metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Azido­[1,2-bis­­(di­phenyl­phosphan­yl)ethane-κ2P,P′](η5-inden­yl)ruthenium(II)

aDepartment of Mathematics and Science (Pre-college), National Taiwan Normal University, Taiwan, bDepartment of Chemical and Materials Engineering, Lunghwa University of Science and Technology, Taiwan, and cDepartment of Chemistry, National Taiwan Normal University, 11677, Taiwan
*Correspondence e-mail: hlsung@ntnu.edu.tw

(Received 1 November 2010; accepted 17 December 2010; online 24 December 2010)

Facile ligand substitution is observed when the ruthenium chloride complex [Ru(η5-C9H7)Cl(dppe)] (dppe is diphenylphosphanyl ethane) is treated with NaN3 in refluxing ethanol, yielding the title compound, [Ru(η5-C9H7)(N3)(dppe)] or [Ru(C9H7)(N3)(C26H24P2)]. The Ru(II) atom has a typical piano-stool coordination. The Ru—P bond lengths are 2.284 (2) and 2.235 (2) Å. NMR and MS analyses are in agreement with the structure of the title compound.

Related literature

For the synthesis of the title compound, see: Singh et al. (2005[Singh, K. S., Thöne, C. & Kollipara, M. R. (2005). J. Organomet. Chem. 690, 4222-4231.]). For the chemistry of organic azides, see: Labbe (1969[Labbe, G. (1969). Chem. Rev. 69, 345-363.]); Patai (1971[Patai, S. (1971). The Chemistry of the Azido group. New York: Interscience.]). For metal–azido complexes, see: Dori & Ziolo (1973[Dori, Z. & Ziolo, R. F. (1973). Chem. Rev. 73, 247-254.]); Frühauf (1997[Frühauf, H. W. (1997). Chem. Rev. 97, 523-596.]). Organic azides are particularly important for the synthesis of heterocyclic compounds by reaction with 1,3-dipole compounds, see: Padwa (1976[Padwa, A. (1976). Angew. Chem. Int. Ed. Engl. 15, 123-136.]). Metal–azido complexes have been reported to produce tetra­zolates by reaction with nitrile and isonitriles, see: Beck & Schropp (1975[Beck, W. & Schropp, K. (1975). Chem. Ber. 108, 3317-3325.]); Ellis & Purcell (1982[Ellis, W. R. Jr & Purcell, W. L. (1982). Inorg. Chem. 21, 834-837.]); Fehlhammer & Dahl (1972[Fehlhammer, W. P. & Dahl, L. F. (1972). J. Am. Chem. Soc. 94, 3370-3377.]); Paul & Nag (1987[Paul, P. & Nag, K. (1987). Inorg. Chem. 26, 2969-2974.]); Treichel et al. (1971[Treichel, P. M., Knebel, W. J. & Hess, R. W. (1971). J. Am. Chem. Soc. 93, 5424-5433.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru(C9H7)(N3)(C26H24P2)]

  • Mr = 656.64

  • Monoclinic, P 21 /c

  • a = 11.331 (6) Å

  • b = 14.567 (9) Å

  • c = 17.873 (11) Å

  • β = 96.015 (19)°

  • V = 2934 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 200 K

  • 0.22 × 0.10 × 0.04 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.866, Tmax = 0.974

  • 20374 measured reflections

  • 5167 independent reflections

  • 2438 reflections with I > 2σ(I)

  • Rint = 0.155

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.096

  • S = 0.75

  • 5167 reflections

  • 370 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.53 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999)[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.].

Supporting information


Comment top

Organic azides are particularly important for synthesizing heterocyclic compounds by reaction with 1,3-dipole compounds (Padwa, 1976). Metal azido complexes have been reported to produce tetrazolates by reaction with nitrile (Paul & Nag, 1987; Ellis & Purcell, 1982) and isonitriles (Treichel et al., 1971; Beck & Schropp, 1975; Fehlhammer & Dahl, 1972).

Treatment of the complex [Ru(η5-C9H7)Cl(dppe)] with sodium azide in ethanol afforded the title compound [Ru(η5-C9H7)N3(dppe)] (Figure 1). In the crystal structure of the title compound, the azide groups are almost linear [N(3)—N(2)—N(1)=175.5 (8)°] and are coordinated to Ru with an Ru—N—N angle of 119.0 (5)°.

Related literature top

For the synthesis of the title, see: Singh et al. (2005). For the chemistry of organic azides, see: Labbe (1969); Patai (1971). For metal–azido complexes, see: Dori & Ziolo (1973); Frühauf (1997). Organic azides are particularly important for the synthesis of heterocyclic compounds by reaction with 1,3-dipole compounds, see: Padwa (1976). Metal–azido complexes have been reported to produce tetrazolates by reaction with nitrile and isonitriles, see: Beck & Schropp (1975); Ellis & Purcell (1982); Fehlhammer & Dahl (1972); Paul & Nag (1987); Treichel et al. (1971).

Experimental top

To a solution of [Ru(η5-C9H7)Cl(dppe)] (0.1 g, 0.154 mmol) in ethanol (30 ml), an excess of NaN3 (0.05 g, 0.769 mmol) was added. The mixture was heated to reflux for 4 h and cooled to room temperature. The solvent was dried under vacuum and 10 ml of CH2Cl2 was added to the residue. The product was dissolved in CH2Cl2 and other salts such as NaN3 and NaCl precipitated. After filtration, the solvent of the mixture was concentrated to about 5 ml. The residue was then slowly added to 40 ml of vigorously stirred diethyl ether. The orange precipitate thus formed was filtered off, washed with diethyl ether and hexane and dried under vacuum to give the title compound [Ru(η5-C9H7)N3(dppe)] (0.08 g, 0.122 mmol) in 79% yield. The orange crystals of the title compound for X-ray structure analysis were obtained by slow diffusion of diethyl ether into a CH2Cl2 solution at room temperature for 3 days. Spectroscopic analysis: 1H NMR (CDCl3, 298 K, δ, p.p.m.): 7.44—7.20 (m, 24H, 20H of Ph group, 4H of indenyl ring), 4.91 (t, 1H, 3JH—H= 1.30 Hz, H of indenyl ring), 5.51 (d, 2H, 3JH—H= 2.15 Hz, H of indenyl ring), 2.38, 2.29 (m, 4H, 2CH2 of dppe). 31P{1H} NMR (CDCl3, 298 K, δ, p.p.m.): 85.3. 13C{1H} NMR (CDCl3, 298 K, δ, p.p.m.): 141—108 (Ph and indenyl group), 29.2 (t, JC—P= 22.64 Hz, CH2 of dppe). HRMS (ESI, m/z): 657.1 (M+), 615.3 (M+—N3). Anal. Calcd for C35H31N3P2Ru: C, 64.02; H, 4.76; N, 6.40. Found: C, 64.16; H, 4.82; N, 6.28.

Refinement top

All H atoms were initially located in a difference map, but were constrained to an idealized geometry. Constrained bond lengths and isotropic displacement parameters: C—H = 0.95 Å and Uiso(H) = 1.2 Ueq(C) for aromatic H atoms, and C—H = 0.99 Å and Uiso(H) = 1.2 Ueq(C) for methylene.

Structure description top

Organic azides are particularly important for synthesizing heterocyclic compounds by reaction with 1,3-dipole compounds (Padwa, 1976). Metal azido complexes have been reported to produce tetrazolates by reaction with nitrile (Paul & Nag, 1987; Ellis & Purcell, 1982) and isonitriles (Treichel et al., 1971; Beck & Schropp, 1975; Fehlhammer & Dahl, 1972).

Treatment of the complex [Ru(η5-C9H7)Cl(dppe)] with sodium azide in ethanol afforded the title compound [Ru(η5-C9H7)N3(dppe)] (Figure 1). In the crystal structure of the title compound, the azide groups are almost linear [N(3)—N(2)—N(1)=175.5 (8)°] and are coordinated to Ru with an Ru—N—N angle of 119.0 (5)°.

For the synthesis of the title, see: Singh et al. (2005). For the chemistry of organic azides, see: Labbe (1969); Patai (1971). For metal–azido complexes, see: Dori & Ziolo (1973); Frühauf (1997). Organic azides are particularly important for the synthesis of heterocyclic compounds by reaction with 1,3-dipole compounds, see: Padwa (1976). Metal–azido complexes have been reported to produce tetrazolates by reaction with nitrile and isonitriles, see: Beck & Schropp (1975); Ellis & Purcell (1982); Fehlhammer & Dahl (1972); Paul & Nag (1987); Treichel et al. (1971).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the title compound showing displacement ellipsoids at the 30% probability level. H atoms are omitted for clarity.
Azido[1,2-bis(diphenylphosphanyl)ethane-κ2P,P'](η5- indenyl)ruthenium(II) top
Crystal data top
[Ru(C9H7)(N3)(C26H24P2)]F(000) = 1344
Mr = 656.64Dx = 1.487 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.331 (6) ÅCell parameters from 1167 reflections
b = 14.567 (9) Åθ = 2.6–19.4°
c = 17.873 (11) ŵ = 0.67 mm1
β = 96.015 (19)°T = 200 K
V = 2934 (3) Å3Prism, orange-brown
Z = 40.22 × 0.10 × 0.04 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
5167 independent reflections
Radiation source: fine-focus sealed tube2438 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.155
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 1.8°
CCD rotation images, thick slices scansh = 1310
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1617
Tmin = 0.866, Tmax = 0.974l = 2120
20374 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 0.75 w = 1/[σ2(Fo2) + (0.0072P)2]
where P = (Fo2 + 2Fc2)/3
5167 reflections(Δ/σ)max = 0.001
370 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Ru(C9H7)(N3)(C26H24P2)]V = 2934 (3) Å3
Mr = 656.64Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.331 (6) ŵ = 0.67 mm1
b = 14.567 (9) ÅT = 200 K
c = 17.873 (11) Å0.22 × 0.10 × 0.04 mm
β = 96.015 (19)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
5167 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2438 reflections with I > 2σ(I)
Tmin = 0.866, Tmax = 0.974Rint = 0.155
20374 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 0.75Δρmax = 0.54 e Å3
5167 reflectionsΔρmin = 0.53 e Å3
370 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2833 (6)0.0987 (4)0.6432 (4)0.0325 (18)
C20.2129 (7)0.1041 (5)0.7006 (5)0.049 (2)
H20.22200.06010.74010.059*
C30.1277 (7)0.1734 (6)0.7021 (5)0.059 (3)
H30.07760.17640.74150.071*
C40.1185 (8)0.2362 (6)0.6459 (6)0.068 (3)
H40.06060.28340.64570.082*
C50.1902 (8)0.2329 (5)0.5900 (5)0.064 (3)
H50.18360.27900.55220.077*
C60.2728 (6)0.1636 (4)0.5869 (4)0.043 (2)
H60.32140.16080.54670.052*
C70.3040 (6)0.0764 (4)0.5736 (3)0.0283 (17)
C80.1933 (6)0.0576 (5)0.5384 (4)0.0391 (18)
H80.15450.00220.54970.047*
C90.1373 (7)0.1183 (5)0.4863 (4)0.051 (2)
H90.06110.10400.46160.062*
C100.1919 (7)0.1986 (5)0.4707 (4)0.042 (2)
H100.15310.24030.43540.050*
C110.3001 (7)0.2193 (4)0.5050 (4)0.042 (2)
H110.33760.27510.49320.050*
C120.3570 (6)0.1599 (4)0.5572 (4)0.040 (2)
H120.43240.17580.58220.048*
C130.5126 (5)0.0399 (4)0.5971 (4)0.0340 (18)
H13A0.48760.09180.56330.041*
H13B0.54100.01030.56630.041*
C140.6120 (5)0.0706 (4)0.6553 (4)0.0317 (17)
H14A0.68590.08070.63150.038*
H14B0.59040.12860.67940.038*
C150.7216 (6)0.1045 (4)0.6777 (4)0.0324 (18)
C160.6805 (7)0.1910 (4)0.6570 (4)0.039 (2)
H160.60400.20910.66880.047*
C170.7460 (7)0.2512 (5)0.6202 (4)0.055 (2)
H170.71530.31030.60690.066*
C180.8549 (8)0.2266 (6)0.6024 (4)0.057 (3)
H180.90040.26880.57680.069*
C190.9000 (7)0.1414 (6)0.6211 (4)0.058 (2)
H190.97610.12440.60790.070*
C200.8349 (6)0.0805 (5)0.6592 (4)0.045 (2)
H200.86690.02190.67300.053*
C210.7412 (6)0.0228 (4)0.7992 (4)0.0316 (18)
C220.7937 (6)0.1062 (4)0.7984 (5)0.046 (2)
H220.77850.14440.75540.055*
C230.8685 (7)0.1366 (5)0.8588 (5)0.062 (3)
H230.90700.19430.85650.075*
C240.8876 (6)0.0838 (5)0.9224 (4)0.050 (2)
H240.93760.10550.96470.060*
C250.8347 (6)0.0003 (5)0.9246 (4)0.043 (2)
H250.84780.03680.96840.052*
C260.7628 (6)0.0299 (4)0.8635 (4)0.041 (2)
H260.72660.08860.86530.049*
C270.3015 (7)0.1547 (4)0.7838 (4)0.0366 (19)
C280.1798 (7)0.1421 (4)0.7569 (4)0.043 (2)
H280.14810.16750.71010.051*
C290.1103 (7)0.0932 (5)0.7995 (5)0.050 (2)
H290.02850.08580.78260.060*
C300.1562 (6)0.0527 (5)0.8687 (4)0.045 (2)
H300.10520.01830.89700.054*
C310.2735 (6)0.0626 (5)0.8951 (4)0.0415 (18)
H310.30400.03460.94110.050*
C320.3488 (6)0.1149 (4)0.8534 (4)0.0294 (17)
C330.4714 (6)0.1389 (4)0.8655 (4)0.0319 (18)
H330.52610.12460.91160.038*
C340.4981 (6)0.1950 (4)0.8056 (4)0.035 (2)
H340.57560.22700.80280.042*
C350.4014 (7)0.2019 (4)0.7521 (4)0.038 (2)
H350.39570.24090.70580.046*
N10.4613 (5)0.0796 (3)0.8004 (3)0.0340 (16)
N20.4855 (6)0.0931 (4)0.8660 (4)0.0495 (19)
N30.5048 (7)0.1117 (5)0.9303 (4)0.082 (3)
P10.38539 (16)0.00036 (11)0.64504 (10)0.0282 (5)
P20.63247 (16)0.02162 (11)0.72512 (11)0.0288 (5)
Ru10.45473 (5)0.05865 (3)0.75994 (3)0.02632 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.027 (5)0.030 (4)0.037 (5)0.005 (3)0.011 (4)0.006 (3)
C20.043 (6)0.047 (5)0.058 (6)0.004 (4)0.001 (5)0.003 (4)
C30.044 (6)0.069 (6)0.062 (7)0.017 (5)0.007 (5)0.029 (5)
C40.065 (7)0.052 (6)0.082 (9)0.038 (5)0.024 (6)0.029 (5)
C50.082 (8)0.045 (5)0.061 (7)0.022 (5)0.018 (6)0.005 (5)
C60.057 (6)0.029 (4)0.041 (6)0.003 (4)0.009 (4)0.001 (4)
C70.037 (5)0.028 (4)0.021 (4)0.002 (3)0.006 (4)0.002 (3)
C80.031 (5)0.035 (4)0.049 (5)0.004 (4)0.009 (4)0.008 (4)
C90.045 (6)0.051 (5)0.057 (6)0.001 (4)0.001 (5)0.001 (4)
C100.047 (6)0.042 (5)0.034 (5)0.017 (4)0.003 (4)0.007 (4)
C110.061 (6)0.024 (4)0.038 (5)0.001 (4)0.001 (5)0.008 (3)
C120.044 (5)0.030 (4)0.043 (5)0.003 (4)0.004 (4)0.004 (4)
C130.032 (5)0.031 (4)0.040 (5)0.003 (3)0.007 (4)0.006 (3)
C140.024 (4)0.032 (4)0.038 (5)0.001 (3)0.001 (4)0.007 (4)
C150.025 (5)0.045 (4)0.027 (5)0.012 (3)0.006 (4)0.006 (3)
C160.048 (6)0.039 (4)0.030 (5)0.014 (4)0.004 (4)0.005 (4)
C170.049 (6)0.062 (5)0.053 (6)0.021 (5)0.001 (5)0.008 (4)
C180.045 (6)0.079 (6)0.045 (6)0.036 (5)0.009 (5)0.020 (5)
C190.020 (5)0.105 (7)0.049 (6)0.018 (5)0.006 (4)0.003 (5)
C200.032 (5)0.055 (5)0.048 (5)0.004 (4)0.013 (4)0.007 (4)
C210.017 (4)0.035 (4)0.043 (5)0.000 (3)0.004 (4)0.000 (3)
C220.034 (5)0.032 (4)0.066 (7)0.004 (4)0.020 (5)0.012 (4)
C230.054 (6)0.034 (5)0.091 (8)0.020 (4)0.027 (6)0.008 (5)
C240.040 (5)0.058 (6)0.048 (6)0.011 (4)0.010 (4)0.002 (4)
C250.033 (5)0.043 (5)0.051 (6)0.004 (4)0.005 (4)0.005 (4)
C260.044 (5)0.036 (4)0.041 (5)0.017 (4)0.001 (4)0.001 (4)
C270.034 (5)0.031 (4)0.046 (6)0.013 (4)0.010 (4)0.007 (4)
C280.040 (6)0.044 (5)0.043 (6)0.008 (4)0.001 (5)0.004 (4)
C290.021 (5)0.065 (6)0.062 (7)0.000 (4)0.000 (5)0.023 (5)
C300.035 (5)0.054 (5)0.050 (6)0.002 (4)0.020 (4)0.012 (5)
C310.037 (5)0.055 (4)0.033 (5)0.001 (4)0.006 (4)0.012 (4)
C320.031 (5)0.037 (4)0.019 (4)0.005 (3)0.005 (4)0.003 (3)
C330.030 (5)0.042 (4)0.022 (5)0.000 (3)0.006 (4)0.009 (3)
C340.026 (5)0.029 (4)0.050 (6)0.004 (3)0.006 (4)0.018 (4)
C350.046 (5)0.018 (4)0.053 (6)0.005 (3)0.017 (5)0.002 (3)
N10.035 (4)0.037 (4)0.028 (4)0.001 (3)0.006 (3)0.005 (3)
N20.056 (5)0.036 (4)0.056 (6)0.003 (3)0.003 (5)0.013 (4)
N30.103 (7)0.076 (5)0.065 (6)0.007 (4)0.004 (6)0.023 (5)
P10.0299 (12)0.0245 (10)0.0298 (12)0.0000 (8)0.0008 (10)0.0009 (8)
P20.0272 (12)0.0289 (9)0.0303 (13)0.0012 (8)0.0024 (10)0.0014 (9)
Ru10.0255 (3)0.0245 (3)0.0284 (3)0.0003 (3)0.0004 (2)0.0020 (3)
Geometric parameters (Å, º) top
C1—C21.367 (8)C19—H190.9500
C1—C61.376 (8)C20—H200.9500
C1—P11.847 (6)C21—C221.354 (8)
C2—C31.400 (9)C21—C261.383 (8)
C2—H20.9500C21—P21.830 (7)
C3—C41.354 (10)C22—C231.374 (9)
C3—H30.9500C22—H220.9500
C4—C51.354 (10)C23—C241.371 (9)
C4—H40.9500C23—H230.9500
C5—C61.382 (9)C24—C251.358 (8)
C5—H50.9500C24—H240.9500
C6—H60.9500C25—C261.365 (9)
C7—C81.371 (8)C25—H250.9500
C7—C121.400 (8)C26—H260.9500
C7—P11.861 (7)C27—C281.423 (9)
C8—C91.388 (9)C27—C321.425 (9)
C8—H80.9500C27—C351.487 (9)
C9—C101.366 (9)C27—Ru12.304 (6)
C9—H90.9500C28—C291.354 (9)
C10—C111.346 (9)C28—H280.9500
C10—H100.9500C29—C301.419 (9)
C11—C121.382 (8)C29—H290.9500
C11—H110.9500C30—C311.370 (9)
C12—H120.9500C30—H300.9500
C13—C141.517 (8)C31—C321.412 (8)
C13—P11.848 (6)C31—H310.9500
C13—H13A0.9900C32—C331.426 (8)
C13—H13B0.9900C32—Ru12.307 (6)
C14—P21.832 (6)C33—C341.406 (8)
C14—H14A0.9900C33—Ru12.210 (6)
C14—H14B0.9900C33—H331.0000
C15—C161.380 (8)C34—C351.380 (9)
C15—C201.403 (8)C34—Ru12.184 (6)
C15—P21.837 (6)C34—H341.0000
C16—C171.362 (8)C35—Ru12.173 (6)
C16—H160.9500C35—H351.0000
C17—C181.354 (9)N1—N21.192 (8)
C17—H170.9500N1—Ru12.139 (5)
C18—C191.369 (9)N2—N31.178 (8)
C18—H180.9500P1—Ru12.284 (2)
C19—C201.379 (8)P2—Ru12.235 (2)
C2—C1—C6119.8 (7)C28—C27—C32120.3 (7)
C2—C1—P1116.4 (5)C28—C27—C35132.9 (7)
C6—C1—P1123.7 (6)C32—C27—C35106.8 (7)
C1—C2—C3120.9 (8)C28—C27—Ru1125.5 (5)
C1—C2—H2119.5C32—C27—Ru172.1 (4)
C3—C2—H2119.5C35—C27—Ru165.9 (3)
C4—C3—C2118.2 (8)C29—C28—C27118.6 (7)
C4—C3—H3120.9C29—C28—H28120.7
C2—C3—H3120.9C27—C28—H28120.7
C5—C4—C3121.3 (8)C28—C29—C30121.8 (7)
C5—C4—H4119.4C28—C29—H29119.1
C3—C4—H4119.4C30—C29—H29119.1
C4—C5—C6121.1 (8)C31—C30—C29120.7 (7)
C4—C5—H5119.5C31—C30—H30119.7
C6—C5—H5119.5C29—C30—H30119.7
C1—C6—C5118.7 (7)C30—C31—C32119.5 (7)
C1—C6—H6120.7C30—C31—H31120.2
C5—C6—H6120.7C32—C31—H31120.2
C8—C7—C12118.0 (6)C31—C32—C27119.2 (7)
C8—C7—P1124.0 (5)C31—C32—C33133.2 (7)
C12—C7—P1117.9 (5)C27—C32—C33107.6 (6)
C7—C8—C9120.8 (7)C31—C32—Ru1125.4 (4)
C7—C8—H8119.6C27—C32—Ru171.9 (4)
C9—C8—H8119.6C33—C32—Ru167.9 (4)
C10—C9—C8119.8 (8)C34—C33—C32108.2 (6)
C10—C9—H9120.1C34—C33—Ru170.4 (4)
C8—C9—H9120.1C32—C33—Ru175.4 (4)
C11—C10—C9120.6 (7)C34—C33—H33125.7
C11—C10—H10119.7C32—C33—H33125.7
C9—C10—H10119.7Ru1—C33—H33125.7
C10—C11—C12120.3 (7)C35—C34—C33110.5 (7)
C10—C11—H11119.8C35—C34—Ru171.1 (4)
C12—C11—H11119.8C33—C34—Ru172.3 (4)
C11—C12—C7120.3 (7)C35—C34—H34124.7
C11—C12—H12119.8C33—C34—H34124.7
C7—C12—H12119.8Ru1—C34—H34124.7
C14—C13—P1109.6 (4)C34—C35—C27106.5 (7)
C14—C13—H13A109.8C34—C35—Ru172.0 (4)
P1—C13—H13A109.8C27—C35—Ru175.5 (3)
C14—C13—H13B109.8C34—C35—H35126.3
P1—C13—H13B109.8C27—C35—H35126.3
H13A—C13—H13B108.2Ru1—C35—H35126.3
C13—C14—P2106.4 (4)N2—N1—Ru1119.0 (5)
C13—C14—H14A110.4N3—N2—N1175.5 (8)
P2—C14—H14A110.4C13—P1—C1105.1 (3)
C13—C14—H14B110.4C13—P1—C7103.0 (3)
P2—C14—H14B110.4C1—P1—C7100.8 (3)
H14A—C14—H14B108.6C13—P1—Ru1108.8 (2)
C16—C15—C20117.1 (6)C1—P1—Ru1117.5 (2)
C16—C15—P2122.5 (5)C7—P1—Ru1119.7 (2)
C20—C15—P2120.4 (5)C21—P2—C14105.1 (3)
C17—C16—C15122.1 (7)C21—P2—C15101.8 (3)
C17—C16—H16119.0C14—P2—C15101.8 (3)
C15—C16—H16119.0C21—P2—Ru1116.2 (2)
C18—C17—C16119.9 (8)C14—P2—Ru1108.2 (2)
C18—C17—H17120.0C15—P2—Ru1121.7 (2)
C16—C17—H17120.0N1—Ru1—C35157.8 (2)
C17—C18—C19120.6 (7)N1—Ru1—C34137.1 (3)
C17—C18—H18119.7C35—Ru1—C3436.9 (2)
C19—C18—H18119.7N1—Ru1—C33102.3 (2)
C18—C19—C20119.8 (7)C35—Ru1—C3363.0 (3)
C18—C19—H19120.1C34—Ru1—C3337.3 (2)
C20—C19—H19120.1N1—Ru1—P282.33 (15)
C19—C20—C15120.4 (7)C35—Ru1—P2117.78 (19)
C19—C20—H20119.8C34—Ru1—P298.59 (19)
C15—C20—H20119.8C33—Ru1—P2111.50 (18)
C22—C21—C26117.9 (7)N1—Ru1—P187.17 (16)
C22—C21—P2125.0 (6)C35—Ru1—P1103.4 (2)
C26—C21—P2116.9 (5)C34—Ru1—P1135.8 (2)
C21—C22—C23121.1 (7)C33—Ru1—P1162.63 (18)
C21—C22—H22119.4P2—Ru1—P183.97 (7)
C23—C22—H22119.4N1—Ru1—C27120.6 (2)
C22—C23—C24120.1 (7)C35—Ru1—C2738.6 (2)
C22—C23—H23119.9C34—Ru1—C2761.5 (2)
C24—C23—H23119.9C33—Ru1—C2761.3 (3)
C25—C24—C23119.6 (8)P2—Ru1—C27156.39 (18)
C25—C24—H24120.2P1—Ru1—C27101.4 (2)
C23—C24—H24120.2N1—Ru1—C3295.3 (2)
C24—C25—C26119.7 (7)C35—Ru1—C3262.8 (2)
C24—C25—H25120.2C34—Ru1—C3261.3 (2)
C26—C25—H25120.2C33—Ru1—C3236.7 (2)
C25—C26—C21121.6 (6)P2—Ru1—C32147.10 (19)
C25—C26—H26119.2P1—Ru1—C32128.82 (19)
C21—C26—H26119.2C27—Ru1—C3236.0 (2)

Experimental details

Crystal data
Chemical formula[Ru(C9H7)(N3)(C26H24P2)]
Mr656.64
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)11.331 (6), 14.567 (9), 17.873 (11)
β (°) 96.015 (19)
V3)2934 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.67
Crystal size (mm)0.22 × 0.10 × 0.04
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.866, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
20374, 5167, 2438
Rint0.155
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.096, 0.75
No. of reflections5167
No. of parameters370
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.53

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

We are grateful for financial support of this work by the National Science Council of the Republic of China (NSC Grant No. 97–2113-M-003–007-MY2) and the National Taiwan Normal University (99031012).

References

First citationBeck, W. & Schropp, K. (1975). Chem. Ber. 108, 3317–3325.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDori, Z. & Ziolo, R. F. (1973). Chem. Rev. 73, 247–254.  CrossRef CAS Web of Science Google Scholar
First citationEllis, W. R. Jr & Purcell, W. L. (1982). Inorg. Chem. 21, 834–837.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFehlhammer, W. P. & Dahl, L. F. (1972). J. Am. Chem. Soc. 94, 3370–3377.  CSD CrossRef CAS Web of Science Google Scholar
First citationFrühauf, H. W. (1997). Chem. Rev. 97, 523–596.  PubMed Google Scholar
First citationLabbe, G. (1969). Chem. Rev. 69, 345–363.  CAS Google Scholar
First citationPadwa, A. (1976). Angew. Chem. Int. Ed. Engl. 15, 123–136.  CrossRef Web of Science Google Scholar
First citationPatai, S. (1971). The Chemistry of the Azido group. New York: Interscience.  Google Scholar
First citationPaul, P. & Nag, K. (1987). Inorg. Chem. 26, 2969–2974.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, K. S., Thöne, C. & Kollipara, M. R. (2005). J. Organomet. Chem. 690, 4222–4231.  Web of Science CSD CrossRef CAS Google Scholar
First citationTreichel, P. M., Knebel, W. J. & Hess, R. W. (1971). J. Am. Chem. Soc. 93, 5424–5433.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds