via its thiazoline N, azomethine N and thiolate S atoms. Short intermolecular N—H⋯Cl and C—H⋯S contacts are present in the crystal structure.
Related literature
For the structure of the organic ligand and several metal complexes, see: Viñuelas-Zahínos et al. (2011). For the structures of closely related nickel complexes, see: Liu et al. (1999); Philip et al. (2004); Swearingen et al. (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536810051500/rk2251sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810051500/rk2251Isup2.hkl
1-(4,5-dihydro-1,3-thiazol-2-yl)ethanone thiosemicarbazone (HATtsc) was synthesized as according to a literature procedure (Viñuelas-Zahínos et al., 2010). A solution containing NiCl2.6H2O (58.5 mg, 0.25 mmol) in 1 ml ethanol:acetonitrile (2:1) was added to a solution (40 ml) of HATtsc (50.0 mg, 0.25 mmol) in ethanol:acetonitrile (2:1). The brown product was recrystallized from ethanol:methanol (1:1) to give brown crystals.
All hydrogen atoms attached to carbon and nitrogen atoms were positioned geometrically and refined as riding, with C—H = 0.96–0.97Å, N—H = 0.86Å and Uiso(H) = 1.2(1.5 for methyl group) Ueq(C,N).
The preceding study reports the metal complexes of 1–(4,5–dihydro–1,3–thiazol–2–yl)ethanone thiosemicarbazone (HATtsc) (Viñuelas–Zahínos et al., 2011). It should be pointed out that in nickel complex the organic ligand is deprotonated and shifts from the thione to the thiolate form, in such a way that the negative charge is delocalized between the two bonds S2—C6 and N3—C6, as it is observed in other nickel complexes with thiosemicarbazone ligands (Liu et al., 1999; Philip et al., 2004; Swearingen et al., 2002). Another difference in complex with respect to the structure of the free ligand HATtsc is the degree of rotation around the C1—C4 and C6—N3 bonds, which permits coordination through N1 and S2. In
there are the following short intermolecular contacts: N4—H4A···Cl, N4—H4B···Cl and C3—H3B···S1.For the structure of the organic ligand and several metal complexes, see: Viñuelas-Zahínos et al. (2011). For the structures of closely related nickel complexes, see: Liu et al. (1999); Philip et al. (2004); Swearingen et al. (2002).
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).[Ni(C6H9N4S2)Cl] | F(000) = 600 |
Mr = 295.45 | Dx = 1.857 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 912 reflections |
a = 9.656 (2) Å | θ = 2.3–26.3° |
b = 10.617 (2) Å | µ = 2.45 mm−1 |
c = 11.187 (3) Å | T = 298 K |
β = 112.874 (4)° | Prism, brown |
V = 1056.7 (4) Å3 | 0.22 × 0.15 × 0.08 mm |
Z = 4 |
Bruker SMART 1000 CCD diffractometer | 2554 independent reflections |
Radiation source: fine–focus sealed tube | 1758 reflections with 2σ(I) |
Graphite monochromator | Rint = 0.030 |
ω scans | θmax = 28.3°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −12→11 |
Tmin = 0.615, Tmax = 0.828 | k = 0→14 |
2554 measured reflections | l = 0→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.076 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0327P)2] where P = (Fo2 + 2Fc2)/3 |
2554 reflections | (Δ/σ)max = 0.001 |
128 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
[Ni(C6H9N4S2)Cl] | V = 1056.7 (4) Å3 |
Mr = 295.45 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.656 (2) Å | µ = 2.45 mm−1 |
b = 10.617 (2) Å | T = 298 K |
c = 11.187 (3) Å | 0.22 × 0.15 × 0.08 mm |
β = 112.874 (4)° |
Bruker SMART 1000 CCD diffractometer | 2554 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 1758 reflections with 2σ(I) |
Tmin = 0.615, Tmax = 0.828 | Rint = 0.030 |
2554 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.076 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.33 e Å−3 |
2554 reflections | Δρmin = −0.34 e Å−3 |
128 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3581 (3) | 0.6235 (2) | 0.0701 (2) | 0.0334 (6) | |
C2 | 0.3833 (3) | 0.4480 (2) | 0.1999 (3) | 0.0426 (7) | |
H2A | 0.4210 | 0.4551 | 0.2936 | 0.051* | |
H2B | 0.4086 | 0.3650 | 0.1783 | 0.051* | |
C3 | 0.2123 (3) | 0.4657 (3) | 0.1417 (3) | 0.0504 (8) | |
H3A | 0.1753 | 0.4759 | 0.2103 | 0.06* | |
H3B | 0.1639 | 0.3926 | 0.0905 | 0.06* | |
C4 | 0.4210 (3) | 0.7245 (2) | 0.0176 (2) | 0.0340 (6) | |
C5 | 0.3317 (3) | 0.8206 (3) | −0.0777 (3) | 0.0460 (7) | |
H5A | 0.3662 | 0.9032 | −0.0445 | 0.069* | |
H5B | 0.2275 | 0.8121 | −0.0919 | 0.069* | |
H5C | 0.3438 | 0.8085 | −0.1581 | 0.069* | |
C6 | 0.7922 (3) | 0.7897 (2) | 0.0918 (3) | 0.0385 (6) | |
Cl | 0.75176 (8) | 0.43164 (6) | 0.31254 (7) | 0.0474 (2) | |
N1 | 0.4522 (2) | 0.5445 (2) | 0.1476 (2) | 0.0361 (5) | |
N2 | 0.5671 (2) | 0.71858 (19) | 0.0663 (2) | 0.0333 (5) | |
N3 | 0.6450 (2) | 0.8074 (2) | 0.0291 (2) | 0.0399 (6) | |
N4 | 0.8837 (3) | 0.8692 (2) | 0.0669 (2) | 0.0552 (7) | |
H4A | 0.8472 | 0.9292 | 0.0121 | 0.066* | |
H4B | 0.9795 | 0.8606 | 0.1057 | 0.066* | |
Ni | 0.65556 (4) | 0.58829 (3) | 0.18229 (3) | 0.03380 (12) | |
S1 | 0.17043 (8) | 0.60537 (7) | 0.03983 (8) | 0.0493 (2) | |
S2 | 0.86881 (8) | 0.66908 (7) | 0.20402 (7) | 0.0465 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0295 (14) | 0.0359 (14) | 0.0342 (15) | −0.0026 (11) | 0.0119 (12) | −0.0042 (12) |
C2 | 0.0445 (17) | 0.0365 (15) | 0.0506 (19) | −0.0033 (13) | 0.0225 (15) | 0.0017 (13) |
C3 | 0.0422 (17) | 0.0473 (17) | 0.061 (2) | −0.0105 (14) | 0.0187 (16) | 0.0021 (15) |
C4 | 0.0331 (15) | 0.0317 (14) | 0.0340 (15) | 0.0010 (11) | 0.0094 (12) | −0.0004 (11) |
C5 | 0.0394 (16) | 0.0458 (17) | 0.0475 (18) | 0.0044 (13) | 0.0112 (14) | 0.0105 (14) |
C6 | 0.0358 (15) | 0.0396 (15) | 0.0441 (17) | −0.0061 (12) | 0.0199 (13) | −0.0028 (13) |
Cl | 0.0398 (4) | 0.0440 (4) | 0.0541 (5) | 0.0087 (3) | 0.0137 (3) | 0.0101 (3) |
N1 | 0.0314 (12) | 0.0359 (12) | 0.0403 (13) | −0.0027 (10) | 0.0131 (10) | 0.0025 (10) |
N2 | 0.0303 (12) | 0.0333 (12) | 0.0369 (13) | −0.0006 (9) | 0.0137 (10) | 0.0004 (10) |
N3 | 0.0393 (13) | 0.0383 (13) | 0.0458 (14) | −0.0047 (10) | 0.0206 (12) | 0.0030 (11) |
N4 | 0.0351 (14) | 0.0576 (16) | 0.0727 (19) | −0.0084 (12) | 0.0207 (13) | 0.0112 (14) |
Ni | 0.02818 (19) | 0.03349 (19) | 0.0382 (2) | 0.00139 (15) | 0.01121 (15) | 0.00176 (15) |
S1 | 0.0281 (4) | 0.0485 (5) | 0.0661 (5) | −0.0031 (3) | 0.0126 (4) | 0.0033 (4) |
S2 | 0.0293 (4) | 0.0486 (4) | 0.0578 (5) | −0.0008 (3) | 0.0128 (3) | 0.0060 (4) |
C1—N1 | 1.292 (3) | C5—H5B | 0.96 |
C1—C4 | 1.463 (3) | C5—H5C | 0.96 |
C1—S1 | 1.720 (3) | C6—N4 | 1.327 (3) |
C2—N1 | 1.462 (3) | C6—N3 | 1.332 (3) |
C2—C3 | 1.533 (4) | C6—S2 | 1.743 (3) |
C2—H2A | 0.97 | Cl—Ni | 2.1679 (8) |
C2—H2B | 0.97 | N1—Ni | 1.905 (2) |
C3—S1 | 1.817 (3) | N2—N3 | 1.367 (3) |
C3—H3A | 0.97 | N2—Ni | 1.861 (2) |
C3—H3B | 0.97 | N4—H4A | 0.86 |
C4—N2 | 1.302 (3) | N4—H4B | 0.86 |
C4—C5 | 1.485 (3) | Ni—S2 | 2.1554 (9) |
C5—H5A | 0.96 | ||
N1—C1—C4 | 116.9 (2) | H5B—C5—H5C | 109.5 |
N1—C1—S1 | 118.2 (2) | N4—C6—N3 | 117.4 (3) |
C4—C1—S1 | 124.9 (2) | N4—C6—S2 | 119.2 (2) |
N1—C2—C3 | 109.1 (2) | N3—C6—S2 | 123.4 (2) |
N1—C2—H2A | 109.9 | C1—N1—C2 | 114.4 (2) |
C3—C2—H2A | 109.9 | C1—N1—Ni | 112.27 (18) |
N1—C2—H2B | 109.9 | C2—N1—Ni | 133.07 (18) |
C3—C2—H2B | 109.9 | C4—N2—N3 | 118.3 (2) |
H2A—C2—H2B | 108.3 | C4—N2—Ni | 117.17 (18) |
C2—C3—S1 | 107.85 (19) | N3—N2—Ni | 124.56 (16) |
C2—C3—H3A | 110.1 | C6—N3—N2 | 110.0 (2) |
S1—C3—H3A | 110.1 | C6—N4—H4A | 120 |
C2—C3—H3B | 110.1 | C6—N4—H4B | 120 |
S1—C3—H3B | 110.1 | H4A—N4—H4B | 120 |
H3A—C3—H3B | 108.4 | N2—Ni—N1 | 83.24 (9) |
N2—C4—C1 | 110.4 (2) | N2—Ni—S2 | 86.68 (7) |
N2—C4—C5 | 124.5 (2) | N1—Ni—S2 | 169.68 (7) |
C1—C4—C5 | 125.2 (2) | N2—Ni—Cl | 177.76 (7) |
C4—C5—H5A | 109.5 | N1—Ni—Cl | 95.06 (7) |
C4—C5—H5B | 109.5 | S2—Ni—Cl | 95.08 (3) |
H5A—C5—H5B | 109.5 | C1—S1—C3 | 90.43 (13) |
C4—C5—H5C | 109.5 | C6—S2—Ni | 95.27 (9) |
H5A—C5—H5C | 109.5 | ||
N1—C2—C3—S1 | −3.3 (3) | C4—N2—Ni—N1 | 0.65 (19) |
N1—C1—C4—N2 | −3.2 (3) | N3—N2—Ni—N1 | −179.2 (2) |
S1—C1—C4—N2 | 174.88 (19) | C4—N2—Ni—S2 | −177.17 (19) |
N1—C1—C4—C5 | 176.9 (2) | N3—N2—Ni—S2 | 3.02 (19) |
S1—C1—C4—C5 | −5.1 (4) | C1—N1—Ni—N2 | −2.43 (19) |
C4—C1—N1—C2 | 178.3 (2) | C2—N1—Ni—N2 | −175.7 (3) |
S1—C1—N1—C2 | 0.1 (3) | C1—N1—Ni—S2 | 9.8 (5) |
C4—C1—N1—Ni | 3.7 (3) | C2—N1—Ni—S2 | −163.5 (3) |
S1—C1—N1—Ni | −174.50 (12) | C1—N1—Ni—Cl | 179.02 (18) |
C3—C2—N1—C1 | 2.2 (3) | C2—N1—Ni—Cl | 5.7 (2) |
C3—C2—N1—Ni | 175.34 (19) | N1—C1—S1—C3 | −1.9 (2) |
C1—C4—N2—N3 | −179.1 (2) | C4—C1—S1—C3 | −179.9 (2) |
C5—C4—N2—N3 | 0.8 (4) | C2—C3—S1—C1 | 2.9 (2) |
C1—C4—N2—Ni | 1.1 (3) | N4—C6—S2—Ni | −178.7 (2) |
C5—C4—N2—Ni | −179.0 (2) | N3—C6—S2—Ni | 1.6 (2) |
N4—C6—N3—N2 | −179.5 (2) | N2—Ni—S2—C6 | −2.03 (11) |
S2—C6—N3—N2 | 0.1 (3) | N1—Ni—S2—C6 | −14.2 (4) |
C4—N2—N3—C6 | 177.7 (2) | Cl—Ni—S2—C6 | 176.58 (9) |
Ni—N2—N3—C6 | −2.5 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4B···Cli | 0.86 | 2.51 | 3.310 (3) | 155 |
N4—H4A···Clii | 0.86 | 2.53 | 3.373 (3) | 166 |
C3—H3B···S1iii | 0.97 | 2.98 | 3.537 (3) | 118 |
Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) x, −y+3/2, z−1/2; (iii) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C6H9N4S2)Cl] |
Mr | 295.45 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 9.656 (2), 10.617 (2), 11.187 (3) |
β (°) | 112.874 (4) |
V (Å3) | 1056.7 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.45 |
Crystal size (mm) | 0.22 × 0.15 × 0.08 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.615, 0.828 |
No. of measured, independent and observed [2σ(I)] reflections | 2554, 2554, 1758 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.076, 1.05 |
No. of reflections | 2554 |
No. of parameters | 128 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.33, −0.34 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4B···Cli | 0.86 | 2.51 | 3.310 (3) | 155.4 |
N4—H4A···Clii | 0.86 | 2.53 | 3.373 (3) | 165.8 |
C3—H3B···S1iii | 0.97 | 2.98 | 3.537 (3) | 117.6 |
Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) x, −y+3/2, z−1/2; (iii) −x, −y+1, −z. |
Acknowledgements
The authors would like to thank the Junta de Extremadura (III PRI+D+I) and the FEDER (project PRI08A022) for support.
References
Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Liu, Z.-H., Liu, Y.-J., Duan, C.-Y. & You, X.-Z. (1999). Acta Cryst. C55, 1804–1806. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Philip, V., Suni, V., Kurup, M. R. P. & Nethaji, M. (2004). Polyhedron, 23, 1225–1233. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Swearingen, J. K., Kaminsky, W. & West, D. X. (2002). Transition Met. Chem. 27, 724–731. Web of Science CSD CrossRef CAS Google Scholar
Viñuelas-Zahínos, E., Luna–Giles, F., Torres–Garcia, P. & Fernández–Calderón, M. C. (2011). Eur. J. Med. Chem. doi:10.1016/j.ejmech.2010.10.030. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The preceding study reports the metal complexes of 1–(4,5–dihydro–1,3–thiazol–2–yl)ethanone thiosemicarbazone (HATtsc) (Viñuelas–Zahínos et al., 2011). It should be pointed out that in nickel complex the organic ligand is deprotonated and shifts from the thione to the thiolate form, in such a way that the negative charge is delocalized between the two bonds S2—C6 and N3—C6, as it is observed in other nickel complexes with thiosemicarbazone ligands (Liu et al., 1999; Philip et al., 2004; Swearingen et al., 2002). Another difference in complex with respect to the structure of the free ligand HATtsc is the degree of rotation around the C1—C4 and C6—N3 bonds, which permits coordination through N1 and S2. In crystal structure there are the following short intermolecular contacts: N4—H4A···Cl, N4—H4B···Cl and C3—H3B···S1.