organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1E,4E)-1,5-Bis(2,4,6-trimeth­­oxy­phen­yl)penta-1,4-dien-3-one

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, bDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 5 November 2010; accepted 25 November 2010; online 4 December 2010)

There are two crystallographically independent mol­ecules in the asymmetric unit of the title bis­chalcone derivative, C23H26O7. The mol­ecules are unsymmetrical and almost planar: the dihedral angle between two benzene rings is 1.04 (7)° in one mol­ecule and 2.31 (7)° in the other. The central penta-1,4-dien-3-one fragment makes dihedral angles of 7.61 (7) and 6.82 (7)° with the two adjacent benzene rings in one mol­ecule, while the corresponding values are 7.85 (7) and 9.42 (6)° in the other. In both mol­ecules, the three meth­oxy groups of the two 2,4,6-trimeth­oxy­phenyl units are coplanar with the attached benzene rings [C—O—C—C- torsion angles of −1.5 (2), −7.2 (2) and 4.1 (2)° in one mol­ecule and −0.7 (2), −5.5 (2) and −0.6 (2)° in the other]. The mol­ecular conformations are stabilized by weak intra­molecular C—H⋯O inter­actions generating two S(6) ring motifs. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O inter­actions into zigzag chains parallel to the c axis. The crystal structure is further stabilized by C—H⋯π inter­actions and ππ inter­actions with centroid–centroid distances of 3.6433 (8) Å.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Fun et al. (2010[Fun, H.-K., Ruanwas, P. & Chantrapromma, S. (2010). Acta Cryst. E66, o307-o308.]); Harrison et al. (2006[Harrison, W. T. A., Sarojini, B. K., Vijaya Raj, K. K., Yathirajan, H. S. & Narayana, B. (2006). Acta Cryst. E62, o1522-o1523.]). For background to and applications of bis­chalcones, see: Gomes et al. (2009[Gomes, A., Neuwirth, O., Freitas, M., Couto, D., Ribeiro, D., Figueiredo, A. G. P. R., Silva, A. M. S., Seixas, R. S. G. R., Pinto, D. C. G. A., Tomé, A. C., Cavaleiro, J. A. S., Fernandes, E. & Lima, J. L. F. C. (2009). Bioorg. Med. Chem. 17, 7218-7226.]); Lee et al. (2009[Lee, K.-H., Ab Aziz, F. H., Syahida, A., Abas, F., Shaari, K., Israf, D. A. & lajis, N. H. (2009). Eur. J. Med. Chem. 44, 3195-3200.]); Quincoces et al. (2008[Quincoces, J., Peseke, K., Kordian, M., Carvalho, J., Brunhari, H., Kohn, L. & Antônio, M. (2008). US Patent No. 7 432 401 B2.]); Uchida et al. (1998[Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135-140.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C23H26O7

  • Mr = 414.44

  • Monoclinic, P 21 /c

  • a = 15.7417 (2) Å

  • b = 15.1192 (2) Å

  • c = 19.4803 (3) Å

  • β = 117.827 (1)°

  • V = 4100.21 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.39 × 0.32 × 0.17 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.983

  • 50384 measured reflections

  • 10908 independent reflections

  • 7903 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.139

  • S = 1.04

  • 10908 reflections

  • 553 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C1A–C6A, C12A–C17A and C12B–C17B rings, respectively

D—H⋯A D—H H⋯A DA D—H⋯A
C7A—H7AA⋯O1A 0.93 2.42 2.787 (2) 104
C7A—H7AA⋯O2A 0.93 2.29 2.704 (2) 106
C8A—H8AA⋯O4A 0.93 2.18 2.7844 (17) 121
C7B—H7BA⋯O1B 0.93 2.49 2.8351 (19) 102
C7B—H7BA⋯O2B 0.93 2.33 2.704 (2) 104
C8B—H8BA⋯O4B 0.93 2.16 2.7643 (18) 121
C10A—H10A⋯O5A 0.93 2.26 2.852 (2) 121
C10B—H10B⋯O5B 0.93 2.26 2.855 (2) 121
C11A—H11A⋯O7A 0.93 2.23 2.6599 (17) 108
C11B—H11B⋯O7B 0.93 2.23 2.6700 (17) 108
C20A—H20C⋯O1B 0.96 2.47 3.339 (2) 151
C20B—H20E⋯O1Ai 0.96 2.37 3.0238 (19) 125
C23A—H23C⋯O1Aii 0.96 2.39 3.319 (2) 162
C23B—H23D⋯O1Bii 0.96 2.41 3.262 (2) 148
C18A—H18CCg1iii 0.96 2.65 3.4503 (17) 141
C21A—H21CCg2iv 0.96 2.94 3.5813 (18) 126
C21B—H21ECg3v 0.96 2.72 3.5809 (16) 150
Symmetry codes: (i) x+1, y, z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z; (iv) -x, -y, -z; (v) -x-1, -y+1, -z-1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Bischalcone is an important class of compounds due to their variety of properties such as non-linear optical (Uchida et al., 1998) and fluorescence properties (Gomes et al., 2009) and activities involving anti-inflammatory, antioxidant and anti-tyrosinase activities (Lee et al., 2009) and cytotoxic activities (Quincoces et al., 2008). We have previously reported the crystal structure of (1E,4E)-1,5-bis(2,4,5-trimethoxyphenyl)penta-1,4-dien-3-one (I) (Fun et al., 2010). The title bischalcone (II) was synthesized in order to study the effect of the positions of the trimethoxy substituents to its fluorescence property and anti-tyrosinase activity. Our anti-tyrosinase activity testing showed that the title bischacone possesses anti-tyrosinase activity. We report herein the crystal structure of (II).

There are two crystallograpich independent molecules (A and B) in the asymmetric unit of (II) (Fig. 1) with the same conformation but with slight differences in bond angles. The molecular structure of (II) is unsymmetrical and almost planar. The dihedral angle between the C1–C6 and C12–C17 benzene rings is 1.04 (7)° in molecule A whereas it is 2.31 (7)° in molecule B. The central penta-1,4-dien-3-one unit (C7–C11/O1) is planar with r.m.s. of 0.0124 (1) and 0.0433 (1) Å for molecule A and B, respectively. This unit makes a dihedral angles of 7.61 (7) and 6.82 (7)° with the two adjacent C1–C6 and C12–C17 benzene rings, respectively, in molecule A whereas the corresponding values are 7.85 (7) and 9.42 (6)° in molecule B. The three methoxy groups on the C1–C6 benzene ring are planarly attached, with the C18–O2–C1–C2, C19–O3–C3–C2 and C20–O4–C5–C4 torsion angles of -1.5 (2), -7.2 (2) and 4.1 (2)° in molecule A and -0.7 (2), -5.5 (2) and -0.6 (2)° in molecule B. The same orientation is observed for the three methoxy groups on the C12–C17 benzene ring as indicated by the torsion angles C21–O5–C13–C14, C22–O6–C15–C14 and C23–O7–C17–C16 of -0.1 (2), -0.7 (2) and 0.8 (2)°, respectively, for molecule A and the corresponding values of -0.9 (2), 1.6 (2) and -4.9 (2)° for molecule B. In each molecule, intramolecular C8A—H8AA···O4A and C10A—H10A···O5A [in molecule A]; C8B—H8BA···O4B and C10B—H10B···O5B [in molecule B] weak interactions (Table 1, Fig. 1) generate S(6) ring motifs (Bernstein et al., 1995). The bond distances are in normal ranges (Allen et al., 1987) and are comparable with those of related structures (Fun et al., 2010; Harrison et al., 2006). However there are less C—H···O weak interactions but more C—H···π interactions in (II) than in (I).

In the crystal packing (Fig. 2), the molecules are linked by intermolecular C—H···O weak interactions (Table 1) into zigzag chains along the c axis. The crystal is stabilized by intermolecular C—H···O weak interactions and C—H···π interactions (Table 1). ππ interactions are observed with Cg1···Cg3i = 3.6433 (8) Å (symmetry code: (i) x, 1/2 - y, -1/2 + z; Cg1 and Cg3 are the centroids of the C1A–C6A and C12B–C17B rings, respectively).

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Fun et al. (2010); Harrison et al. (2006). For background to and applications of bischalcones, see: Gomes et al. (2009); Lee et al. (2009); Quincoces et al. (2008); Uchida et al. (1998). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was synthesized by dissolving the 2,4,6-trimethoxybenzaldehyde (0.5 g, 2.55 mmol) in acetone (50 ml). A NaOH 50% aqueous solution (2 ml) was then added and, after stirring at room temperature for 1h, the resulting yellow solid was collected by filtration, washed with distilled water and dried. Pale yellow block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystalized from ethanol by the slow evaporation of the solvent at room temperature after a week. M. p. 494–495 K.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.70 Å from C12B and the deepest hole is located at 1.24 Å from C13B.

Structure description top

Bischalcone is an important class of compounds due to their variety of properties such as non-linear optical (Uchida et al., 1998) and fluorescence properties (Gomes et al., 2009) and activities involving anti-inflammatory, antioxidant and anti-tyrosinase activities (Lee et al., 2009) and cytotoxic activities (Quincoces et al., 2008). We have previously reported the crystal structure of (1E,4E)-1,5-bis(2,4,5-trimethoxyphenyl)penta-1,4-dien-3-one (I) (Fun et al., 2010). The title bischalcone (II) was synthesized in order to study the effect of the positions of the trimethoxy substituents to its fluorescence property and anti-tyrosinase activity. Our anti-tyrosinase activity testing showed that the title bischacone possesses anti-tyrosinase activity. We report herein the crystal structure of (II).

There are two crystallograpich independent molecules (A and B) in the asymmetric unit of (II) (Fig. 1) with the same conformation but with slight differences in bond angles. The molecular structure of (II) is unsymmetrical and almost planar. The dihedral angle between the C1–C6 and C12–C17 benzene rings is 1.04 (7)° in molecule A whereas it is 2.31 (7)° in molecule B. The central penta-1,4-dien-3-one unit (C7–C11/O1) is planar with r.m.s. of 0.0124 (1) and 0.0433 (1) Å for molecule A and B, respectively. This unit makes a dihedral angles of 7.61 (7) and 6.82 (7)° with the two adjacent C1–C6 and C12–C17 benzene rings, respectively, in molecule A whereas the corresponding values are 7.85 (7) and 9.42 (6)° in molecule B. The three methoxy groups on the C1–C6 benzene ring are planarly attached, with the C18–O2–C1–C2, C19–O3–C3–C2 and C20–O4–C5–C4 torsion angles of -1.5 (2), -7.2 (2) and 4.1 (2)° in molecule A and -0.7 (2), -5.5 (2) and -0.6 (2)° in molecule B. The same orientation is observed for the three methoxy groups on the C12–C17 benzene ring as indicated by the torsion angles C21–O5–C13–C14, C22–O6–C15–C14 and C23–O7–C17–C16 of -0.1 (2), -0.7 (2) and 0.8 (2)°, respectively, for molecule A and the corresponding values of -0.9 (2), 1.6 (2) and -4.9 (2)° for molecule B. In each molecule, intramolecular C8A—H8AA···O4A and C10A—H10A···O5A [in molecule A]; C8B—H8BA···O4B and C10B—H10B···O5B [in molecule B] weak interactions (Table 1, Fig. 1) generate S(6) ring motifs (Bernstein et al., 1995). The bond distances are in normal ranges (Allen et al., 1987) and are comparable with those of related structures (Fun et al., 2010; Harrison et al., 2006). However there are less C—H···O weak interactions but more C—H···π interactions in (II) than in (I).

In the crystal packing (Fig. 2), the molecules are linked by intermolecular C—H···O weak interactions (Table 1) into zigzag chains along the c axis. The crystal is stabilized by intermolecular C—H···O weak interactions and C—H···π interactions (Table 1). ππ interactions are observed with Cg1···Cg3i = 3.6433 (8) Å (symmetry code: (i) x, 1/2 - y, -1/2 + z; Cg1 and Cg3 are the centroids of the C1A–C6A and C12B–C17B rings, respectively).

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Fun et al. (2010); Harrison et al. (2006). For background to and applications of bischalcones, see: Gomes et al. (2009); Lee et al. (2009); Quincoces et al. (2008); Uchida et al. (1998). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Intramolecular C—H···O interactions are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of the title compound showing the zigzag chains along the c axis. Hydrogen bonds are shown as dashed lines.
(1E,4E)-1,5-Bis(2,4,6-trimethoxyphenyl)penta-1,4-dien-3-one top
Crystal data top
C23H26O7F(000) = 1760
Mr = 414.44Dx = 1.343 Mg m3
Monoclinic, P21/cMelting point = 494–495 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 15.7417 (2) ÅCell parameters from 10908 reflections
b = 15.1192 (2) Åθ = 2.1–29.0°
c = 19.4803 (3) ŵ = 0.10 mm1
β = 117.827 (1)°T = 100 K
V = 4100.21 (11) Å3Block, pale yellow
Z = 80.39 × 0.32 × 0.17 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
10908 independent reflections
Radiation source: sealed tube7903 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 29.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2021
Tmin = 0.963, Tmax = 0.983k = 2018
50384 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0631P)2 + 1.5299P]
where P = (Fo2 + 2Fc2)/3
10908 reflections(Δ/σ)max = 0.001
553 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C23H26O7V = 4100.21 (11) Å3
Mr = 414.44Z = 8
Monoclinic, P21/cMo Kα radiation
a = 15.7417 (2) ŵ = 0.10 mm1
b = 15.1192 (2) ÅT = 100 K
c = 19.4803 (3) Å0.39 × 0.32 × 0.17 mm
β = 117.827 (1)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
10908 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
7903 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.983Rint = 0.032
50384 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.04Δρmax = 0.36 e Å3
10908 reflectionsΔρmin = 0.24 e Å3
553 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.17578 (9)0.23957 (10)0.12657 (6)0.0395 (3)
O2A0.45629 (7)0.37966 (7)0.07200 (6)0.0219 (2)
O3A0.72990 (7)0.41499 (7)0.18177 (6)0.0257 (2)
O4A0.43772 (7)0.29181 (7)0.15211 (5)0.0209 (2)
O5A0.05667 (7)0.12267 (7)0.05942 (6)0.0218 (2)
O6A0.07167 (8)0.03212 (8)0.17332 (6)0.0287 (3)
O7A0.20935 (7)0.16050 (7)0.18551 (6)0.0233 (2)
C1A0.50181 (11)0.37297 (9)0.00690 (8)0.0176 (3)
C2A0.59599 (11)0.40105 (9)0.05208 (9)0.0196 (3)
H2AA0.63050.42610.02920.023*
C3A0.63756 (10)0.39085 (10)0.13221 (9)0.0199 (3)
C4A0.58625 (10)0.35517 (10)0.16765 (8)0.0200 (3)
H4AA0.61480.34970.22140.024*
C5A0.49247 (10)0.32789 (9)0.12218 (8)0.0180 (3)
C6A0.44650 (10)0.33541 (9)0.03973 (8)0.0169 (3)
C7A0.35023 (10)0.30407 (9)0.01164 (8)0.0180 (3)
H7AA0.33140.31050.06430.022*
C8A0.28416 (10)0.26743 (10)0.00458 (8)0.0191 (3)
H8AA0.29630.26250.05590.023*
C9A0.19240 (11)0.23482 (10)0.05818 (8)0.0209 (3)
C10A0.12089 (11)0.19400 (10)0.04001 (8)0.0204 (3)
H10A0.06310.17530.08090.024*
C11A0.13474 (10)0.18232 (9)0.03281 (8)0.0175 (3)
H11A0.19310.20400.07080.021*
C12A0.07555 (10)0.14215 (9)0.06315 (8)0.0177 (3)
C13A0.01944 (10)0.11210 (9)0.01869 (8)0.0183 (3)
C14A0.07145 (11)0.07451 (10)0.05295 (8)0.0202 (3)
H14A0.13400.05470.02260.024*
C15A0.02790 (11)0.06729 (10)0.13332 (9)0.0221 (3)
C16A0.06571 (11)0.09625 (10)0.17972 (9)0.0224 (3)
H16A0.09370.09120.23340.027*
C17A0.11655 (10)0.13254 (10)0.14487 (8)0.0193 (3)
C18A0.50745 (11)0.41912 (10)0.10866 (9)0.0235 (3)
H18A0.46640.42210.16370.035*
H18B0.56300.38400.09830.035*
H18C0.52730.47770.08860.035*
C19A0.78857 (12)0.44273 (12)0.14764 (10)0.0325 (4)
H19A0.85280.45350.18780.049*
H19B0.76270.49610.11850.049*
H19C0.78960.39730.11360.049*
C20A0.47734 (12)0.28718 (12)0.23484 (8)0.0264 (3)
H20A0.43080.26200.24800.040*
H20B0.49380.34560.25640.040*
H20C0.53390.25090.25560.040*
C21A0.15303 (11)0.09395 (10)0.10841 (9)0.0229 (3)
H21A0.16950.10540.16160.034*
H21B0.19620.12550.09510.034*
H21C0.15800.03170.10130.034*
C22A0.16834 (11)0.00175 (11)0.13032 (10)0.0271 (3)
H22A0.19050.01970.16550.041*
H22B0.17100.04510.09620.041*
H22C0.20850.04970.10040.041*
C23A0.25648 (12)0.15076 (12)0.26804 (8)0.0272 (4)
H23A0.31900.17740.28940.041*
H23B0.26290.08900.28110.041*
H23C0.21920.17930.28900.041*
O1B0.68800 (7)0.20303 (8)0.36386 (6)0.0241 (2)
O2B0.99141 (7)0.09844 (7)0.41753 (6)0.0225 (2)
O3B1.26319 (8)0.06825 (8)0.67341 (6)0.0287 (3)
O4B0.96545 (7)0.18131 (7)0.63905 (6)0.0223 (2)
O5B0.48221 (7)0.36335 (7)0.43616 (6)0.0209 (2)
O6B0.47137 (8)0.44271 (8)0.67297 (6)0.0260 (2)
O7B0.75115 (7)0.31918 (7)0.67890 (6)0.0211 (2)
C1B1.03565 (10)0.10545 (10)0.49647 (8)0.0185 (3)
C2B1.13074 (10)0.07922 (10)0.54267 (9)0.0206 (3)
H2BA1.16650.05490.52050.025*
C3B1.17063 (10)0.09028 (10)0.62243 (9)0.0213 (3)
C4B1.11777 (11)0.12564 (10)0.65642 (8)0.0220 (3)
H4BA1.14570.13290.71000.026*
C5B1.02313 (10)0.14997 (9)0.60976 (8)0.0184 (3)
C6B0.97838 (10)0.14116 (9)0.52777 (8)0.0172 (3)
C7B0.87935 (10)0.16500 (9)0.47616 (8)0.0169 (3)
H7BA0.85550.14560.42520.020*
C8B0.81720 (10)0.21120 (9)0.49162 (8)0.0174 (3)
H8BA0.83720.23200.54180.021*
C9B0.71850 (10)0.22977 (9)0.43148 (8)0.0164 (3)
C10B0.65299 (10)0.28005 (9)0.45157 (8)0.0174 (3)
H10B0.59470.29900.41150.021*
C11B0.67345 (10)0.29988 (9)0.52518 (8)0.0163 (3)
H11B0.73530.28460.56200.020*
C12B0.61648 (10)0.34076 (9)0.55742 (8)0.0162 (3)
C13B0.52085 (10)0.37092 (9)0.51463 (8)0.0169 (3)
C14B0.46987 (10)0.40590 (9)0.55087 (8)0.0190 (3)
H14B0.40720.42590.52170.023*
C15B0.51478 (11)0.41016 (9)0.63141 (9)0.0195 (3)
C16B0.60879 (11)0.38162 (10)0.67653 (8)0.0194 (3)
H16B0.63760.38490.73040.023*
C17B0.65853 (10)0.34824 (9)0.63965 (8)0.0171 (3)
C18B1.04507 (11)0.06389 (11)0.38133 (9)0.0248 (3)
H18D1.00420.05930.32640.037*
H18E1.06940.00640.40210.037*
H18F1.09780.10270.39110.037*
C19B1.31903 (11)0.02436 (11)0.64289 (10)0.0280 (4)
H19D1.38220.01250.68430.042*
H19E1.32380.06150.60490.042*
H19F1.28850.03030.61910.042*
C20B1.00518 (12)0.18825 (12)0.72165 (8)0.0293 (4)
H20D0.95760.21160.73440.044*
H20E1.05970.22710.74130.044*
H20F1.02490.13080.74460.044*
C21B0.38459 (10)0.39154 (10)0.38923 (8)0.0226 (3)
H21D0.36720.38380.33540.034*
H21E0.37870.45280.39920.034*
H21G0.34270.35680.40180.034*
C22B0.37374 (12)0.47159 (12)0.63068 (10)0.0315 (4)
H22D0.35170.49160.66640.047*
H22G0.33440.42330.60060.047*
H22E0.36970.51920.59670.047*
C23B0.80039 (12)0.33050 (12)0.76164 (8)0.0273 (4)
H23G0.86520.30970.78180.041*
H23D0.76800.29740.78450.041*
H23E0.80090.39200.77400.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0300 (7)0.0677 (9)0.0156 (5)0.0216 (6)0.0063 (5)0.0002 (6)
O2A0.0209 (6)0.0262 (6)0.0191 (5)0.0032 (4)0.0099 (4)0.0011 (4)
O3A0.0156 (5)0.0298 (6)0.0281 (6)0.0049 (4)0.0072 (5)0.0042 (5)
O4A0.0176 (5)0.0289 (6)0.0148 (5)0.0008 (4)0.0064 (4)0.0027 (4)
O5A0.0171 (5)0.0276 (6)0.0170 (5)0.0012 (4)0.0049 (4)0.0006 (4)
O6A0.0247 (6)0.0382 (7)0.0270 (6)0.0021 (5)0.0151 (5)0.0055 (5)
O7A0.0178 (5)0.0333 (6)0.0154 (5)0.0011 (4)0.0049 (4)0.0006 (4)
C1A0.0195 (7)0.0141 (7)0.0196 (7)0.0018 (5)0.0094 (6)0.0001 (5)
C2A0.0194 (7)0.0167 (7)0.0258 (7)0.0003 (6)0.0133 (6)0.0008 (6)
C3A0.0143 (7)0.0175 (7)0.0252 (7)0.0003 (6)0.0069 (6)0.0035 (6)
C4A0.0179 (7)0.0214 (7)0.0174 (7)0.0017 (6)0.0055 (6)0.0003 (5)
C5A0.0173 (7)0.0162 (7)0.0197 (7)0.0024 (5)0.0080 (6)0.0006 (5)
C6A0.0155 (7)0.0161 (7)0.0175 (7)0.0012 (5)0.0065 (6)0.0002 (5)
C7A0.0185 (7)0.0174 (7)0.0153 (6)0.0021 (6)0.0056 (6)0.0005 (5)
C8A0.0183 (7)0.0208 (7)0.0147 (6)0.0002 (6)0.0047 (6)0.0002 (5)
C9A0.0208 (8)0.0220 (7)0.0164 (7)0.0005 (6)0.0058 (6)0.0019 (6)
C10A0.0166 (7)0.0217 (7)0.0202 (7)0.0015 (6)0.0064 (6)0.0011 (6)
C11A0.0162 (7)0.0155 (7)0.0185 (7)0.0015 (5)0.0061 (6)0.0007 (5)
C12A0.0171 (7)0.0157 (7)0.0193 (7)0.0023 (5)0.0078 (6)0.0000 (5)
C13A0.0190 (7)0.0160 (7)0.0185 (7)0.0042 (6)0.0076 (6)0.0001 (5)
C14A0.0172 (7)0.0190 (7)0.0236 (7)0.0002 (6)0.0088 (6)0.0010 (6)
C15A0.0226 (8)0.0208 (8)0.0264 (8)0.0029 (6)0.0145 (7)0.0024 (6)
C16A0.0235 (8)0.0252 (8)0.0184 (7)0.0038 (6)0.0099 (6)0.0014 (6)
C17A0.0177 (7)0.0184 (7)0.0200 (7)0.0027 (6)0.0074 (6)0.0008 (5)
C18A0.0253 (8)0.0243 (8)0.0257 (8)0.0001 (6)0.0158 (7)0.0025 (6)
C19A0.0198 (8)0.0420 (10)0.0378 (9)0.0093 (7)0.0152 (7)0.0138 (8)
C20A0.0226 (8)0.0380 (9)0.0156 (7)0.0009 (7)0.0064 (6)0.0028 (6)
C21A0.0188 (8)0.0230 (8)0.0218 (7)0.0007 (6)0.0052 (6)0.0039 (6)
C22A0.0235 (8)0.0286 (8)0.0330 (8)0.0006 (7)0.0162 (7)0.0025 (7)
C23A0.0224 (8)0.0403 (10)0.0166 (7)0.0001 (7)0.0072 (6)0.0002 (6)
O1B0.0171 (5)0.0371 (6)0.0154 (5)0.0035 (5)0.0053 (4)0.0032 (4)
O2B0.0181 (5)0.0317 (6)0.0179 (5)0.0030 (4)0.0085 (4)0.0004 (4)
O3B0.0161 (5)0.0345 (7)0.0276 (6)0.0042 (5)0.0036 (5)0.0039 (5)
O4B0.0188 (5)0.0312 (6)0.0133 (5)0.0019 (4)0.0044 (4)0.0025 (4)
O5B0.0158 (5)0.0258 (6)0.0169 (5)0.0038 (4)0.0042 (4)0.0001 (4)
O6B0.0224 (6)0.0326 (6)0.0266 (6)0.0046 (5)0.0144 (5)0.0028 (5)
O7B0.0169 (5)0.0304 (6)0.0142 (5)0.0040 (4)0.0059 (4)0.0000 (4)
C1B0.0180 (7)0.0176 (7)0.0190 (7)0.0025 (6)0.0081 (6)0.0008 (5)
C2B0.0165 (7)0.0186 (7)0.0267 (8)0.0001 (6)0.0101 (6)0.0022 (6)
C3B0.0137 (7)0.0190 (7)0.0259 (8)0.0006 (6)0.0046 (6)0.0042 (6)
C4B0.0190 (8)0.0229 (8)0.0172 (7)0.0018 (6)0.0026 (6)0.0009 (6)
C5B0.0171 (7)0.0170 (7)0.0191 (7)0.0017 (6)0.0070 (6)0.0001 (5)
C6B0.0153 (7)0.0158 (7)0.0179 (7)0.0023 (5)0.0057 (6)0.0007 (5)
C7B0.0155 (7)0.0194 (7)0.0141 (6)0.0038 (5)0.0054 (5)0.0006 (5)
C8B0.0176 (7)0.0185 (7)0.0138 (6)0.0021 (6)0.0054 (6)0.0005 (5)
C9B0.0170 (7)0.0174 (7)0.0151 (6)0.0026 (5)0.0079 (6)0.0008 (5)
C10B0.0144 (7)0.0186 (7)0.0170 (6)0.0006 (5)0.0055 (6)0.0015 (5)
C11B0.0150 (7)0.0147 (7)0.0183 (7)0.0000 (5)0.0070 (6)0.0015 (5)
C12B0.0178 (7)0.0145 (7)0.0172 (6)0.0008 (5)0.0089 (6)0.0001 (5)
C13B0.0180 (7)0.0143 (7)0.0167 (6)0.0014 (5)0.0066 (6)0.0005 (5)
C14B0.0151 (7)0.0168 (7)0.0245 (7)0.0006 (5)0.0089 (6)0.0006 (6)
C15B0.0218 (8)0.0167 (7)0.0258 (7)0.0012 (6)0.0159 (6)0.0017 (6)
C16B0.0212 (8)0.0206 (7)0.0175 (7)0.0001 (6)0.0098 (6)0.0006 (5)
C17B0.0169 (7)0.0166 (7)0.0173 (6)0.0006 (5)0.0076 (6)0.0006 (5)
C18B0.0238 (8)0.0286 (8)0.0273 (8)0.0000 (6)0.0164 (7)0.0014 (6)
C19B0.0163 (8)0.0273 (9)0.0360 (9)0.0032 (6)0.0084 (7)0.0064 (7)
C20B0.0307 (9)0.0356 (9)0.0151 (7)0.0042 (7)0.0053 (7)0.0030 (6)
C21B0.0168 (7)0.0251 (8)0.0208 (7)0.0016 (6)0.0045 (6)0.0028 (6)
C22B0.0232 (9)0.0388 (10)0.0357 (9)0.0053 (7)0.0165 (7)0.0035 (7)
C23B0.0224 (8)0.0412 (10)0.0152 (7)0.0045 (7)0.0063 (6)0.0010 (6)
Geometric parameters (Å, º) top
O1A—C9A1.2341 (17)O1B—C9B1.2404 (16)
O2A—C1A1.3631 (17)O2B—C1B1.3643 (17)
O2A—C18A1.4324 (17)O2B—C18B1.4282 (18)
O3A—C3A1.3668 (17)O3B—C3B1.3672 (18)
O3A—C19A1.430 (2)O3B—C19B1.433 (2)
O4A—C5A1.3600 (17)O4B—C5B1.3631 (18)
O4A—C20A1.4327 (16)O4B—C20B1.4324 (17)
O5A—C13A1.3607 (16)O5B—C13B1.3607 (16)
O5A—C21A1.4314 (17)O5B—C21B1.4379 (17)
O6A—C15A1.3661 (18)O6B—C15B1.3716 (17)
O6A—C22A1.4277 (19)O6B—C22B1.4316 (19)
O7A—C17A1.3637 (17)O7B—C17B1.3648 (17)
O7A—C23A1.4294 (17)O7B—C23B1.4357 (17)
C1A—C2A1.391 (2)C1B—C2B1.396 (2)
C1A—C6A1.418 (2)C1B—C6B1.410 (2)
C2A—C3A1.391 (2)C2B—C3B1.388 (2)
C2A—H2AA0.9300C2B—H2BA0.9300
C3A—C4A1.393 (2)C3B—C4B1.390 (2)
C4A—C5A1.383 (2)C4B—C5B1.384 (2)
C4A—H4AA0.9300C4B—H4BA0.9300
C5A—C6A1.4250 (19)C5B—C6B1.4194 (19)
C6A—C7A1.451 (2)C6B—C7B1.4518 (19)
C7A—C8A1.340 (2)C7B—C8B1.346 (2)
C7A—H7AA0.9300C7B—H7BA0.9300
C8A—C9A1.475 (2)C8B—C9B1.4717 (19)
C8A—H8AA0.9300C8B—H8BA0.9300
C9A—C10A1.465 (2)C9B—C10B1.474 (2)
C10A—C11A1.342 (2)C10B—C11B1.3484 (19)
C10A—H10A0.9300C10B—H10B0.9300
C11A—C12A1.449 (2)C11B—C12B1.4514 (19)
C11A—H11A0.9300C11B—H11B0.9300
C12A—C13A1.408 (2)C12B—C13B1.413 (2)
C12A—C17A1.4186 (19)C12B—C17B1.4238 (19)
C13A—C14A1.396 (2)C13B—C14B1.397 (2)
C14A—C15A1.390 (2)C14B—C15B1.389 (2)
C14A—H14A0.9300C14B—H14B0.9300
C15A—C16A1.392 (2)C15B—C16B1.391 (2)
C16A—C17A1.382 (2)C16B—C17B1.382 (2)
C16A—H16A0.9300C16B—H16B0.9300
C18A—H18A0.9600C18B—H18D0.9600
C18A—H18B0.9600C18B—H18E0.9600
C18A—H18C0.9600C18B—H18F0.9600
C19A—H19A0.9600C19B—H19D0.9600
C19A—H19B0.9600C19B—H19E0.9600
C19A—H19C0.9600C19B—H19F0.9600
C20A—H20A0.9600C20B—H20D0.9600
C20A—H20B0.9600C20B—H20E0.9600
C20A—H20C0.9600C20B—H20F0.9600
C21A—H21A0.9600C21B—H21D0.9600
C21A—H21B0.9600C21B—H21E0.9600
C21A—H21C0.9600C21B—H21G0.9600
C22A—H22A0.9600C22B—H22D0.9600
C22A—H22B0.9600C22B—H22G0.9600
C22A—H22C0.9600C22B—H22E0.9600
C23A—H23A0.9600C23B—H23G0.9600
C23A—H23B0.9600C23B—H23D0.9600
C23A—H23C0.9600C23B—H23E0.9600
C1A—O2A—C18A118.11 (11)C1B—O2B—C18B118.46 (12)
C3A—O3A—C19A117.06 (12)C3B—O3B—C19B117.61 (12)
C5A—O4A—C20A118.13 (11)C5B—O4B—C20B117.96 (12)
C13A—O5A—C21A118.64 (11)C13B—O5B—C21B118.29 (11)
C15A—O6A—C22A118.28 (12)C15B—O6B—C22B117.81 (12)
C17A—O7A—C23A118.30 (12)C17B—O7B—C23B117.80 (11)
O2A—C1A—C2A122.34 (13)O2B—C1B—C2B122.27 (13)
O2A—C1A—C6A115.35 (12)O2B—C1B—C6B115.09 (12)
C2A—C1A—C6A122.31 (13)C2B—C1B—C6B122.64 (13)
C1A—C2A—C3A118.70 (13)C3B—C2B—C1B118.43 (14)
C1A—C2A—H2AA120.6C3B—C2B—H2BA120.8
C3A—C2A—H2AA120.6C1B—C2B—H2BA120.8
O3A—C3A—C2A123.44 (13)O3B—C3B—C2B123.77 (14)
O3A—C3A—C4A115.15 (13)O3B—C3B—C4B114.82 (13)
C2A—C3A—C4A121.41 (13)C2B—C3B—C4B121.41 (13)
C5A—C4A—C3A119.37 (13)C5B—C4B—C3B119.32 (13)
C5A—C4A—H4AA120.3C5B—C4B—H4BA120.3
C3A—C4A—H4AA120.3C3B—C4B—H4BA120.3
O4A—C5A—C4A123.06 (13)O4B—C5B—C4B122.72 (13)
O4A—C5A—C6A115.16 (12)O4B—C5B—C6B115.21 (12)
C4A—C5A—C6A121.78 (13)C4B—C5B—C6B122.04 (13)
C1A—C6A—C5A116.41 (13)C1B—C6B—C5B116.16 (13)
C1A—C6A—C7A118.89 (12)C1B—C6B—C7B119.47 (13)
C5A—C6A—C7A124.64 (13)C5B—C6B—C7B124.37 (13)
C8A—C7A—C6A130.38 (13)C8B—C7B—C6B129.17 (13)
C8A—C7A—H7AA114.8C8B—C7B—H7BA115.4
C6A—C7A—H7AA114.8C6B—C7B—H7BA115.4
C7A—C8A—C9A120.69 (13)C7B—C8B—C9B121.91 (13)
C7A—C8A—H8AA119.7C7B—C8B—H8BA119.0
C9A—C8A—H8AA119.7C9B—C8B—H8BA119.0
O1A—C9A—C10A119.07 (13)O1B—C9B—C8B121.64 (13)
O1A—C9A—C8A120.49 (14)O1B—C9B—C10B118.57 (12)
C10A—C9A—C8A120.42 (12)C8B—C9B—C10B119.77 (12)
C11A—C10A—C9A123.14 (13)C11B—C10B—C9B123.21 (13)
C11A—C10A—H10A118.4C11B—C10B—H10B118.4
C9A—C10A—H10A118.4C9B—C10B—H10B118.4
C10A—C11A—C12A131.90 (14)C10B—C11B—C12B131.73 (13)
C10A—C11A—H11A114.0C10B—C11B—H11B114.1
C12A—C11A—H11A114.0C12B—C11B—H11B114.1
C13A—C12A—C17A116.96 (13)C13B—C12B—C17B116.47 (12)
C13A—C12A—C11A125.77 (13)C13B—C12B—C11B125.83 (12)
C17A—C12A—C11A117.27 (13)C17B—C12B—C11B117.65 (12)
O5A—C13A—C14A122.67 (13)O5B—C13B—C14B122.59 (13)
O5A—C13A—C12A115.42 (13)O5B—C13B—C12B115.46 (12)
C14A—C13A—C12A121.91 (13)C14B—C13B—C12B121.95 (13)
C15A—C14A—C13A118.66 (14)C15B—C14B—C13B118.61 (13)
C15A—C14A—H14A120.7C15B—C14B—H14B120.7
C13A—C14A—H14A120.7C13B—C14B—H14B120.7
O6A—C15A—C14A123.94 (14)O6B—C15B—C14B123.52 (13)
O6A—C15A—C16A114.52 (13)O6B—C15B—C16B114.49 (13)
C14A—C15A—C16A121.54 (14)C14B—C15B—C16B121.99 (13)
C17A—C16A—C15A119.10 (14)C17B—C16B—C15B118.61 (13)
C17A—C16A—H16A120.5C17B—C16B—H16B120.7
C15A—C16A—H16A120.5C15B—C16B—H16B120.7
O7A—C17A—C16A123.15 (13)O7B—C17B—C16B122.87 (12)
O7A—C17A—C12A115.01 (13)O7B—C17B—C12B114.76 (12)
C16A—C17A—C12A121.83 (14)C16B—C17B—C12B122.37 (13)
O2A—C18A—H18A109.5O2B—C18B—H18D109.5
O2A—C18A—H18B109.5O2B—C18B—H18E109.5
H18A—C18A—H18B109.5H18D—C18B—H18E109.5
O2A—C18A—H18C109.5O2B—C18B—H18F109.5
H18A—C18A—H18C109.5H18D—C18B—H18F109.5
H18B—C18A—H18C109.5H18E—C18B—H18F109.5
O3A—C19A—H19A109.5O3B—C19B—H19D109.5
O3A—C19A—H19B109.5O3B—C19B—H19E109.5
H19A—C19A—H19B109.5H19D—C19B—H19E109.5
O3A—C19A—H19C109.5O3B—C19B—H19F109.5
H19A—C19A—H19C109.5H19D—C19B—H19F109.5
H19B—C19A—H19C109.5H19E—C19B—H19F109.5
O4A—C20A—H20A109.5O4B—C20B—H20D109.5
O4A—C20A—H20B109.5O4B—C20B—H20E109.5
H20A—C20A—H20B109.5H20D—C20B—H20E109.5
O4A—C20A—H20C109.5O4B—C20B—H20F109.5
H20A—C20A—H20C109.5H20D—C20B—H20F109.5
H20B—C20A—H20C109.5H20E—C20B—H20F109.5
O5A—C21A—H21A109.5O5B—C21B—H21D109.5
O5A—C21A—H21B109.5O5B—C21B—H21E109.5
H21A—C21A—H21B109.5H21D—C21B—H21E109.5
O5A—C21A—H21C109.5O5B—C21B—H21G109.5
H21A—C21A—H21C109.5H21D—C21B—H21G109.5
H21B—C21A—H21C109.5H21E—C21B—H21G109.5
O6A—C22A—H22A109.5O6B—C22B—H22D109.5
O6A—C22A—H22B109.5O6B—C22B—H22G109.5
H22A—C22A—H22B109.5H22D—C22B—H22G109.5
O6A—C22A—H22C109.5O6B—C22B—H22E109.5
H22A—C22A—H22C109.5H22D—C22B—H22E109.5
H22B—C22A—H22C109.5H22G—C22B—H22E109.5
O7A—C23A—H23A109.5O7B—C23B—H23G109.5
O7A—C23A—H23B109.5O7B—C23B—H23D109.5
H23A—C23A—H23B109.5H23G—C23B—H23D109.5
O7A—C23A—H23C109.5O7B—C23B—H23E109.5
H23A—C23A—H23C109.5H23G—C23B—H23E109.5
H23B—C23A—H23C109.5H23D—C23B—H23E109.5
C18A—O2A—C1A—C2A1.5 (2)C18B—O2B—C1B—C2B0.7 (2)
C18A—O2A—C1A—C6A178.45 (12)C18B—O2B—C1B—C6B179.23 (13)
O2A—C1A—C2A—C3A179.22 (13)O2B—C1B—C2B—C3B178.78 (13)
C6A—C1A—C2A—C3A0.8 (2)C6B—C1B—C2B—C3B1.1 (2)
C19A—O3A—C3A—C2A7.2 (2)C19B—O3B—C3B—C2B5.5 (2)
C19A—O3A—C3A—C4A173.26 (13)C19B—O3B—C3B—C4B174.68 (13)
C1A—C2A—C3A—O3A179.02 (13)C1B—C2B—C3B—O3B179.09 (14)
C1A—C2A—C3A—C4A1.4 (2)C1B—C2B—C3B—C4B0.7 (2)
O3A—C3A—C4A—C5A179.30 (13)O3B—C3B—C4B—C5B179.89 (13)
C2A—C3A—C4A—C5A1.1 (2)C2B—C3B—C4B—C5B0.3 (2)
C20A—O4A—C5A—C4A4.1 (2)C20B—O4B—C5B—C4B0.6 (2)
C20A—O4A—C5A—C6A176.28 (13)C20B—O4B—C5B—C6B177.44 (13)
C3A—C4A—C5A—O4A179.50 (13)C3B—C4B—C5B—O4B176.94 (13)
C3A—C4A—C5A—C6A0.1 (2)C3B—C4B—C5B—C6B0.9 (2)
O2A—C1A—C6A—C5A179.87 (12)O2B—C1B—C6B—C5B179.37 (12)
C2A—C1A—C6A—C5A0.1 (2)C2B—C1B—C6B—C5B0.5 (2)
O2A—C1A—C6A—C7A2.78 (19)O2B—C1B—C6B—C7B1.53 (19)
C2A—C1A—C6A—C7A177.23 (13)C2B—C1B—C6B—C7B178.56 (13)
O4A—C5A—C6A—C1A179.88 (12)O4B—C5B—C6B—C1B177.51 (12)
C4A—C5A—C6A—C1A0.5 (2)C4B—C5B—C6B—C1B0.5 (2)
O4A—C5A—C6A—C7A2.9 (2)O4B—C5B—C6B—C7B1.5 (2)
C4A—C5A—C6A—C7A176.72 (14)C4B—C5B—C6B—C7B179.55 (14)
C1A—C6A—C7A—C8A179.23 (15)C1B—C6B—C7B—C8B169.16 (14)
C5A—C6A—C7A—C8A3.7 (2)C5B—C6B—C7B—C8B11.8 (2)
C6A—C7A—C8A—C9A175.78 (14)C6B—C7B—C8B—C9B179.71 (13)
C7A—C8A—C9A—O1A1.1 (2)C7B—C8B—C9B—O1B0.5 (2)
C7A—C8A—C9A—C10A179.37 (14)C7B—C8B—C9B—C10B179.49 (13)
O1A—C9A—C10A—C11A176.83 (15)O1B—C9B—C10B—C11B169.13 (14)
C8A—C9A—C10A—C11A1.4 (2)C8B—C9B—C10B—C11B9.9 (2)
C9A—C10A—C11A—C12A178.22 (15)C9B—C10B—C11B—C12B173.57 (14)
C10A—C11A—C12A—C13A6.6 (3)C10B—C11B—C12B—C13B0.5 (3)
C10A—C11A—C12A—C17A173.70 (15)C10B—C11B—C12B—C17B176.71 (15)
C21A—O5A—C13A—C14A0.1 (2)C21B—O5B—C13B—C14B0.9 (2)
C21A—O5A—C13A—C12A179.80 (12)C21B—O5B—C13B—C12B179.03 (12)
C17A—C12A—C13A—O5A179.72 (12)C17B—C12B—C13B—O5B179.84 (12)
C11A—C12A—C13A—O5A0.1 (2)C11B—C12B—C13B—O5B2.9 (2)
C17A—C12A—C13A—C14A0.0 (2)C17B—C12B—C13B—C14B0.3 (2)
C11A—C12A—C13A—C14A179.66 (14)C11B—C12B—C13B—C14B177.01 (13)
O5A—C13A—C14A—C15A179.28 (13)O5B—C13B—C14B—C15B179.29 (13)
C12A—C13A—C14A—C15A0.4 (2)C12B—C13B—C14B—C15B0.6 (2)
C22A—O6A—C15A—C14A0.7 (2)C22B—O6B—C15B—C14B1.6 (2)
C22A—O6A—C15A—C16A179.22 (13)C22B—O6B—C15B—C16B178.63 (14)
C13A—C14A—C15A—O6A179.70 (14)C13B—C14B—C15B—O6B179.60 (13)
C13A—C14A—C15A—C16A0.2 (2)C13B—C14B—C15B—C16B0.7 (2)
O6A—C15A—C16A—C17A179.69 (13)O6B—C15B—C16B—C17B179.62 (13)
C14A—C15A—C16A—C17A0.4 (2)C14B—C15B—C16B—C17B0.1 (2)
C23A—O7A—C17A—C16A0.8 (2)C23B—O7B—C17B—C16B4.9 (2)
C23A—O7A—C17A—C12A178.34 (13)C23B—O7B—C17B—C12B175.67 (13)
C15A—C16A—C17A—O7A178.23 (14)C15B—C16B—C17B—O7B179.56 (13)
C15A—C16A—C17A—C12A0.8 (2)C15B—C16B—C17B—C12B1.0 (2)
C13A—C12A—C17A—O7A178.48 (12)C13B—C12B—C17B—O7B179.45 (12)
C11A—C12A—C17A—O7A1.82 (19)C11B—C12B—C17B—O7B3.04 (18)
C13A—C12A—C17A—C16A0.6 (2)C13B—C12B—C17B—C16B1.1 (2)
C11A—C12A—C17A—C16A179.06 (13)C11B—C12B—C17B—C16B176.40 (13)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C1A–C6A, C12A–C17A and C12B–C17B rings, respectively
D—H···AD—HH···AD···AD—H···A
C7A—H7AA···O1A0.932.422.787 (2)104
C7A—H7AA···O2A0.932.292.704 (2)106
C8A—H8AA···O4A0.932.182.7844 (17)121
C7B—H7BA···O1B0.932.492.8351 (19)102
C7B—H7BA···O2B0.932.332.704 (2)104
C8B—H8BA···O4B0.932.162.7643 (18)121
C10A—H10A···O5A0.932.262.852 (2)121
C10B—H10B···O5B0.932.262.855 (2)121
C11A—H11A···O7A0.932.232.6599 (17)108
C11B—H11B···O7B0.932.232.6700 (17)108
C20A—H20C···O1B0.962.473.339 (2)151
C20B—H20E···O1Ai0.962.373.0238 (19)125
C23A—H23C···O1Aii0.962.393.319 (2)162
C23B—H23D···O1Bii0.962.413.262 (2)148
C18A—H18C···Cg1iii0.962.653.4503 (17)141
C21A—H21C···Cg2iv0.962.943.5813 (18)126
C21B—H21E···Cg3v0.962.723.5809 (16)150
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1, z; (iv) x, y, z; (v) x1, y+1, z1.

Experimental details

Crystal data
Chemical formulaC23H26O7
Mr414.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)15.7417 (2), 15.1192 (2), 19.4803 (3)
β (°) 117.827 (1)
V3)4100.21 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.39 × 0.32 × 0.17
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.963, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
50384, 10908, 7903
Rint0.032
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.139, 1.04
No. of reflections10908
No. of parameters553
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C1A–C6A, C12A–C17A and C12B–C17B rings, respectively
D—H···AD—HH···AD···AD—H···A
C7A—H7AA···O1A0.932.422.787 (2)104
C7A—H7AA···O2A0.932.292.704 (2)106
C8A—H8AA···O4A0.932.182.7844 (17)121
C7B—H7BA···O1B0.932.492.8351 (19)102
C7B—H7BA···O2B0.932.332.704 (2)104
C8B—H8BA···O4B0.932.162.7643 (18)121
C10A—H10A···O5A0.932.262.852 (2)121
C10B—H10B···O5B0.932.262.855 (2)121
C11A—H11A···O7A0.932.232.6599 (17)108
C11B—H11B···O7B0.932.232.6700 (17)108
C20A—H20C···O1B0.962.473.339 (2)151
C20B—H20E···O1Ai0.962.373.0238 (19)125
C23A—H23C···O1Aii0.962.393.319 (2)162
C23B—H23D···O1Bii0.962.413.262 (2)148
C18A—H18C···Cg1iii0.962.653.4503 (17)141
C21A—H21C···Cg2iv0.962.943.5813 (18)126
C21B—H21E···Cg3v0.962.723.5809 (16)150
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1, z; (iv) x, y, z; (v) x1, y+1, z1.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

PR thanks the Center of Excellence for Innovation in Chemistry (PERCH–CIC), Commission on Higher Education, Ministry of Education, and the Graduate School, Prince of Songkla University, for financial support. The authors thank the Prince of Songkla University and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Ruanwas, P. & Chantrapromma, S. (2010). Acta Cryst. E66, o307–o308.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGomes, A., Neuwirth, O., Freitas, M., Couto, D., Ribeiro, D., Figueiredo, A. G. P. R., Silva, A. M. S., Seixas, R. S. G. R., Pinto, D. C. G. A., Tomé, A. C., Cavaleiro, J. A. S., Fernandes, E. & Lima, J. L. F. C. (2009). Bioorg. Med. Chem. 17, 7218–7226.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHarrison, W. T. A., Sarojini, B. K., Vijaya Raj, K. K., Yathirajan, H. S. & Narayana, B. (2006). Acta Cryst. E62, o1522–o1523.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLee, K.-H., Ab Aziz, F. H., Syahida, A., Abas, F., Shaari, K., Israf, D. A. & lajis, N. H. (2009). Eur. J. Med. Chem. 44, 3195–3200.  Web of Science CrossRef PubMed CAS Google Scholar
First citationQuincoces, J., Peseke, K., Kordian, M., Carvalho, J., Brunhari, H., Kohn, L. & Antônio, M. (2008). US Patent No. 7 432 401 B2.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135–140.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds