organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

19-Benzo­yl­oxy-13,16-seco-ent-beyeran 13,16-lactone

aInstitute of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China, and bJiangsu Center for Drug Screening, China Pharmaceutical University, Nanjing 210009, People's Republic of China
*Correspondence e-mail: xmzha80@hotmail.com

(Received 30 September 2010; accepted 9 December 2010; online 15 December 2010)

The title compound, C27H34O5, a beyerane-type diterpenoid prepared by peroxidation and benzoyl­ation of isosteviol, contains a fused six-membered ring system. The O atoms of the benzoic ester and the lactone are disordered with occupancy ratios of 0.6 (4):0.4 (4) and 0.6 (2):0.4 (2), respectively. Three cyclo­hexane rings have chair conformations, whereas the remaining lactone ring adopts a half-chair conformation.

Related literature

For the pharmaceutical activity of isosteviol, see: Liu et al. (2001[Liu, J. C., Kao, P. E., Hsieh, M. H., Chen, Y. J. & Chen, P. (2001). Acta Cardiol. Sin. 17, 133-140.]); Braguini et al. (2003[Braguini, W. L., Gomes, M. A. B., de Oliveira, B. H., Carnieri, E. G. S., Rocha, M. E. M. & de Oliveira, M. B. M. (2003). Toxicol. Lett. 143, 83-92.]); Mizushina et al. (2005[Mizushina, Y., Akihisa, T., Ukiya, M., Hamasaki, Y., Murakami-Nakai, C., Kuriyama, I., Takeuchi, T., Sugawara, F. & Yoshida, H. (2005). Life Sci. 77, 2127-2140.]); Wong et al. (2004)[Wong, K. L., Chan, P., Yang, H. Y., Hsu, F. L., Liu, I.M., Cheng, Y.W. & Cheng, J. T. (2004). Life Sci. 74, 2379-2387.]; Xu et al. (2007[Xu, D. Y., Li, Y. F., Wang, J. P., Davey, A. K., Zhang, S. J. & Evans, A. M. (2007). Life Sci. 80, 269-274.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the synthesis of isosteviol derivatives via peroxidation and esterification, see: Chou et al. (2008[Chou, B. H., Yang, L. M., Chang, S. F., Hsu, F. L., Lo, C. H., Liaw, J. H., Liu, P. C. & Lin, S. J. (2008). J. Nat. Prod. 71, 602-607.]); Wu et al. (2009[Wu, Y., Yang, J. H., Dai, G. F., Liu, C. J., Tian, G. Q., Ma, W. Y. & Tao, J. C. (2009). Bioorg. Med. Chem. 17, 1464-1473.]); Chen (2010[Chen, J. (2010). Acta Cryst. E66, o431.]).

[Scheme 1]

Experimental

Crystal data
  • C27H34O5

  • Mr = 438.54

  • Orthorhombic, P 21 21 21

  • a = 7.7425 (16) Å

  • b = 11.871 (2) Å

  • c = 25.306 (5) Å

  • V = 2325.8 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.48 × 0.46 × 0.43 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.960, Tmax = 0.964

  • 12234 measured reflections

  • 2362 independent reflections

  • 1500 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.154

  • S = 1.03

  • 2362 reflections

  • 310 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Isosteviol, a beyerane-type tetracyclic diterpenoid obtained with stevioside by acid hydrolysis, has a broad spectrum of pharmacological activities against the diseases including hypertension, ischemia-reperfusion injury, and cancer (Wong et al., 2004; Liu et al., 2001; Xu et al., 2007; Mizushina et al., 2005). The title compound was prepared by peroxidation and benzoylation of isosteviol. The molecule contains a fused four-ring system A/B/C/D. The A/B and B/C junctions are trans-fused, and C/D is cis-fused. Six-membered rings A, B and C adopt chair conformations with puckering amplitudes Q = 0.550 (2) / 0.559 (2) / 0.581 (2) Å, θ= 179.6 (2) / 170.4 (3) / 171.8 (3) ° and φ=76 (3) / 76 (2) / 239 (3) °, while the remaining six-membered ring D adopts a half-chair conformation with puckering amplitudes Q = 0.517 (6) Å, θ = 136.0 (3)° and φ= 305 (2) °, respectively (Cremer & Pople, 1975). The bond angle of C8—C15—C14 is 111.5 (4)°. The torsion angle of C1—C2—C3—C4 is -71.8 (6)° relates to the β-orientation of the benzoyl ester group with respect to the ent-kaurane nucleus. The oxygen atoms of the benzoic ester and the lactone are disordered. O1 and O4 are the major components of the disorder. Occupancy ratios of O1/O1' and O4/O4' are 0.6 (4):0.4 (4) and 0.6 (2):0.4 (2), respectively.

Related literature top

For the pharmaceutical activity of isosteviol, see: Liu et al. (2001); Braguini et al. (2003); Mizushina et al. (2005); Wong et al. (2004); Xu et al. (2007). For ring conformations, see: Cremer & Pople (1975). For the synthesis of isosteviol derivatives via peroxidation and esterification, see: Chou et al. (2008); Wu et al. (2009); Chen (2010).

Experimental top

Isosteviol was obtained by acid hydrolysis of stevioside with 10% H2SO4 at 95 °C for 7 h and then recrystallization with ethanol afforded colorless crystals of isosteviol in 80% yield. To a mixture of isosteviol (10 g, 31 mmol) in 150 ml of CH3COOH, 90 ml of 30% H2O2 was added and the mixture reaction was stirred at 60°C for two days. The reaction was cooled to room temperature and poured into ice water. The crude product was filtered and purified by recrystallization with ethanol to give the intermediate 13,16-seco-ent-beyeran-19-oate 13,16-lactone (8.2 g, 80%) as white crystals.

To a mixture of 13,16-seco-ent-beyeran-19-oate 13,16-lactone (0.33 g, 0.99 mmol) in 10 ml of CH2Cl2, pyridine (0.12 ml, 1.5 mmol) and PhCOCl (0.15 ml, 1.3 mmol) was added successively. The mixture reaction was stirred at room temperature for 40 h and washed with diluted HCl, brine and saturated NaHCO3 and brine, dried (Na2SO4) and concentrated under vacuum to give the crude product. Purification of the crude product by a column chromatography (v:v petroleum ether: EtOAc= 8:1) afforded the title compound (0.28 g, 65%) as colorless crystals. Crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of ethanol solution at room temperature. m.p. 436–437 K; 1H NMR (300 MHz, CDCl3), δH, p.p.m.: 0.983 (s, 3H), 1.34 (s, 3H), 1.39 (s, 3H), 0.96–2.05 (m, 18H), 2.27–2.32 (d, 1H, J=13.8 Hz), 3.03–3.13 (dd, 1H, J = 18.59, 2.47 Hz), 7.47–7.52 (t, 2H, J=7.7 Hz), 7.62–7.67 (t, 2H, J=14.9 Hz), 7.99–8.02 (m, 1H); 13C NMR (75 MHz, CDCl3), δC, p.p.m.: 14.4, 18.6, 18.8, 19.6, 28.1, 28.3, 34.9, 37.9, 38.0, 38.5, 38.6, 39.8, 43.6, 45.6, 47.8, 55.9, 57.4, 128.9, 129.2, 130.3, 130.3, 134.4, 162.3, 172.2, 172.6.

Refinement top

The absolute structure could not be established reliably because of insufficient anomalous scattering effects. Therefore, 1404 Friedel opposites were merged. All H atoms were placed in geometrical positions and constrained to ride on their parent atoms with C—H distances in the range 0.96–0.98 Å, and included in the final cycles of refinement using a riding model, with Uiso(H)=1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms. The oxygen atoms of the benzoic ester and the lactone are disordered with occupancy ratios of 0.6 (4): 0.4 (4) and 0.6 (2): 0.4 (2), respectively.

Structure description top

Isosteviol, a beyerane-type tetracyclic diterpenoid obtained with stevioside by acid hydrolysis, has a broad spectrum of pharmacological activities against the diseases including hypertension, ischemia-reperfusion injury, and cancer (Wong et al., 2004; Liu et al., 2001; Xu et al., 2007; Mizushina et al., 2005). The title compound was prepared by peroxidation and benzoylation of isosteviol. The molecule contains a fused four-ring system A/B/C/D. The A/B and B/C junctions are trans-fused, and C/D is cis-fused. Six-membered rings A, B and C adopt chair conformations with puckering amplitudes Q = 0.550 (2) / 0.559 (2) / 0.581 (2) Å, θ= 179.6 (2) / 170.4 (3) / 171.8 (3) ° and φ=76 (3) / 76 (2) / 239 (3) °, while the remaining six-membered ring D adopts a half-chair conformation with puckering amplitudes Q = 0.517 (6) Å, θ = 136.0 (3)° and φ= 305 (2) °, respectively (Cremer & Pople, 1975). The bond angle of C8—C15—C14 is 111.5 (4)°. The torsion angle of C1—C2—C3—C4 is -71.8 (6)° relates to the β-orientation of the benzoyl ester group with respect to the ent-kaurane nucleus. The oxygen atoms of the benzoic ester and the lactone are disordered. O1 and O4 are the major components of the disorder. Occupancy ratios of O1/O1' and O4/O4' are 0.6 (4):0.4 (4) and 0.6 (2):0.4 (2), respectively.

For the pharmaceutical activity of isosteviol, see: Liu et al. (2001); Braguini et al. (2003); Mizushina et al. (2005); Wong et al. (2004); Xu et al. (2007). For ring conformations, see: Cremer & Pople (1975). For the synthesis of isosteviol derivatives via peroxidation and esterification, see: Chou et al. (2008); Wu et al. (2009); Chen (2010).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. H atoms have been omitted. Displacement ellipsoids are drawn at the 30% probability level.
19-Benzoyloxy-13,16-seco-ent-beyeran 13,16-lactone top
Crystal data top
C27H34O5F(000) = 944
Mr = 438.54Dx = 1.252 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2537 reflections
a = 7.7425 (16) Åθ = 2.4–20.3°
b = 11.871 (2) ŵ = 0.09 mm1
c = 25.306 (5) ÅT = 298 K
V = 2325.8 (8) Å3Prism, colourless
Z = 40.48 × 0.46 × 0.43 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2362 independent reflections
Radiation source: fine-focus sealed tube1500 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
phi and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 59
Tmin = 0.960, Tmax = 0.964k = 1414
12234 measured reflectionsl = 2830
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0594P)2 + 1.2539P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2362 reflectionsΔρmax = 0.18 e Å3
310 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.023 (3)
Crystal data top
C27H34O5V = 2325.8 (8) Å3
Mr = 438.54Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.7425 (16) ŵ = 0.09 mm1
b = 11.871 (2) ÅT = 298 K
c = 25.306 (5) Å0.48 × 0.46 × 0.43 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2362 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1500 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.964Rint = 0.064
12234 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.03Δρmax = 0.18 e Å3
2362 reflectionsΔρmin = 0.19 e Å3
310 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.918 (17)0.286 (9)0.376 (4)0.067 (15)0.6 (4)
O1'0.87 (2)0.259 (13)0.388 (6)0.07 (2)0.4 (4)
O20.6430 (6)0.2441 (3)0.34276 (13)0.0755 (11)
O30.5237 (5)0.1873 (3)0.05672 (13)0.0754 (11)
O40.319 (14)0.287 (9)0.0949 (8)0.087 (15)0.6 (2)
O4'0.388 (18)0.324 (8)0.0979 (18)0.083 (18)0.4 (2)
O50.8077 (6)0.4534 (3)0.37365 (15)0.0865 (12)
C10.7924 (8)0.2203 (4)0.34546 (19)0.0627 (13)
C20.8863 (7)0.1252 (4)0.31854 (18)0.0609 (13)
C31.0812 (7)0.1462 (4)0.3150 (2)0.0688 (15)
H3A1.12360.16780.34960.083*
H3B1.13790.07630.30520.083*
C41.1302 (7)0.2357 (4)0.2759 (2)0.0733 (15)
H4A1.25510.24100.27400.088*
H4B1.08630.30780.28790.088*
C51.0590 (6)0.2109 (5)0.22116 (19)0.0660 (14)
H5A1.11460.14370.20750.079*
H5B1.08790.27290.19780.079*
C60.8618 (6)0.1932 (4)0.22027 (17)0.0515 (11)
C70.8138 (6)0.1451 (4)0.16440 (16)0.0504 (11)
H70.89490.08280.15890.061*
C80.6345 (6)0.0916 (4)0.15766 (16)0.0507 (11)
C90.5994 (7)0.0101 (4)0.20318 (16)0.0582 (13)
H9A0.67390.05510.19950.070*
H9B0.48080.01570.20110.070*
C100.6299 (7)0.0636 (4)0.25735 (17)0.0585 (13)
H10A0.55320.12750.26190.070*
H10B0.60490.00920.28490.070*
C110.8170 (7)0.1023 (4)0.26179 (17)0.0533 (12)
H110.88320.03650.25020.064*
C120.8501 (7)0.2262 (4)0.11891 (16)0.0631 (13)
H12A0.76990.28880.12060.076*
H12B0.96620.25600.12240.076*
C130.8323 (7)0.1673 (4)0.06560 (19)0.0689 (15)
H13A0.84120.22320.03780.083*
H13B0.92740.11490.06130.083*
C140.6646 (7)0.1041 (4)0.05918 (18)0.0647 (13)
C150.6338 (7)0.0269 (4)0.10523 (17)0.0596 (12)
H15A0.72310.03040.10600.072*
H15B0.52340.01050.10090.072*
C160.4840 (7)0.1744 (4)0.15308 (18)0.0590 (13)
H16A0.37980.13520.16380.071*
H16B0.50330.23430.17850.071*
C170.4497 (8)0.2280 (5)0.1007 (2)0.0706 (15)
C180.8566 (9)0.0239 (4)0.35505 (19)0.0830 (18)
H18A0.91220.04130.34050.124*
H18B0.73490.01000.35820.124*
H18C0.90400.03970.38930.124*
C190.6557 (9)0.0447 (5)0.00632 (19)0.0854 (18)
H19A0.67590.09800.02150.128*
H19B0.54340.01160.00200.128*
H19C0.74200.01330.00500.128*
C200.8505 (8)0.3784 (5)0.4017 (2)0.0704 (14)
C210.8676 (7)0.3817 (4)0.45931 (19)0.0642 (13)
C220.9247 (8)0.2913 (5)0.4883 (2)0.0811 (17)
H220.95330.22420.47140.097*
C230.9396 (9)0.3002 (6)0.5427 (3)0.0920 (19)
H230.97840.23910.56240.110*
C240.8976 (8)0.3980 (6)0.5672 (2)0.0895 (19)
H240.90760.40350.60370.107*
C250.8411 (9)0.4880 (6)0.5388 (2)0.0886 (18)
H250.81350.55470.55610.106*
C260.8243 (7)0.4813 (5)0.4848 (2)0.0743 (15)
H260.78440.54280.46560.089*
C270.7749 (7)0.3072 (3)0.23161 (18)0.0611 (13)
H27A0.80620.36020.20460.092*
H27B0.81250.33480.26540.092*
H27C0.65180.29780.23190.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.07 (2)0.064 (16)0.067 (14)0.010 (18)0.005 (16)0.014 (14)
O1'0.07 (3)0.06 (2)0.07 (2)0.01 (3)0.00 (2)0.01 (2)
O20.075 (3)0.083 (2)0.069 (2)0.005 (2)0.016 (2)0.0057 (19)
O30.084 (3)0.085 (2)0.058 (2)0.016 (2)0.005 (2)0.0064 (19)
O40.08 (2)0.08 (2)0.097 (6)0.03 (2)0.006 (8)0.007 (8)
O4'0.08 (3)0.08 (2)0.091 (9)0.03 (2)0.004 (12)0.011 (10)
O50.098 (3)0.083 (3)0.078 (2)0.014 (3)0.003 (2)0.007 (2)
C10.071 (4)0.059 (3)0.057 (3)0.007 (3)0.001 (3)0.002 (3)
C20.071 (3)0.053 (3)0.059 (3)0.007 (3)0.001 (3)0.003 (2)
C30.069 (4)0.065 (3)0.072 (3)0.014 (3)0.011 (3)0.013 (3)
C40.063 (3)0.074 (3)0.084 (4)0.001 (3)0.001 (3)0.017 (3)
C50.059 (3)0.066 (3)0.073 (3)0.008 (3)0.009 (3)0.003 (3)
C60.052 (3)0.047 (3)0.055 (3)0.000 (2)0.008 (2)0.002 (2)
C70.054 (3)0.048 (2)0.049 (2)0.002 (2)0.010 (2)0.002 (2)
C80.053 (3)0.047 (2)0.051 (3)0.001 (2)0.009 (2)0.002 (2)
C90.063 (3)0.051 (3)0.061 (3)0.011 (2)0.006 (2)0.005 (2)
C100.065 (3)0.055 (3)0.056 (3)0.006 (3)0.008 (3)0.012 (2)
C110.059 (3)0.046 (2)0.055 (3)0.003 (2)0.003 (2)0.000 (2)
C120.070 (3)0.063 (3)0.056 (3)0.008 (3)0.014 (3)0.001 (2)
C130.075 (4)0.078 (3)0.054 (3)0.002 (3)0.016 (3)0.001 (3)
C140.067 (3)0.073 (3)0.054 (3)0.005 (3)0.011 (3)0.003 (3)
C150.061 (3)0.059 (3)0.059 (3)0.005 (3)0.007 (3)0.009 (2)
C160.060 (3)0.064 (3)0.053 (3)0.007 (3)0.009 (2)0.001 (2)
C170.076 (4)0.073 (4)0.063 (3)0.017 (3)0.007 (3)0.004 (3)
C180.116 (5)0.065 (3)0.068 (3)0.011 (4)0.011 (4)0.011 (3)
C190.088 (4)0.107 (4)0.061 (3)0.001 (4)0.008 (3)0.019 (3)
C200.071 (4)0.071 (4)0.069 (3)0.011 (3)0.004 (3)0.015 (3)
C210.061 (3)0.067 (3)0.065 (3)0.003 (3)0.002 (3)0.014 (3)
C220.085 (4)0.080 (4)0.079 (4)0.005 (4)0.011 (3)0.012 (3)
C230.091 (5)0.098 (5)0.087 (4)0.002 (4)0.010 (4)0.004 (4)
C240.077 (4)0.116 (5)0.076 (4)0.001 (4)0.000 (4)0.014 (4)
C250.082 (4)0.096 (4)0.088 (4)0.004 (4)0.003 (4)0.031 (4)
C260.069 (4)0.077 (3)0.076 (4)0.005 (3)0.001 (3)0.018 (3)
C270.077 (3)0.045 (3)0.062 (3)0.003 (3)0.007 (3)0.002 (2)
Geometric parameters (Å, º) top
O1—C201.38 (2)C10—H10B0.9700
O1—C11.47 (9)C11—H110.9800
O1'—C11.31 (4)C12—C131.526 (6)
O1'—C201.47 (10)C12—H12A0.9700
O2—C11.193 (6)C12—H12B0.9700
O3—C171.341 (6)C13—C141.509 (7)
O3—C141.473 (6)C13—H13A0.9700
O4—C171.24 (3)C13—H13B0.9700
O4'—C171.24 (4)C14—C151.501 (6)
O5—C201.185 (6)C14—C191.514 (6)
C1—C21.505 (7)C15—H15A0.9700
C2—C31.532 (8)C15—H15B0.9700
C2—C181.534 (6)C16—C171.495 (7)
C2—C111.557 (6)C16—H16A0.9700
C3—C41.501 (7)C16—H16B0.9700
C3—H3A0.9700C18—H18A0.9600
C3—H3B0.9700C18—H18B0.9600
C4—C51.519 (7)C18—H18C0.9600
C4—H4A0.9700C19—H19A0.9600
C4—H4B0.9700C19—H19B0.9600
C5—C61.541 (6)C19—H19C0.9600
C5—H5A0.9700C20—C211.465 (7)
C5—H5B0.9700C21—C221.373 (7)
C6—C271.538 (6)C21—C261.389 (7)
C6—C111.546 (6)C22—C231.386 (8)
C6—C71.569 (6)C22—H220.9300
C7—C121.526 (6)C23—C241.355 (9)
C7—C81.537 (7)C23—H230.9300
C7—H70.9800C24—C251.359 (8)
C8—C91.528 (6)C24—H240.9300
C8—C161.529 (6)C25—C261.375 (7)
C8—C151.533 (6)C25—H250.9300
C9—C101.529 (6)C26—H260.9300
C9—H9A0.9700C27—H27A0.9600
C9—H9B0.9700C27—H27B0.9600
C10—C111.524 (7)C27—H27C0.9600
C10—H10A0.9700
C20—O1—C1115 (6)H12A—C12—H12B108.0
C1—O1'—C20119 (6)C14—C13—C12113.6 (4)
C17—O3—C14121.5 (4)C14—C13—H13A108.8
O2—C1—O1'113 (6)C12—C13—H13A108.8
O2—C1—O1123 (2)C14—C13—H13B108.8
O1'—C1—O123 (6)C12—C13—H13B108.8
O2—C1—C2128.4 (5)H13A—C13—H13B107.7
O1'—C1—C2115 (3)O3—C14—C15109.0 (4)
O1—C1—C2108 (2)O3—C14—C13108.0 (4)
C1—C2—C3112.4 (4)C15—C14—C13110.9 (4)
C1—C2—C18104.0 (4)O3—C14—C19104.0 (4)
C3—C2—C18108.1 (5)C15—C14—C19113.2 (4)
C1—C2—C11112.4 (4)C13—C14—C19111.5 (5)
C3—C2—C11108.3 (4)C14—C15—C8111.5 (4)
C18—C2—C11111.5 (4)C14—C15—H15A109.3
C4—C3—C2113.8 (5)C8—C15—H15A109.3
C4—C3—H3A108.8C14—C15—H15B109.3
C2—C3—H3A108.8C8—C15—H15B109.3
C4—C3—H3B108.8H15A—C15—H15B108.0
C2—C3—H3B108.8C17—C16—C8118.5 (4)
H3A—C3—H3B107.7C17—C16—H16A107.7
C3—C4—C5111.8 (4)C8—C16—H16A107.7
C3—C4—H4A109.3C17—C16—H16B107.7
C5—C4—H4A109.3C8—C16—H16B107.7
C3—C4—H4B109.3H16A—C16—H16B107.1
C5—C4—H4B109.3O4—C17—O4'32.7 (15)
H4A—C4—H4B107.9O4—C17—O3117.0 (11)
C4—C5—C6113.5 (4)O4'—C17—O3116.7 (14)
C4—C5—H5A108.9O4—C17—C16119 (2)
C6—C5—H5A108.9O4'—C17—C16121 (2)
C4—C5—H5B108.9O3—C17—C16120.4 (5)
C6—C5—H5B108.9C2—C18—H18A109.5
H5A—C5—H5B107.7C2—C18—H18B109.5
C27—C6—C5108.1 (4)H18A—C18—H18B109.5
C27—C6—C11112.9 (4)C2—C18—H18C109.5
C5—C6—C11107.9 (4)H18A—C18—H18C109.5
C27—C6—C7112.6 (4)H18B—C18—H18C109.5
C5—C6—C7107.3 (4)C14—C19—H19A109.5
C11—C6—C7107.8 (3)C14—C19—H19B109.5
C12—C7—C8110.1 (4)H19A—C19—H19B109.5
C12—C7—C6114.0 (4)C14—C19—H19C109.5
C8—C7—C6117.7 (4)H19A—C19—H19C109.5
C12—C7—H7104.5H19B—C19—H19C109.5
C8—C7—H7104.5O5—C20—O1115 (5)
C6—C7—H7104.5O5—C20—C21127.0 (5)
C9—C8—C16109.2 (4)O1—C20—C21117 (4)
C9—C8—C15109.6 (3)O5—C20—O1'128 (4)
C16—C8—C15104.7 (4)O1—C20—O1'24 (2)
C9—C8—C7109.8 (4)C21—C20—O1'105 (6)
C16—C8—C7115.5 (4)C22—C21—C26119.7 (5)
C15—C8—C7107.8 (4)C22—C21—C20122.7 (5)
C8—C9—C10112.7 (4)C26—C21—C20117.6 (5)
C8—C9—H9A109.1C21—C22—C23119.8 (6)
C10—C9—H9A109.1C21—C22—H22120.1
C8—C9—H9B109.1C23—C22—H22120.1
C10—C9—H9B109.1C24—C23—C22120.0 (6)
H9A—C9—H9B107.8C24—C23—H23120.0
C11—C10—C9109.7 (4)C22—C23—H23120.0
C11—C10—H10A109.7C23—C24—C25120.6 (6)
C9—C10—H10A109.7C23—C24—H24119.7
C11—C10—H10B109.7C25—C24—H24119.7
C9—C10—H10B109.7C24—C25—C26120.6 (6)
H10A—C10—H10B108.2C24—C25—H25119.7
C10—C11—C6112.0 (4)C26—C25—H25119.7
C10—C11—C2116.6 (4)C25—C26—C21119.2 (6)
C6—C11—C2115.3 (4)C25—C26—H26120.4
C10—C11—H11103.6C21—C26—H26120.4
C6—C11—H11103.6C6—C27—H27A109.5
C2—C11—H11103.6C6—C27—H27B109.5
C13—C12—C7111.2 (4)H27A—C27—H27B109.5
C13—C12—H12A109.4C6—C27—H27C109.5
C7—C12—H12A109.4H27A—C27—H27C109.5
C13—C12—H12B109.4H27B—C27—H27C109.5
C7—C12—H12B109.4
C20—O1'—C1—O251 (23)C18—C2—C11—C1053.1 (6)
C20—O1'—C1—O168 (18)C1—C2—C11—C671.1 (6)
C20—O1'—C1—C2148 (12)C3—C2—C11—C653.7 (6)
C20—O1—C1—O20 (15)C18—C2—C11—C6172.5 (4)
C20—O1—C1—O1'73 (11)C8—C7—C12—C1355.7 (5)
C20—O1—C1—C2178 (8)C6—C7—C12—C13169.6 (4)
O2—C1—C2—C3159.0 (5)C7—C12—C13—C1451.1 (6)
O1'—C1—C2—C344 (13)C17—O3—C14—C1534.9 (6)
O1—C1—C2—C319 (7)C17—O3—C14—C1385.6 (6)
O2—C1—C2—C1884.3 (7)C17—O3—C14—C19155.9 (5)
O1'—C1—C2—C1873 (13)C12—C13—C14—O368.0 (5)
O1—C1—C2—C1897 (7)C12—C13—C14—C1551.3 (6)
O2—C1—C2—C1136.5 (7)C12—C13—C14—C19178.4 (4)
O1'—C1—C2—C11166 (13)O3—C14—C15—C861.8 (5)
O1—C1—C2—C11142 (7)C13—C14—C15—C856.8 (5)
C1—C2—C3—C471.8 (6)C19—C14—C15—C8177.0 (5)
C18—C2—C3—C4174.0 (4)C9—C8—C15—C14178.9 (4)
C11—C2—C3—C453.0 (5)C16—C8—C15—C1461.9 (5)
C2—C3—C4—C555.2 (6)C7—C8—C15—C1461.6 (5)
C3—C4—C5—C655.2 (6)C9—C8—C16—C17154.6 (4)
C4—C5—C6—C2769.4 (5)C15—C8—C16—C1737.3 (6)
C4—C5—C6—C1153.0 (5)C7—C8—C16—C1781.1 (5)
C4—C5—C6—C7168.9 (4)C14—O3—C17—O4171 (7)
C27—C6—C7—C1254.5 (5)C14—O3—C17—O4'152 (9)
C5—C6—C7—C1264.3 (5)C14—O3—C17—C1611.8 (8)
C11—C6—C7—C12179.7 (4)C8—C16—C17—O4173 (7)
C27—C6—C7—C876.6 (5)C8—C16—C17—O4'149 (9)
C5—C6—C7—C8164.5 (4)C8—C16—C17—O313.9 (8)
C11—C6—C7—C848.5 (5)C1—O1—C20—O570 (13)
C12—C7—C8—C9179.7 (4)C1—O1—C20—C21121 (7)
C6—C7—C8—C947.4 (5)C1—O1—C20—O1'58 (11)
C12—C7—C8—C1656.3 (5)C1—O1'—C20—O518 (26)
C6—C7—C8—C1676.6 (5)C1—O1'—C20—O183 (19)
C12—C7—C8—C1560.4 (4)C1—O1'—C20—C21152 (17)
C6—C7—C8—C15166.7 (4)O5—C20—C21—C22177.4 (6)
C16—C8—C9—C1076.2 (5)O1—C20—C21—C229 (8)
C15—C8—C9—C10169.7 (4)O1'—C20—C21—C2212 (9)
C7—C8—C9—C1051.4 (5)O5—C20—C21—C262.3 (10)
C8—C9—C10—C1160.0 (5)O1—C20—C21—C26170 (8)
C9—C10—C11—C661.9 (5)O1'—C20—C21—C26168 (9)
C9—C10—C11—C2162.2 (4)C26—C21—C22—C230.4 (9)
C27—C6—C11—C1070.7 (5)C20—C21—C22—C23179.4 (6)
C5—C6—C11—C10169.9 (4)C21—C22—C23—C240.1 (10)
C7—C6—C11—C1054.3 (5)C22—C23—C24—C250.1 (10)
C27—C6—C11—C265.8 (6)C23—C24—C25—C260.4 (10)
C5—C6—C11—C253.6 (5)C24—C25—C26—C210.7 (10)
C7—C6—C11—C2169.2 (4)C22—C21—C26—C250.6 (9)
C1—C2—C11—C1063.3 (6)C20—C21—C26—C25179.1 (6)
C3—C2—C11—C10171.9 (4)

Experimental details

Crystal data
Chemical formulaC27H34O5
Mr438.54
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)7.7425 (16), 11.871 (2), 25.306 (5)
V3)2325.8 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.48 × 0.46 × 0.43
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.960, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
12234, 2362, 1500
Rint0.064
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.154, 1.03
No. of reflections2362
No. of parameters310
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.19

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

We are grateful to the China Ministry of Health Foundation for Scientific Research (project No. WKJ2005–2-022) for financial support.

References

First citationBraguini, W. L., Gomes, M. A. B., de Oliveira, B. H., Carnieri, E. G. S., Rocha, M. E. M. & de Oliveira, M. B. M. (2003). Toxicol. Lett. 143, 83–92.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, J. (2010). Acta Cryst. E66, o431.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChou, B. H., Yang, L. M., Chang, S. F., Hsu, F. L., Lo, C. H., Liaw, J. H., Liu, P. C. & Lin, S. J. (2008). J. Nat. Prod. 71, 602–607.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationLiu, J. C., Kao, P. E., Hsieh, M. H., Chen, Y. J. & Chen, P. (2001). Acta Cardiol. Sin. 17, 133–140.  Google Scholar
First citationMizushina, Y., Akihisa, T., Ukiya, M., Hamasaki, Y., Murakami-Nakai, C., Kuriyama, I., Takeuchi, T., Sugawara, F. & Yoshida, H. (2005). Life Sci. 77, 2127–2140.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWong, K. L., Chan, P., Yang, H. Y., Hsu, F. L., Liu, I.M., Cheng, Y.W. & Cheng, J. T. (2004). Life Sci. 74, 2379–2387.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWu, Y., Yang, J. H., Dai, G. F., Liu, C. J., Tian, G. Q., Ma, W. Y. & Tao, J. C. (2009). Bioorg. Med. Chem. 17, 1464–1473.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXu, D. Y., Li, Y. F., Wang, J. P., Davey, A. K., Zhang, S. J. & Evans, A. M. (2007). Life Sci. 80, 269–274.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds