metal-organic compounds
catena-Poly[[[diaquacobalt(II)]-μ-(3,5-dinitro-2-oxidobenzoato)-κ3O1,O2:O1′-[tetraaquacobalt(II)]-μ-(3,5-dinitro-2-oxidobenzoato)-κ3O1:O1′,O2] dihydrate]
aFaculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia, and bSchool of Biomolecular and Physical Sciences, Griffith University, Nathan, Queensland 4111, Australia
*Correspondence e-mail: g.smith@qut.edu.au
In polymeric title compound, {[Co2(C7H2N2O7)2(H2O)6]·2H2O}n, obtained from the reaction of 3,5-dinitrosalicylic acid with cobalt(II) acetate, both CoII atoms are located on inversion centres and exhibit a distorted octahedral coordination geometry. The coordination sphere about one CoII atom comprises four O-atom donors from two bidentate chelate (Ophenolate and Ocarboxyl) and bridging dianionic ligands and two water molecules [Co—O range = 2.0249 (11)–2.1386 (14) Å], while that about the second CoII atom has four water molecules and two bridging carboxylate O-donor atoms [Co—O range = 2.0690 (14)–2.1364 (11) Å]. The coordinated water molecules as well as the water molecules of solvation give O—H⋯O water–water and water–carboxyl hydrogen-bonding interactions in the three-dimensional framework structure.
Related literature
For the structures of similar hydrated complexes of CoII, see: Deng et al. (2008); Sobolev et al. (2003); Tahir et al. (1996, 1997). For the structure of a mixed-ligand CoII complex with 3,5-dinitrosalicylic acid and the structures of the acid and its salts, see: Zhong et al. (2009); Kumar et al. (1999); Smith et al. (2003, 2007).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.
Supporting information
https://doi.org/10.1107/S1600536810052694/rn2077sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810052694/rn2077Isup2.hkl
The title compound was synthesized by heating together under reflux for 10 minutes, 1 mmol of cobalt(II) acetate and 2 mmol of 3,5-dinitrosalicylic acid in 50 ml of 50% ethanol–water. After concentration to ca 30 ml, partial room temperature evaporation of the hot-filtered solution gave large well formed red block crystals of (I).
Hydrogen atoms potentially involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H atoms were included in the
in calculated positions with C–H = 0.93 Å and allowed to ride, with Uiso(H) = 1.2Ueq(C).3,5-Dinitrosalicylic acid (DNSA) has proved to be a useful synthon in crystal engineering (Kumar et al., 1999) and the structures of a large number of its proton-transfer compounds with Lewis bases have been reported (Smith et al., 2003, 2007). However, the structures of the transition metal complexes of DNSA are not so common and in particular, with CoII, there is only one example, a monomeric mixed-ligand complex with 2,2'-bipyridine (Zhong et al. , 2009), in which the DNSA ligand is dianionic and chelates through carboxyl and phenolate O donors. We obtained the title compound, having an
[Co(DNSA)(H2O)4], from the reaction of cobalt(II) acetate with 3,5-dinitrosalicylic acid in aqueous ethanol. This CoII complex might have been expected to be typically octahedral and have a simple monomeric involving the dianionic DNSA ligand in a bidentate chelate form, such as found in other similar hydrated cobalt(II) carboxylates, e.g. the acetate (Sobolev et al., 2003), the 4-nitrosalicylate (Tahir et al., 1997), the 4-formylbenzoate (Deng et al., 2008) or the 3,5-dinitrobenzoate (Tahir et al., 1996). However, the structure of (I) reported here showed the presence of a polymeric complex hydrate, {[Co2(C7H2N2O7)2(H2O)6]. 2H2O}n (I), based on two slightly distorted octahedral but different CoII centres.In the structure (Fig. 1), the two separate six-coordinate CoO6 complex centres lie on crystallographic inversion centres at (1, 1/2, 1/2) (Co1) and (1/2, 0, 1/2) (Co2). The coordination sphere about Co1 comprises four O donors (Ophenolate, Ocarboxyl) from two trans-related bidentate chelate dianionic DNSA ligands [Co—O, 2.0249 (11), 2.0508 (11) Å] and two water molecules [Co—O1W, 2.1386 (14) Å]. The second carboxyl O of each DNSA ligand (O11, O11ii) [for symmetry code (ii), see Table 1], provide trans-related bridges to the second Co centre [Co—O, 2.1364 (11) Å], with four water molecules (O2W, O3W) completing the coordination [Co—O, 2.1122 (14), 2.0690 (14) Å]. This results in polymer chain substructures which extend along the b cell direction (Fig. 2). The coordinated water molecules as well as the water molecule of solvation (O4W) give both water–water and inter-chain O—H···Ocarboxyl, nitro hydrogen-bonding associations (Table 1), giving an overall three-dimensional framework structure.
For the structures of similar hydrated complexes of CoII, see: Deng et al. (2008); Sobolev et al. (2003); Tahir et al. (1996, 1997). For the structure of a mixed-ligand CoII complex with 3,5-dinitrosalicylic acid and the structures of the acid and its salts, see: Zhong et al. (2009); Kumar et al. (1999); Smith et al. (2003, 2007).
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).Fig. 1. The molecular configuration and atom-numbering scheme for (I), with non-H atoms drawn as 40% probability ellipsoids. Both Co1 and Co2 lie on crystallographic inversion centres. For symmetry codes: (i) and (ii), see Table 1. | |
Fig. 2. The coordination polymer structure of (I) extending across the b cell direction showing intra-unit hydrogen-bonding associations as dashed lines. |
[Co2(C7H2N2O7)2(H2O)6]·2H2O | Z = 1 |
Mr = 714.20 | F(000) = 362 |
Triclinic, P1 | Dx = 1.999 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.8188 (3) Å | Cell parameters from 5528 reflections |
b = 7.7366 (4) Å | θ = 3.3–28.7° |
c = 11.3671 (5) Å | µ = 1.52 mm−1 |
α = 92.658 (4)° | T = 200 K |
β = 96.313 (4)° | Plate, red |
γ = 94.515 (4)° | 0.30 × 0.30 × 0.18 mm |
V = 593.26 (5) Å3 |
Oxford Diffraction Gemini-S Ultra CCD-detector diffractometer | 2560 independent reflections |
Radiation source: fine-focus sealed tube | 2236 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
ω scans | θmax = 27.0°, θmin = 3.3° |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | h = −8→8 |
Tmin = 0.865, Tmax = 0.980 | k = −9→9 |
7532 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.061 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0341P)2 + 0.1689P] where P = (Fo2 + 2Fc2)/3 |
2560 reflections | (Δ/σ)max < 0.001 |
225 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.47 e Å−3 |
[Co2(C7H2N2O7)2(H2O)6]·2H2O | γ = 94.515 (4)° |
Mr = 714.20 | V = 593.26 (5) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.8188 (3) Å | Mo Kα radiation |
b = 7.7366 (4) Å | µ = 1.52 mm−1 |
c = 11.3671 (5) Å | T = 200 K |
α = 92.658 (4)° | 0.30 × 0.30 × 0.18 mm |
β = 96.313 (4)° |
Oxford Diffraction Gemini-S Ultra CCD-detector diffractometer | 2560 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | 2236 reflections with I > 2σ(I) |
Tmin = 0.865, Tmax = 0.980 | Rint = 0.020 |
7532 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | 0 restraints |
wR(F2) = 0.061 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.32 e Å−3 |
2560 reflections | Δρmin = −0.47 e Å−3 |
225 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 1.00000 | 0.50000 | 0.50000 | 0.0121 (1) | |
Co2 | 0.50000 | 0.00000 | 0.50000 | 0.0130 (1) | |
O1W | 1.2442 (2) | 0.45126 (19) | 0.40373 (13) | 0.0250 (4) | |
O2 | 0.85747 (18) | 0.60915 (14) | 0.36011 (10) | 0.0176 (3) | |
O2W | 0.4854 (2) | 0.23727 (17) | 0.59704 (13) | 0.0210 (4) | |
O3W | 0.2062 (2) | 0.0052 (2) | 0.43256 (14) | 0.0276 (4) | |
O11 | 0.57060 (17) | 0.13604 (14) | 0.34878 (10) | 0.0147 (3) | |
O12 | 0.85493 (18) | 0.26657 (14) | 0.43617 (10) | 0.0179 (3) | |
O31 | 0.8352 (2) | 0.89467 (15) | 0.24132 (12) | 0.0270 (4) | |
O32 | 0.9601 (2) | 0.86453 (16) | 0.07589 (12) | 0.0299 (4) | |
O51 | 0.6887 (2) | 0.35705 (18) | −0.17303 (11) | 0.0335 (4) | |
O52 | 0.5849 (2) | 0.12456 (17) | −0.09262 (12) | 0.0325 (4) | |
N3 | 0.8741 (2) | 0.80472 (17) | 0.15690 (12) | 0.0165 (4) | |
N5 | 0.6572 (2) | 0.2756 (2) | −0.08527 (13) | 0.0208 (4) | |
C1 | 0.7367 (2) | 0.3493 (2) | 0.24300 (14) | 0.0125 (4) | |
C2 | 0.8069 (2) | 0.5305 (2) | 0.25828 (14) | 0.0121 (4) | |
C3 | 0.8144 (2) | 0.6185 (2) | 0.15038 (14) | 0.0133 (4) | |
C4 | 0.7721 (2) | 0.5375 (2) | 0.03877 (14) | 0.0154 (5) | |
C5 | 0.7072 (2) | 0.3626 (2) | 0.03086 (14) | 0.0153 (5) | |
C6 | 0.6860 (2) | 0.2692 (2) | 0.13166 (14) | 0.0139 (4) | |
C11 | 0.7191 (2) | 0.24360 (19) | 0.35023 (14) | 0.0122 (4) | |
O4W | 1.2050 (3) | 0.1926 (2) | 0.21463 (14) | 0.0317 (5) | |
H4 | 0.78670 | 0.59820 | −0.02890 | 0.0180* | |
H6 | 0.63760 | 0.15300 | 0.12370 | 0.0170* | |
H11W | 1.316 (4) | 0.536 (4) | 0.399 (2) | 0.044 (8)* | |
H12W | 1.230 (4) | 0.399 (4) | 0.345 (3) | 0.050 (8)* | |
H21W | 0.380 (5) | 0.258 (4) | 0.597 (3) | 0.049 (9)* | |
H22W | 0.516 (5) | 0.231 (4) | 0.665 (3) | 0.077 (11)* | |
H31W | 0.146 (4) | −0.086 (4) | 0.451 (2) | 0.050 (8)* | |
H32W | 0.158 (5) | 0.044 (4) | 0.382 (3) | 0.058 (9)* | |
H41W | 1.310 (4) | 0.161 (3) | 0.224 (2) | 0.045 (8)* | |
H42W | 1.148 (5) | 0.140 (4) | 0.165 (3) | 0.070 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0155 (2) | 0.0109 (2) | 0.0091 (2) | −0.0016 (1) | −0.0011 (1) | 0.0015 (1) |
Co2 | 0.0146 (2) | 0.0127 (2) | 0.0120 (2) | 0.0006 (1) | 0.0018 (1) | 0.0030 (1) |
O1W | 0.0272 (7) | 0.0233 (7) | 0.0241 (7) | −0.0054 (6) | 0.0098 (6) | −0.0056 (6) |
O2 | 0.0282 (7) | 0.0128 (5) | 0.0106 (6) | 0.0011 (5) | −0.0032 (5) | 0.0007 (4) |
O2W | 0.0238 (7) | 0.0198 (6) | 0.0203 (7) | 0.0034 (5) | 0.0061 (6) | −0.0004 (5) |
O3W | 0.0180 (6) | 0.0312 (8) | 0.0339 (8) | −0.0007 (6) | −0.0009 (6) | 0.0201 (7) |
O11 | 0.0166 (6) | 0.0136 (5) | 0.0135 (6) | −0.0024 (4) | 0.0011 (4) | 0.0028 (4) |
O12 | 0.0230 (6) | 0.0147 (6) | 0.0137 (6) | −0.0046 (5) | −0.0046 (5) | 0.0042 (4) |
O31 | 0.0455 (8) | 0.0141 (6) | 0.0228 (7) | 0.0028 (6) | 0.0109 (6) | −0.0007 (5) |
O32 | 0.0448 (8) | 0.0199 (6) | 0.0272 (7) | −0.0054 (6) | 0.0164 (6) | 0.0084 (5) |
O51 | 0.0532 (9) | 0.0363 (8) | 0.0093 (6) | −0.0044 (7) | 0.0014 (6) | 0.0025 (6) |
O52 | 0.0432 (9) | 0.0287 (7) | 0.0214 (7) | −0.0152 (6) | 0.0017 (6) | −0.0080 (6) |
N3 | 0.0194 (7) | 0.0139 (7) | 0.0161 (7) | 0.0002 (6) | 0.0008 (6) | 0.0049 (5) |
N5 | 0.0220 (7) | 0.0268 (8) | 0.0123 (7) | −0.0005 (6) | −0.0002 (6) | −0.0025 (6) |
C1 | 0.0122 (7) | 0.0136 (7) | 0.0118 (7) | 0.0003 (6) | 0.0019 (6) | 0.0027 (6) |
C2 | 0.0116 (7) | 0.0132 (7) | 0.0117 (7) | 0.0016 (6) | 0.0009 (6) | 0.0023 (6) |
C3 | 0.0149 (8) | 0.0107 (7) | 0.0144 (8) | 0.0003 (6) | 0.0017 (6) | 0.0033 (6) |
C4 | 0.0165 (8) | 0.0185 (8) | 0.0118 (8) | 0.0021 (6) | 0.0026 (6) | 0.0047 (6) |
C5 | 0.0160 (8) | 0.0193 (8) | 0.0098 (8) | 0.0004 (6) | 0.0000 (6) | −0.0019 (6) |
C6 | 0.0135 (7) | 0.0128 (7) | 0.0149 (8) | −0.0008 (6) | 0.0011 (6) | 0.0010 (6) |
C11 | 0.0163 (8) | 0.0091 (7) | 0.0116 (8) | 0.0014 (6) | 0.0030 (6) | 0.0004 (6) |
O4W | 0.0266 (8) | 0.0380 (9) | 0.0288 (8) | 0.0067 (7) | −0.0036 (6) | −0.0078 (7) |
Co1—O1W | 2.1386 (14) | O1W—H12W | 0.76 (3) |
Co1—O2 | 2.0249 (11) | O1W—H11W | 0.79 (3) |
Co1—O12 | 2.0508 (11) | O2W—H21W | 0.75 (3) |
Co1—O1Wi | 2.1386 (14) | O2W—H22W | 0.78 (3) |
Co1—O2i | 2.0249 (11) | O3W—H32W | 0.72 (3) |
Co1—O12i | 2.0508 (11) | O3W—H31W | 0.84 (3) |
Co2—O2W | 2.1122 (14) | O4W—H42W | 0.74 (3) |
Co2—O3W | 2.0690 (14) | O4W—H41W | 0.77 (3) |
Co2—O11 | 2.1364 (11) | N3—C3 | 1.462 (2) |
Co2—O2Wii | 2.1122 (14) | N5—C5 | 1.447 (2) |
Co2—O3Wii | 2.0690 (14) | C1—C11 | 1.509 (2) |
Co2—O11ii | 2.1364 (11) | C1—C2 | 1.442 (2) |
O2—C2 | 1.2817 (19) | C1—C6 | 1.379 (2) |
O11—C11 | 1.2572 (18) | C2—C3 | 1.434 (2) |
O12—C11 | 1.2660 (19) | C3—C4 | 1.379 (2) |
O31—N3 | 1.2242 (19) | C4—C5 | 1.386 (2) |
O32—N3 | 1.2335 (19) | C5—C6 | 1.397 (2) |
O51—N5 | 1.234 (2) | C4—H4 | 0.9300 |
O52—N5 | 1.228 (2) | C6—H6 | 0.9300 |
O1W—Co1—O2 | 91.94 (5) | Co1—O1W—H12W | 122 (2) |
O1W—Co1—O12 | 90.72 (5) | H21W—O2W—H22W | 101 (4) |
O1W—Co1—O1Wi | 180.00 | Co2—O2W—H21W | 110 (2) |
O1W—Co1—O2i | 88.06 (5) | Co2—O2W—H22W | 113 (2) |
O1W—Co1—O12i | 89.28 (5) | H31W—O3W—H32W | 114 (3) |
O2—Co1—O12 | 87.76 (4) | Co2—O3W—H31W | 107.2 (19) |
O1Wi—Co1—O2 | 88.06 (5) | Co2—O3W—H32W | 133 (3) |
O2—Co1—O2i | 180.00 | H41W—O4W—H42W | 108 (3) |
O2—Co1—O12i | 92.24 (4) | O31—N3—O32 | 122.86 (14) |
O1Wi—Co1—O12 | 89.28 (5) | O32—N3—C3 | 118.20 (13) |
O2i—Co1—O12 | 92.24 (4) | O31—N3—C3 | 118.94 (13) |
O12—Co1—O12i | 180.00 | O51—N5—C5 | 118.39 (14) |
O1Wi—Co1—O2i | 91.94 (5) | O51—N5—O52 | 122.71 (15) |
O1Wi—Co1—O12i | 90.72 (5) | O52—N5—C5 | 118.90 (14) |
O2i—Co1—O12i | 87.76 (4) | C2—C1—C11 | 119.84 (14) |
O2W—Co2—O3W | 89.80 (6) | C6—C1—C11 | 118.89 (14) |
O2W—Co2—O11 | 90.74 (5) | C2—C1—C6 | 121.27 (14) |
O2W—Co2—O2Wii | 180.00 | C1—C2—C3 | 114.96 (14) |
O2W—Co2—O3Wii | 90.20 (6) | O2—C2—C1 | 123.15 (14) |
O2W—Co2—O11ii | 89.26 (5) | O2—C2—C3 | 121.88 (14) |
O3W—Co2—O11 | 86.59 (5) | C2—C3—C4 | 123.97 (14) |
O2Wii—Co2—O3W | 90.20 (6) | N3—C3—C2 | 119.02 (13) |
O3W—Co2—O3Wii | 180.00 | N3—C3—C4 | 116.99 (14) |
O3W—Co2—O11ii | 93.41 (5) | C3—C4—C5 | 117.76 (14) |
O2Wii—Co2—O11 | 89.26 (5) | N5—C5—C6 | 119.33 (14) |
O3Wii—Co2—O11 | 93.41 (5) | C4—C5—C6 | 121.83 (15) |
O11—Co2—O11ii | 180.00 | N5—C5—C4 | 118.84 (14) |
O2Wii—Co2—O3Wii | 89.80 (6) | C1—C6—C5 | 120.05 (14) |
O2Wii—Co2—O11ii | 90.74 (5) | O12—C11—C1 | 118.49 (13) |
O3Wii—Co2—O11ii | 86.59 (5) | O11—C11—O12 | 123.51 (14) |
Co1—O2—C2 | 124.09 (10) | O11—C11—C1 | 118.00 (13) |
Co2—O11—C11 | 123.33 (10) | C3—C4—H4 | 121.00 |
Co1—O12—C11 | 126.18 (10) | C5—C4—H4 | 121.00 |
H11W—O1W—H12W | 110 (3) | C1—C6—H6 | 120.00 |
Co1—O1W—H11W | 112.7 (19) | C5—C6—H6 | 120.00 |
O1W—Co1—O2—C2 | 59.16 (12) | O51—N5—C5—C6 | −175.47 (14) |
O12—Co1—O2—C2 | −31.48 (12) | O52—N5—C5—C4 | −174.28 (14) |
O1Wi—Co1—O2—C2 | −120.84 (12) | O52—N5—C5—C6 | 4.8 (2) |
O12i—Co1—O2—C2 | 148.52 (12) | C6—C1—C2—O2 | −179.22 (14) |
O1W—Co1—O12—C11 | −99.19 (13) | C6—C1—C2—C3 | 1.4 (2) |
O2—Co1—O12—C11 | −7.27 (13) | C11—C1—C2—O2 | 0.3 (2) |
O1Wi—Co1—O12—C11 | 80.81 (13) | C11—C1—C2—C3 | −179.01 (12) |
O2i—Co1—O12—C11 | 172.73 (13) | C2—C1—C6—C5 | 1.7 (2) |
O2W—Co2—O11—C11 | 58.56 (12) | C11—C1—C6—C5 | −177.86 (13) |
O3W—Co2—O11—C11 | 148.31 (12) | C2—C1—C11—O11 | 139.77 (14) |
O2Wii—Co2—O11—C11 | −121.44 (12) | C2—C1—C11—O12 | −40.9 (2) |
O3Wii—Co2—O11—C11 | −31.69 (12) | C6—C1—C11—O11 | −40.7 (2) |
Co1—O2—C2—C1 | 37.23 (19) | C6—C1—C11—O12 | 138.71 (14) |
Co1—O2—C2—C3 | −143.47 (11) | O2—C2—C3—N3 | −2.4 (2) |
Co2—O11—C11—O12 | 9.1 (2) | O2—C2—C3—C4 | 176.25 (14) |
Co2—O11—C11—C1 | −171.53 (10) | C1—C2—C3—N3 | 176.94 (12) |
Co1—O12—C11—O11 | −141.37 (12) | C1—C2—C3—C4 | −4.4 (2) |
Co1—O12—C11—C1 | 39.30 (19) | N3—C3—C4—C5 | −177.33 (13) |
O31—N3—C3—C2 | −31.2 (2) | C2—C3—C4—C5 | 4.0 (2) |
O31—N3—C3—C4 | 150.07 (14) | C3—C4—C5—N5 | 178.51 (13) |
O32—N3—C3—C2 | 149.57 (14) | C3—C4—C5—C6 | −0.5 (2) |
O32—N3—C3—C4 | −29.2 (2) | N5—C5—C6—C1 | 178.72 (13) |
O51—N5—C5—C4 | 5.5 (2) | C4—C5—C6—C1 | −2.3 (2) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H11W···O2Wi | 0.79 (3) | 2.13 (3) | 2.918 (2) | 175 (2) |
O1W—H12W···O4W | 0.76 (3) | 2.11 (3) | 2.844 (2) | 163 (3) |
O2W—H21W···O2iii | 0.75 (3) | 2.08 (3) | 2.7837 (18) | 158 (3) |
O2W—H22W···O51iv | 0.78 (3) | 2.21 (3) | 2.8962 (19) | 146 (3) |
O3W—H31W···O12ii | 0.84 (3) | 1.94 (3) | 2.6666 (19) | 145 (2) |
O3W—H32W···O4Wv | 0.72 (3) | 2.31 (3) | 2.927 (2) | 145 (3) |
O4W—H41W···O11vi | 0.77 (3) | 2.18 (3) | 2.851 (2) | 146 (2) |
O4W—H42W···O32vii | 0.74 (3) | 2.51 (3) | 3.178 (2) | 152 (3) |
C6—H6···O52viii | 0.93 | 2.52 | 3.420 (2) | 164 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y, −z+1; (iii) −x+1, −y+1, −z+1; (iv) x, y, z+1; (v) x−1, y, z; (vi) x+1, y, z; (vii) x, y−1, z; (viii) −x+1, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | [Co2(C7H2N2O7)2(H2O)6]·2H2O |
Mr | 714.20 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 200 |
a, b, c (Å) | 6.8188 (3), 7.7366 (4), 11.3671 (5) |
α, β, γ (°) | 92.658 (4), 96.313 (4), 94.515 (4) |
V (Å3) | 593.26 (5) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.52 |
Crystal size (mm) | 0.30 × 0.30 × 0.18 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini-S Ultra CCD-detector |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.865, 0.980 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7532, 2560, 2236 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.061, 1.07 |
No. of reflections | 2560 |
No. of parameters | 225 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.32, −0.47 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H11W···O2Wi | 0.79 (3) | 2.13 (3) | 2.918 (2) | 175 (2) |
O1W—H12W···O4W | 0.76 (3) | 2.11 (3) | 2.844 (2) | 163 (3) |
O2W—H21W···O2ii | 0.75 (3) | 2.08 (3) | 2.7837 (18) | 158 (3) |
O2W—H22W···O51iii | 0.78 (3) | 2.21 (3) | 2.8962 (19) | 146 (3) |
O3W—H31W···O12iv | 0.84 (3) | 1.94 (3) | 2.6666 (19) | 145 (2) |
O3W—H32W···O4Wv | 0.72 (3) | 2.31 (3) | 2.927 (2) | 145 (3) |
O4W—H41W···O11vi | 0.77 (3) | 2.18 (3) | 2.851 (2) | 146 (2) |
O4W—H42W···O32vii | 0.74 (3) | 2.51 (3) | 3.178 (2) | 152 (3) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x, y, z+1; (iv) −x+1, −y, −z+1; (v) x−1, y, z; (vi) x+1, y, z; (vii) x, y−1, z. |
Acknowledgements
The authors acknowledge financial support from the Australian Research Committee, the Faculty of Science and Technology and the University Library, Queensland University of Technology and Griffith University.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Deng, Z.-P., Gao, S., Huo, L.-H. & Ng, S. W. (2008). Acta Cryst. E64, m446. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kumar, V. S. S., Kuduva, S. S. & Desiraju, G. R. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 1069–1073. Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2003). Aust. J. Chem. 56, 707–713. Web of Science CSD CrossRef CAS Google Scholar
Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2007). Aust. J. Chem. 60, 264–277. Web of Science CSD CrossRef CAS Google Scholar
Sobolev, A. N., Miminoshvili, E. B., Miminoshvili, K. E. & Sakvarelidze, T. N. (2003). Acta Cryst. E59, m836–m837. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tahir, M. N., Ülkü, D. & Mövsümov, E. M. (1996). Acta Cryst. C52, 1392–1394. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Tahir, M. N., Ülkü, D., Movsumov, E. M. & Hökelek, T. (1997). Acta Cryst. C53, 176–179. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Zhong, C.-L., Jiang, X.-R. & Wen, D.-C. (2009). Acta Cryst. E65, m79. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
3,5-Dinitrosalicylic acid (DNSA) has proved to be a useful synthon in crystal engineering (Kumar et al., 1999) and the structures of a large number of its proton-transfer compounds with Lewis bases have been reported (Smith et al., 2003, 2007). However, the structures of the transition metal complexes of DNSA are not so common and in particular, with CoII, there is only one example, a monomeric mixed-ligand complex with 2,2'-bipyridine (Zhong et al. , 2009), in which the DNSA ligand is dianionic and chelates through carboxyl and phenolate O donors. We obtained the title compound, having an empirical formula [Co(DNSA)(H2O)4], from the reaction of cobalt(II) acetate with 3,5-dinitrosalicylic acid in aqueous ethanol. This CoII complex might have been expected to be typically octahedral and have a simple monomeric molecular formula involving the dianionic DNSA ligand in a bidentate chelate form, such as found in other similar hydrated cobalt(II) carboxylates, e.g. the acetate (Sobolev et al., 2003), the 4-nitrosalicylate (Tahir et al., 1997), the 4-formylbenzoate (Deng et al., 2008) or the 3,5-dinitrobenzoate (Tahir et al., 1996). However, the structure of (I) reported here showed the presence of a polymeric complex hydrate, {[Co2(C7H2N2O7)2(H2O)6]. 2H2O}n (I), based on two slightly distorted octahedral but different CoII centres.
In the structure (Fig. 1), the two separate six-coordinate CoO6 complex centres lie on crystallographic inversion centres at (1, 1/2, 1/2) (Co1) and (1/2, 0, 1/2) (Co2). The coordination sphere about Co1 comprises four O donors (Ophenolate, Ocarboxyl) from two trans-related bidentate chelate dianionic DNSA ligands [Co—O, 2.0249 (11), 2.0508 (11) Å] and two water molecules [Co—O1W, 2.1386 (14) Å]. The second carboxyl O of each DNSA ligand (O11, O11ii) [for symmetry code (ii), see Table 1], provide trans-related bridges to the second Co centre [Co—O, 2.1364 (11) Å], with four water molecules (O2W, O3W) completing the coordination [Co—O, 2.1122 (14), 2.0690 (14) Å]. This results in polymer chain substructures which extend along the b cell direction (Fig. 2). The coordinated water molecules as well as the water molecule of solvation (O4W) give both water–water and inter-chain O—H···Ocarboxyl, nitro hydrogen-bonding associations (Table 1), giving an overall three-dimensional framework structure.