metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido[1-(4,5-di­hydro-1,3-thia­zol-2-yl-κN)ethanone thio­semicarbazonato-κ2N1,S]nickel(II)

aDepartamento de Quimica Organica e Inorganica, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
*Correspondence e-mail: emilvin@unex.es

(Received 22 November 2010; accepted 8 December 2010; online 15 December 2010)

In the title compound, [Ni(C6H9N4S2)Cl], the Ni atom is in a slightly distorted square-planar environment coordinated by a Cl atom and a deprotonated thio­semicarbazone ligand via its thia­zoline N, azomethine N and thiol­ate S atoms. Short inter­molecular N—H⋯Cl and C—H⋯S contacts are present in the crystal structure.

Related literature

For the structure of the organic ligand and several metal complexes, see: Viñuelas-Zahínos et al. (2011)[Viñuelas-Zahínos, E., Luna-Giles, F., Torres-Garcia, P. & Fernández-Calderón, M. C. (2011). Eur. J. Med. Chem. doi:10.1016/j.ejmech.2010.10.030. ]. For the structures of closely related nickel complexes, see: Liu et al. (1999[Liu, Z.-H., Liu, Y.-J., Duan, C.-Y. & You, X.-Z. (1999). Acta Cryst. C55, 1804-1806.]); Philip et al. (2004[Philip, V., Suni, V., Kurup, M. R. P. & Nethaji, M. (2004). Polyhedron, 23, 1225-1233.]); Swearingen et al. (2002[Swearingen, J. K., Kaminsky, W. & West, D. X. (2002). Transition Met. Chem. 27, 724-731.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C6H9N4S2)Cl]

  • Mr = 295.45

  • Monoclinic, P 21 /c

  • a = 9.656 (2) Å

  • b = 10.617 (2) Å

  • c = 11.187 (3) Å

  • β = 112.874 (4)°

  • V = 1056.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.45 mm−1

  • T = 298 K

  • 0.22 × 0.15 × 0.08 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.615, Tmax = 0.828

  • 2554 measured reflections

  • 2554 independent reflections

  • 1758 reflections with 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.076

  • S = 1.05

  • 2554 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯Cli 0.86 2.51 3.310 (3) 155
N4—H4A⋯Clii 0.86 2.53 3.373 (3) 166
C3—H3B⋯S1iii 0.97 2.98 3.537 (3) 118
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y+1, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The preceding study reports the metal complexes of 1–(4,5–dihydro–1,3–thiazol–2–yl)ethanone thiosemicarbazone (HATtsc) (Viñuelas–Zahínos et al., 2011). It should be pointed out that in nickel complex the organic ligand is deprotonated and shifts from the thione to the thiolate form, in such a way that the negative charge is delocalized between the two bonds S2—C6 and N3—C6, as it is observed in other nickel complexes with thiosemicarbazone ligands (Liu et al., 1999; Philip et al., 2004; Swearingen et al., 2002). Another difference in complex with respect to the structure of the free ligand HATtsc is the degree of rotation around the C1—C4 and C6—N3 bonds, which permits coordination through N1 and S2. In crystal structure there are the following short intermolecular contacts: N4—H4A···Cl, N4—H4B···Cl and C3—H3B···S1.

Related literature top

For the structure of the organic ligand and several metal complexes, see: Viñuelas-Zahínos et al. (2011). For the structures of closely related nickel complexes, see: Liu et al. (1999); Philip et al. (2004); Swearingen et al. (2002).

Experimental top

1-(4,5-dihydro-1,3-thiazol-2-yl)ethanone thiosemicarbazone (HATtsc) was synthesized as according to a literature procedure (Viñuelas-Zahínos et al., 2010). A solution containing NiCl2.6H2O (58.5 mg, 0.25 mmol) in 1 ml ethanol:acetonitrile (2:1) was added to a solution (40 ml) of HATtsc (50.0 mg, 0.25 mmol) in ethanol:acetonitrile (2:1). The brown product was recrystallized from ethanol:methanol (1:1) to give brown crystals.

Refinement top

All hydrogen atoms attached to carbon and nitrogen atoms were positioned geometrically and refined as riding, with C—H = 0.96–0.97Å, N—H = 0.86Å and Uiso(H) = 1.2(1.5 for methyl group) Ueq(C,N).

Structure description top

The preceding study reports the metal complexes of 1–(4,5–dihydro–1,3–thiazol–2–yl)ethanone thiosemicarbazone (HATtsc) (Viñuelas–Zahínos et al., 2011). It should be pointed out that in nickel complex the organic ligand is deprotonated and shifts from the thione to the thiolate form, in such a way that the negative charge is delocalized between the two bonds S2—C6 and N3—C6, as it is observed in other nickel complexes with thiosemicarbazone ligands (Liu et al., 1999; Philip et al., 2004; Swearingen et al., 2002). Another difference in complex with respect to the structure of the free ligand HATtsc is the degree of rotation around the C1—C4 and C6—N3 bonds, which permits coordination through N1 and S2. In crystal structure there are the following short intermolecular contacts: N4—H4A···Cl, N4—H4B···Cl and C3—H3B···S1.

For the structure of the organic ligand and several metal complexes, see: Viñuelas-Zahínos et al. (2011). For the structures of closely related nickel complexes, see: Liu et al. (1999); Philip et al. (2004); Swearingen et al. (2002).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of molecular structure of title compound, showing the atom–numbering scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
Chlorido[1-(4,5-dihydro-1,3-thiazol-2-yl-κN)ethanone thiosemicarbazonato-κ2N1,S]nickel(II) top
Crystal data top
[Ni(C6H9N4S2)Cl]F(000) = 600
Mr = 295.45Dx = 1.857 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 912 reflections
a = 9.656 (2) Åθ = 2.3–26.3°
b = 10.617 (2) ŵ = 2.45 mm1
c = 11.187 (3) ÅT = 298 K
β = 112.874 (4)°Prism, brown
V = 1056.7 (4) Å30.22 × 0.15 × 0.08 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
2554 independent reflections
Radiation source: fine–focus sealed tube1758 reflections with 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1211
Tmin = 0.615, Tmax = 0.828k = 014
2554 measured reflectionsl = 014
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0327P)2]
where P = (Fo2 + 2Fc2)/3
2554 reflections(Δ/σ)max = 0.001
128 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Ni(C6H9N4S2)Cl]V = 1056.7 (4) Å3
Mr = 295.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.656 (2) ŵ = 2.45 mm1
b = 10.617 (2) ÅT = 298 K
c = 11.187 (3) Å0.22 × 0.15 × 0.08 mm
β = 112.874 (4)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2554 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1758 reflections with 2σ(I)
Tmin = 0.615, Tmax = 0.828Rint = 0.030
2554 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.05Δρmax = 0.33 e Å3
2554 reflectionsΔρmin = 0.34 e Å3
128 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3581 (3)0.6235 (2)0.0701 (2)0.0334 (6)
C20.3833 (3)0.4480 (2)0.1999 (3)0.0426 (7)
H2A0.42100.45510.29360.051*
H2B0.40860.36500.17830.051*
C30.2123 (3)0.4657 (3)0.1417 (3)0.0504 (8)
H3A0.17530.47590.21030.06*
H3B0.16390.39260.09050.06*
C40.4210 (3)0.7245 (2)0.0176 (2)0.0340 (6)
C50.3317 (3)0.8206 (3)0.0777 (3)0.0460 (7)
H5A0.36620.90320.04450.069*
H5B0.22750.81210.09190.069*
H5C0.34380.80850.15810.069*
C60.7922 (3)0.7897 (2)0.0918 (3)0.0385 (6)
Cl0.75176 (8)0.43164 (6)0.31254 (7)0.0474 (2)
N10.4522 (2)0.5445 (2)0.1476 (2)0.0361 (5)
N20.5671 (2)0.71858 (19)0.0663 (2)0.0333 (5)
N30.6450 (2)0.8074 (2)0.0291 (2)0.0399 (6)
N40.8837 (3)0.8692 (2)0.0669 (2)0.0552 (7)
H4A0.84720.92920.01210.066*
H4B0.97950.86060.10570.066*
Ni0.65556 (4)0.58829 (3)0.18229 (3)0.03380 (12)
S10.17043 (8)0.60537 (7)0.03983 (8)0.0493 (2)
S20.86881 (8)0.66908 (7)0.20402 (7)0.0465 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0295 (14)0.0359 (14)0.0342 (15)0.0026 (11)0.0119 (12)0.0042 (12)
C20.0445 (17)0.0365 (15)0.0506 (19)0.0033 (13)0.0225 (15)0.0017 (13)
C30.0422 (17)0.0473 (17)0.061 (2)0.0105 (14)0.0187 (16)0.0021 (15)
C40.0331 (15)0.0317 (14)0.0340 (15)0.0010 (11)0.0094 (12)0.0004 (11)
C50.0394 (16)0.0458 (17)0.0475 (18)0.0044 (13)0.0112 (14)0.0105 (14)
C60.0358 (15)0.0396 (15)0.0441 (17)0.0061 (12)0.0199 (13)0.0028 (13)
Cl0.0398 (4)0.0440 (4)0.0541 (5)0.0087 (3)0.0137 (3)0.0101 (3)
N10.0314 (12)0.0359 (12)0.0403 (13)0.0027 (10)0.0131 (10)0.0025 (10)
N20.0303 (12)0.0333 (12)0.0369 (13)0.0006 (9)0.0137 (10)0.0004 (10)
N30.0393 (13)0.0383 (13)0.0458 (14)0.0047 (10)0.0206 (12)0.0030 (11)
N40.0351 (14)0.0576 (16)0.0727 (19)0.0084 (12)0.0207 (13)0.0112 (14)
Ni0.02818 (19)0.03349 (19)0.0382 (2)0.00139 (15)0.01121 (15)0.00176 (15)
S10.0281 (4)0.0485 (5)0.0661 (5)0.0031 (3)0.0126 (4)0.0033 (4)
S20.0293 (4)0.0486 (4)0.0578 (5)0.0008 (3)0.0128 (3)0.0060 (4)
Geometric parameters (Å, º) top
C1—N11.292 (3)C5—H5B0.96
C1—C41.463 (3)C5—H5C0.96
C1—S11.720 (3)C6—N41.327 (3)
C2—N11.462 (3)C6—N31.332 (3)
C2—C31.533 (4)C6—S21.743 (3)
C2—H2A0.97Cl—Ni2.1679 (8)
C2—H2B0.97N1—Ni1.905 (2)
C3—S11.817 (3)N2—N31.367 (3)
C3—H3A0.97N2—Ni1.861 (2)
C3—H3B0.97N4—H4A0.86
C4—N21.302 (3)N4—H4B0.86
C4—C51.485 (3)Ni—S22.1554 (9)
C5—H5A0.96
N1—C1—C4116.9 (2)H5B—C5—H5C109.5
N1—C1—S1118.2 (2)N4—C6—N3117.4 (3)
C4—C1—S1124.9 (2)N4—C6—S2119.2 (2)
N1—C2—C3109.1 (2)N3—C6—S2123.4 (2)
N1—C2—H2A109.9C1—N1—C2114.4 (2)
C3—C2—H2A109.9C1—N1—Ni112.27 (18)
N1—C2—H2B109.9C2—N1—Ni133.07 (18)
C3—C2—H2B109.9C4—N2—N3118.3 (2)
H2A—C2—H2B108.3C4—N2—Ni117.17 (18)
C2—C3—S1107.85 (19)N3—N2—Ni124.56 (16)
C2—C3—H3A110.1C6—N3—N2110.0 (2)
S1—C3—H3A110.1C6—N4—H4A120
C2—C3—H3B110.1C6—N4—H4B120
S1—C3—H3B110.1H4A—N4—H4B120
H3A—C3—H3B108.4N2—Ni—N183.24 (9)
N2—C4—C1110.4 (2)N2—Ni—S286.68 (7)
N2—C4—C5124.5 (2)N1—Ni—S2169.68 (7)
C1—C4—C5125.2 (2)N2—Ni—Cl177.76 (7)
C4—C5—H5A109.5N1—Ni—Cl95.06 (7)
C4—C5—H5B109.5S2—Ni—Cl95.08 (3)
H5A—C5—H5B109.5C1—S1—C390.43 (13)
C4—C5—H5C109.5C6—S2—Ni95.27 (9)
H5A—C5—H5C109.5
N1—C2—C3—S13.3 (3)C4—N2—Ni—N10.65 (19)
N1—C1—C4—N23.2 (3)N3—N2—Ni—N1179.2 (2)
S1—C1—C4—N2174.88 (19)C4—N2—Ni—S2177.17 (19)
N1—C1—C4—C5176.9 (2)N3—N2—Ni—S23.02 (19)
S1—C1—C4—C55.1 (4)C1—N1—Ni—N22.43 (19)
C4—C1—N1—C2178.3 (2)C2—N1—Ni—N2175.7 (3)
S1—C1—N1—C20.1 (3)C1—N1—Ni—S29.8 (5)
C4—C1—N1—Ni3.7 (3)C2—N1—Ni—S2163.5 (3)
S1—C1—N1—Ni174.50 (12)C1—N1—Ni—Cl179.02 (18)
C3—C2—N1—C12.2 (3)C2—N1—Ni—Cl5.7 (2)
C3—C2—N1—Ni175.34 (19)N1—C1—S1—C31.9 (2)
C1—C4—N2—N3179.1 (2)C4—C1—S1—C3179.9 (2)
C5—C4—N2—N30.8 (4)C2—C3—S1—C12.9 (2)
C1—C4—N2—Ni1.1 (3)N4—C6—S2—Ni178.7 (2)
C5—C4—N2—Ni179.0 (2)N3—C6—S2—Ni1.6 (2)
N4—C6—N3—N2179.5 (2)N2—Ni—S2—C62.03 (11)
S2—C6—N3—N20.1 (3)N1—Ni—S2—C614.2 (4)
C4—N2—N3—C6177.7 (2)Cl—Ni—S2—C6176.58 (9)
Ni—N2—N3—C62.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···Cli0.862.513.310 (3)155
N4—H4A···Clii0.862.533.373 (3)166
C3—H3B···S1iii0.972.983.537 (3)118
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C6H9N4S2)Cl]
Mr295.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.656 (2), 10.617 (2), 11.187 (3)
β (°) 112.874 (4)
V3)1056.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.45
Crystal size (mm)0.22 × 0.15 × 0.08
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.615, 0.828
No. of measured, independent and
observed [2σ(I)] reflections
2554, 2554, 1758
Rint0.030
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.076, 1.05
No. of reflections2554
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.34

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···Cli0.862.513.310 (3)155.4
N4—H4A···Clii0.862.533.373 (3)165.8
C3—H3B···S1iii0.972.983.537 (3)117.6
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x, y+1, z.
 

Acknowledgements

The authors would like to thank the Junta de Extremadura (III PRI+D+I) and the FEDER (project PRI08A022) for support.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLiu, Z.-H., Liu, Y.-J., Duan, C.-Y. & You, X.-Z. (1999). Acta Cryst. C55, 1804–1806.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPhilip, V., Suni, V., Kurup, M. R. P. & Nethaji, M. (2004). Polyhedron, 23, 1225–1233.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwearingen, J. K., Kaminsky, W. & West, D. X. (2002). Transition Met. Chem. 27, 724–731.  Web of Science CSD CrossRef CAS Google Scholar
First citationViñuelas-Zahínos, E., Luna–Giles, F., Torres–Garcia, P. & Fernández–Calderón, M. C. (2011). Eur. J. Med. Chem. doi:10.1016/j.ejmech.2010.10.030.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds