organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis[(3-allyl­imidazol-3-ium-1-yl)meth­yl]benzene bis­­(hexa­fluoridophosphate)

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 23 November 2010; accepted 3 December 2010; online 11 December 2010)

In the title compound, C20H24N42+·2PF6, the ethene and 3-allyl­imidazolium moieties of the cation are disordered over two positions with refined site occupancies of 0.664 (19):0.336 (19) and 0.784 (7):0.216 (7), respectively, whereas four F atoms of one hexa­fluoridophosphate anion and all atoms in the other hexa­fluoridophosphate anion are disordered over two positions with refined site occupancies of 0.764 (5):0.2365) and 0.847 (9):0.153 (9), respectively. The benzene ring is inclined at angles of 78.2 (3), 81.3 (4) and 73.9 (12)° with the 1H-imidazol-3-ium ring and the major and minor components of the disordered 1H-imidazol-3-ium ring, respectively. In the crystal, the hexa­fluoridophosphate anions link the cations into two-dimensional networks parallel to (001) via inter­molecular C—H⋯F hydrogen bonds. The crystal structure is further consolidated by ππ [centroid–centroid distance = 3.672 (3) Å] and C—H⋯π inter­actions.

Related literature

For general background to and the biological activity of carbene derivatives, see: Yang & Nolan (2001[Yang, C. & Nolan, S. P. (2001). Synlett, 10, 1539-1542.]); Böhm et al. (2000[Böhm, V. P. W., Gstöttmayr, C. W. K., Weskamp, T. & Herrmann, W. A. (2000). J. Organomet Chem. 595, 186-190.]); Jafarpour & Nolan (2001[Jafarpour, L. & Nolan, S. P. (2001). Adv. Organomet. Chem. 46, 181-222.]); Bourissou et al. (2000[Bourissou, D., Guerret, O., Gabbaï, F. P. & Bertrand, G. (2000). Chem. Rev. 100, 39-91.]); Herrmann et al. (1996[Herrmann, W. A., Elison, M., Fischer, J., Köcher, C. & Artus, G. R. J. (1996). Chem. Eur. J. 2, 772-779.], 1997[Herrmann, W. A., Goossen, L. J. & Spiegler, M. (1997). J. Organomet. Chem. 547, 357-366.]); Arduengo et al. (1991[Arduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361-363.]); Danopoulos et al. (2002[Danopoulos, A. A., Winston, S., Gelbrich, T., Hursthouse, M. B. & Tooze, R. P. (2002). J. Chem. Soc. Chem. Commun. pp. 482-483.]); Dias & Jin (1994[Dias, H. V. & Jin, W. (1994). Tetrahedron Lett. 35, 1365-1366.]); Caballero et al. (2001[Caballero, A., Dìez-Barra, E., Jalón, F. A., Merino, S. & Tejeda, J. (2001). J. Organomet. Chem. 617, 395-398.]); Thompson et al. (1999[Thompson, K. H., McNeill, J. H. & Orvig, C. (1999). Chem. Rev. 99, 2561-2572.]); Melaiye et al. (2005[Melaiye, A., Sun, Z., Hindi, K., Milsted, M., Ely, D., Reneker, D. H., Tessier, C. A. & Youngs, W. J. (2005). J. Am. Chem. Soc. 127, 2285-2291.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a related structure, see: Haque et al. (2010[Haque, R. A., Washeel, A., Teoh, S. G., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o2797-o2798.]).

[Scheme 1]

Experimental

Crystal data
  • C20H24N42+·2PF6

  • Mr = 610.37

  • Monoclinic, P 21 /c

  • a = 9.8748 (4) Å

  • b = 9.9098 (3) Å

  • c = 26.124 (1) Å

  • β = 101.138 (2)°

  • V = 2508.27 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 296 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.921, Tmax = 0.924

  • 35601 measured reflections

  • 5217 independent reflections

  • 4324 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.108

  • wR(F2) = 0.201

  • S = 1.14

  • 5217 reflections

  • 431 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the N3A/N4A/C15A–C17A and N3B/N4B/C15B–C17B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯F7Ai 0.93 2.40 3.276 (6) 156
C5—H5A⋯F5ii 0.93 2.51 3.320 (6) 146
C8—H8A⋯F11Aiii 0.93 2.27 3.107 (8) 150
C10—H10A⋯F7A 0.93 2.25 3.130 (6) 158
C16A—H16A⋯F6iii 0.93 2.48 3.407 (9) 172
C20A—H20ACg2 0.93 2.89 3.489 (11) 123
C20B—H20CCg3 0.93 2.84 3.44 (5) 124
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y-1, z; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Carbenes are compounds possessing a neutral divalent carbon atom with six electrons on its valence shell. N-heterocyclic carbenes (NHCs) are cyclic carbenes that are usually derived from the deprotonation of imidazolium salts. NHCs are strong σ-donating ligands (Yang & Nolan, 2001; Böhm et al., 2000) with negligible π -back bonding tendencies (Jafarpour & Nolan, 2001; Bourissou et al., 2000; Herrmann et al., 1996). The isolation of crystalline stable free NHC by Arduengo (Arduengo et al., 1991) provided information on their fundamental properties. Many researchers have since prepared free NHCs for use in other reactions (usually for metal complexation reactions). Danopoulos and co-worker (Danopoulos et al., 2002) isolated a stable phosphine-functionalised carbene. Various compounds that contain more than one carbene centres are known (Dias & Jin, 1994; Caballero et al. , 2001). Carbene have the ability to form complexes with many metals (Herrmann et al., 1997), of which transition metals are the most interesting due to their potentials for catalytic activity. All transition metals have been complexed with NHC and the applications of compounds came to focus in many areas including the medical and biological sciences (Thompson et al., 1999; Melaiye et al., 2005).

In the title molecule (Fig. 1), the phenyl (C1-C6) ring is inclined at angles of 78.2 (3), 81.3 (4) and 73.9 (12)° with 1H-imidazol-3-ium (N1/N2/C8-C10, maximum deviation = 0.005 (5) Å at atom C10) ring, major component of 1H-imidazol-3-ium (N3A/N4A/C15A-C17A, maximum deviation = 0.008 (8) Å at atom N3A) ring and minor component of 1H-imidazol-3-ium (N3B/N4B/C15B-C17B, maximum deviation = 0.01 (3) Å at atoms N3B/C15B/C16B) ring, respectively. The ethene (C12/C13) and 3-allylimidazolium (N3/N4/C15-C20) moieties of the cation are disordered over two positions with refined site-occupancies of 0.664 (19) : 0.336 (19) and 0.784 (7) : 0.216 (7), respectively, whereas four fluorine atoms (F1A-F4A) of the hexafluoridophosphate (A) and a full hexafluoridophosphate (B) anion are disordered over two positions with refined site-occupancies of 0.764 (5) : 0.236 (5) and 0.847 (9) : 0.153 (9), respectively. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to a related structure (Haque et al., 2010).

In the crystal packing (Fig. 2), the hexafluoridophosphate anions link the cations into two-dimensional networks parallel to (001) via intermolecular C3–H3A···F7A, C5–H5A···F5, C8–H8A···F11A, C10–H10A···F7A and C16A–H16A···F6 (Table 1) hydrogen bonds. π-π stacking interactions between the centroid of C1-C6 phenyl rings (Cg1), with Cg1···Cg1i distance of 3.672 (3) Å [symmetry code: (i) 1-X, 1-Y, -Z] are observed. The crystal structure is further consilidated by C20A–H20A···Cg2, C20B–H20C···Cg3 (Table 1) interactions, where Cg2 and Cg3 are the centroid of N3A/N4A/C15A-C17A and N3B/N4B/C15B-C17B rings, respectively.

Related literature top

For general background to and the biological activity of carbene derrivatives, see: Yang & Nolan (2001); Böhm et al. (2000); Jafarpour & Nolan (2001); Bourissou et al. (2000); Herrmann et al. (1996); Arduengo et al. (1991); Danopoulos et al. (2002); Dias & Jin (1994); Caballero et al. (2001); Herrmann et al. (1997); Thompson et al. (1999); Melaiye et al. (2005). For bond-length data, see: Allen et al. (1987). For a related structure, see: Haque et al. (2010).

Experimental top

A mixture of imidazole (9.0 g, 130 mmol) and sodium hydroxide (5.0 g, 120 mmol) in DMSO (30 ml) was heated to 90 °C for 2 h. The mixture was cooled to room temperature and a solution of 1,3-bis(bromomethyl)benzene (15.0 g, 57 mmol) in DMSO (30 mL) was added, heated at 40 °C (1 h) and then poured into water (400 mL) followed by cooling in ice. Recrystallisation from methanol/water gives 1,3-bis(N-imidazole-1-yl methyl)benzene (1) as a white solid (9.0 g, 75%). Further, a mixture of 1 (0.5 g, 2.1 mmol) and allyl bromide (0.5 g, 4.2 mmol) in acetonitrile (30 mL) was refluxed at 90 °C for 24 h. The solvent was removed under reduced pressure to give 2.2Br as a pale-brown oil which was then reacted with KPF6 (0.22 g, 1.2 mmol) in 20 ml of methanol to yield the title compound. Recrystallisation from acetonitrile gives title compound as colourless solid. Yield: 0.4 g (60%). Crystals suitable for x-ray diffraction studies were obtained by slow evaporation of the salt solution in acetonitrile at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93-0.97 Å and Uiso(H) = 1.2 Ueq(C). The highest residual electron density peak is located at 1.09 Å from P2B and the deepest hole is located at 0.76 Å from F10A. The ethene (C12/C13) and the 3-allylimidazolium (N3/N4/C15-C20) moieties of the cation are disordered over two positions with refined site-occupancies of 0.664 (19):0.336 (19) and 0.784 (7):0.216 (7), respectively, whereas four fluorine atoms (F1A-F4A) of the hexafluoridophosphate (A) and a full hexafluoridophosphate (B) anion are disordered over two positions with refined site-occupancies of 0.764 (5):0.236 (5) and 0.847 (9): 0.153 (9), respectively. The minor components of disorder were refined isotropically. The rather large R-values are due to the tremendous amount of disorder in the crystal structure.

Structure description top

Carbenes are compounds possessing a neutral divalent carbon atom with six electrons on its valence shell. N-heterocyclic carbenes (NHCs) are cyclic carbenes that are usually derived from the deprotonation of imidazolium salts. NHCs are strong σ-donating ligands (Yang & Nolan, 2001; Böhm et al., 2000) with negligible π -back bonding tendencies (Jafarpour & Nolan, 2001; Bourissou et al., 2000; Herrmann et al., 1996). The isolation of crystalline stable free NHC by Arduengo (Arduengo et al., 1991) provided information on their fundamental properties. Many researchers have since prepared free NHCs for use in other reactions (usually for metal complexation reactions). Danopoulos and co-worker (Danopoulos et al., 2002) isolated a stable phosphine-functionalised carbene. Various compounds that contain more than one carbene centres are known (Dias & Jin, 1994; Caballero et al. , 2001). Carbene have the ability to form complexes with many metals (Herrmann et al., 1997), of which transition metals are the most interesting due to their potentials for catalytic activity. All transition metals have been complexed with NHC and the applications of compounds came to focus in many areas including the medical and biological sciences (Thompson et al., 1999; Melaiye et al., 2005).

In the title molecule (Fig. 1), the phenyl (C1-C6) ring is inclined at angles of 78.2 (3), 81.3 (4) and 73.9 (12)° with 1H-imidazol-3-ium (N1/N2/C8-C10, maximum deviation = 0.005 (5) Å at atom C10) ring, major component of 1H-imidazol-3-ium (N3A/N4A/C15A-C17A, maximum deviation = 0.008 (8) Å at atom N3A) ring and minor component of 1H-imidazol-3-ium (N3B/N4B/C15B-C17B, maximum deviation = 0.01 (3) Å at atoms N3B/C15B/C16B) ring, respectively. The ethene (C12/C13) and 3-allylimidazolium (N3/N4/C15-C20) moieties of the cation are disordered over two positions with refined site-occupancies of 0.664 (19) : 0.336 (19) and 0.784 (7) : 0.216 (7), respectively, whereas four fluorine atoms (F1A-F4A) of the hexafluoridophosphate (A) and a full hexafluoridophosphate (B) anion are disordered over two positions with refined site-occupancies of 0.764 (5) : 0.236 (5) and 0.847 (9) : 0.153 (9), respectively. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to a related structure (Haque et al., 2010).

In the crystal packing (Fig. 2), the hexafluoridophosphate anions link the cations into two-dimensional networks parallel to (001) via intermolecular C3–H3A···F7A, C5–H5A···F5, C8–H8A···F11A, C10–H10A···F7A and C16A–H16A···F6 (Table 1) hydrogen bonds. π-π stacking interactions between the centroid of C1-C6 phenyl rings (Cg1), with Cg1···Cg1i distance of 3.672 (3) Å [symmetry code: (i) 1-X, 1-Y, -Z] are observed. The crystal structure is further consilidated by C20A–H20A···Cg2, C20B–H20C···Cg3 (Table 1) interactions, where Cg2 and Cg3 are the centroid of N3A/N4A/C15A-C17A and N3B/N4B/C15B-C17B rings, respectively.

For general background to and the biological activity of carbene derrivatives, see: Yang & Nolan (2001); Böhm et al. (2000); Jafarpour & Nolan (2001); Bourissou et al. (2000); Herrmann et al. (1996); Arduengo et al. (1991); Danopoulos et al. (2002); Dias & Jin (1994); Caballero et al. (2001); Herrmann et al. (1997); Thompson et al. (1999); Melaiye et al. (2005). For bond-length data, see: Allen et al. (1987). For a related structure, see: Haque et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. Both major and minor components of disorder are shown.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the c axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity. Only major component of disorder is shown.
3,3'-Diallyl-1,1'-[m-phenylenebis(methylidene)]diimidazol-3-ium bis(hexafluoridophosphate) top
Crystal data top
C20H24N42+·2PF6F(000) = 1240
Mr = 610.37Dx = 1.616 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9952 reflections
a = 9.8748 (4) Åθ = 2.6–29.8°
b = 9.9098 (3) ŵ = 0.28 mm1
c = 26.124 (1) ÅT = 296 K
β = 101.138 (2)°Block, colourless
V = 2508.27 (16) Å30.25 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5217 independent reflections
Radiation source: fine-focus sealed tube4324 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
φ and ω scansθmax = 26.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.921, Tmax = 0.924k = 1212
35601 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.108Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.201H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.P)2 + 16.2482P]
where P = (Fo2 + 2Fc2)/3
5217 reflections(Δ/σ)max < 0.001
431 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
C20H24N42+·2PF6V = 2508.27 (16) Å3
Mr = 610.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.8748 (4) ŵ = 0.28 mm1
b = 9.9098 (3) ÅT = 296 K
c = 26.124 (1) Å0.25 × 0.20 × 0.20 mm
β = 101.138 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5217 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4324 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.924Rint = 0.059
35601 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1080 restraints
wR(F2) = 0.201H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.P)2 + 16.2482P]
where P = (Fo2 + 2Fc2)/3
5217 reflectionsΔρmax = 0.55 e Å3
431 parametersΔρmin = 0.56 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.5923 (4)0.5239 (4)0.16321 (15)0.0249 (9)
N20.5777 (4)0.6625 (4)0.22597 (14)0.0263 (9)
C10.6305 (5)0.5745 (5)0.05490 (18)0.0246 (10)
H1A0.59740.64920.07020.030*
C20.6899 (5)0.5907 (5)0.01137 (18)0.0296 (11)
C30.7363 (6)0.4786 (6)0.01166 (19)0.0371 (13)
H3A0.77510.48910.04110.044*
C40.7257 (5)0.3512 (6)0.0086 (2)0.0364 (13)
H4A0.75700.27650.00720.044*
C50.6685 (5)0.3349 (5)0.0524 (2)0.0311 (11)
H5A0.66200.24940.06630.037*
C60.6204 (5)0.4472 (5)0.07570 (18)0.0261 (10)
C70.5504 (6)0.4246 (6)0.1218 (2)0.0381 (13)
H7A0.45120.42920.11000.046*
H7B0.57280.33490.13570.046*
C80.7251 (5)0.5590 (6)0.1867 (2)0.0376 (13)
H8A0.80620.52880.17740.045*
C90.7151 (5)0.6452 (6)0.2256 (2)0.0359 (13)
H9A0.78820.68580.24810.043*
C100.5055 (5)0.5895 (5)0.18780 (16)0.0224 (10)
H10A0.40970.58480.17940.027*
C110.5195 (6)0.7522 (6)0.26188 (19)0.0385 (14)
H11A0.51790.84450.24940.046*0.664 (19)
H11B0.57740.74900.29640.046*0.664 (19)
H11C0.56140.83950.26150.046*0.336 (19)
H11D0.54410.71730.29670.046*0.336 (19)
C12A0.3691 (10)0.7065 (12)0.2651 (4)0.039 (2)0.664 (19)
H12A0.35930.62790.28350.046*0.664 (19)
C13A0.2577 (11)0.7700 (13)0.2440 (4)0.055 (4)0.664 (19)
H13A0.26340.84890.22530.066*0.664 (19)
H13B0.17200.73670.24760.066*0.664 (19)
C12B0.3817 (18)0.766 (2)0.2496 (7)0.031 (5)*0.336 (19)
H12B0.34410.82620.22330.037*0.336 (19)
C13B0.298 (3)0.697 (2)0.2737 (9)0.050 (7)*0.336 (19)
H13C0.33400.63700.30000.061*0.336 (19)
H13D0.20300.70940.26420.061*0.336 (19)
C140.7016 (6)0.7302 (6)0.01020 (19)0.0362 (13)
H14A0.71420.72440.04600.043*
H14B0.61770.78060.00970.043*
N3A0.8163 (9)0.7969 (9)0.0208 (3)0.028 (2)0.784 (7)
N4A0.9335 (6)0.9437 (8)0.0716 (2)0.0304 (13)0.784 (7)
C15A0.9519 (7)0.7540 (10)0.0311 (4)0.064 (3)0.784 (7)
H15A0.98690.67610.01860.077*0.784 (7)
C16A1.0226 (8)0.8469 (9)0.0623 (4)0.061 (3)0.784 (7)
H16A1.11700.84540.07560.073*0.784 (7)
C17A0.8076 (7)0.9105 (8)0.0463 (3)0.0297 (16)0.784 (7)
H17A0.72720.95920.04650.036*0.784 (7)
C18A0.9690 (7)1.0591 (7)0.1078 (3)0.0380 (17)0.784 (7)
H18A0.90701.13360.09620.046*0.784 (7)
H18B1.06231.08860.10720.046*0.784 (7)
C19A0.9587 (8)1.0219 (8)0.1620 (3)0.046 (2)0.784 (7)
H19A0.97471.09130.18640.056*0.784 (7)
C20A0.9300 (15)0.9046 (13)0.1798 (4)0.074 (4)0.784 (7)
H20A0.91280.83100.15740.089*0.784 (7)
H20B0.92660.89440.21500.089*0.784 (7)
N3B0.815 (3)0.834 (4)0.0292 (13)0.014 (7)*0.216 (7)
N4B0.981 (2)0.896 (2)0.0929 (9)0.028 (5)*0.216 (7)
C15B0.833 (3)0.969 (3)0.0291 (12)0.039 (7)*0.216 (7)
H15B0.78291.02690.00450.047*0.216 (7)
C16B0.933 (3)1.011 (3)0.0687 (11)0.029 (7)*0.216 (7)
H16B0.96121.09910.07740.034*0.216 (7)
C17B0.913 (2)0.792 (2)0.0705 (8)0.021 (5)*0.216 (7)
H17B0.92920.70320.08100.025*0.216 (7)
C18B1.079 (2)0.897 (2)0.1437 (8)0.027 (5)*0.216 (7)
H18C1.12470.81050.14880.032*0.216 (7)
H18D1.14880.96520.14230.032*0.216 (7)
C19B1.015 (3)0.925 (3)0.1883 (10)0.031 (6)*0.216 (7)
H19B1.07290.92320.22090.037*0.216 (7)
C20B0.883 (4)0.952 (4)0.1874 (18)0.056 (12)*0.216 (7)
H20C0.82130.95520.15570.067*0.216 (7)
H20D0.85310.96850.21840.067*0.216 (7)
P1A0.44160 (14)0.94789 (14)0.10748 (6)0.0324 (3)
F1A0.4146 (8)0.9819 (5)0.1629 (2)0.086 (2)0.847 (9)
F2A0.3010 (4)1.0150 (5)0.0787 (3)0.073 (2)0.847 (9)
F3A0.4734 (6)0.9122 (5)0.0510 (2)0.0663 (17)0.847 (9)
F4A0.5829 (5)0.8749 (6)0.1327 (2)0.076 (2)0.847 (9)
F50.5155 (4)1.0898 (4)0.10670 (16)0.0693 (12)
F60.3674 (3)0.8058 (3)0.10771 (14)0.0463 (9)
F1B0.318 (3)0.993 (3)0.1411 (10)0.045 (7)*0.153 (9)
F2B0.343 (3)0.976 (2)0.0549 (8)0.037 (6)*0.153 (9)
F3B0.556 (3)0.908 (2)0.0792 (10)0.045 (7)*0.153 (9)
F4B0.539 (2)0.926 (2)0.1628 (7)0.026 (5)*0.153 (9)
P2A0.10000 (19)0.4426 (3)0.14929 (7)0.0309 (6)0.764 (5)
F7A0.2000 (4)0.5490 (5)0.12970 (15)0.0399 (12)0.764 (5)
F8A0.1804 (6)0.3256 (6)0.1277 (3)0.079 (2)0.764 (5)
F9A0.0039 (8)0.3374 (6)0.1711 (3)0.081 (2)0.764 (5)
F10A0.2148 (7)0.4338 (6)0.20314 (19)0.0755 (19)0.764 (5)
F11A0.0331 (6)0.5585 (6)0.1761 (4)0.099 (3)0.764 (5)
F12A0.0023 (7)0.4527 (10)0.0967 (3)0.127 (4)0.764 (5)
P2B0.0850 (6)0.3710 (9)0.1433 (2)0.0242 (17)*0.236 (5)
F7B0.0640 (14)0.3262 (15)0.1484 (5)0.030 (3)*0.236 (5)
F8B0.1292 (17)0.4035 (17)0.2036 (6)0.046 (4)*0.236 (5)
F9B0.0238 (18)0.5234 (19)0.1331 (7)0.055 (5)*0.236 (5)
F10B0.0506 (14)0.3422 (15)0.0841 (5)0.034 (3)*0.236 (5)
F11B0.1506 (15)0.2290 (16)0.1537 (6)0.047 (4)*0.236 (5)
F12B0.2312 (14)0.4321 (16)0.1348 (5)0.041 (4)*0.236 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.030 (2)0.022 (2)0.0226 (19)0.0010 (17)0.0056 (16)0.0028 (16)
N20.034 (2)0.028 (2)0.0154 (18)0.0004 (18)0.0001 (16)0.0012 (16)
C10.025 (2)0.023 (3)0.026 (2)0.0111 (19)0.0041 (18)0.001 (2)
C20.034 (3)0.036 (3)0.017 (2)0.012 (2)0.0016 (19)0.005 (2)
C30.042 (3)0.052 (4)0.019 (2)0.014 (3)0.011 (2)0.001 (2)
C40.037 (3)0.044 (3)0.026 (3)0.021 (3)0.001 (2)0.008 (2)
C50.034 (3)0.024 (3)0.032 (3)0.010 (2)0.002 (2)0.001 (2)
C60.029 (2)0.027 (3)0.022 (2)0.003 (2)0.0029 (18)0.005 (2)
C70.055 (3)0.028 (3)0.035 (3)0.013 (3)0.020 (3)0.010 (2)
C80.027 (3)0.039 (3)0.046 (3)0.001 (2)0.006 (2)0.002 (3)
C90.030 (3)0.044 (3)0.028 (3)0.001 (2)0.007 (2)0.003 (2)
C100.029 (2)0.024 (2)0.015 (2)0.0006 (19)0.0050 (17)0.0024 (18)
C110.066 (4)0.033 (3)0.020 (3)0.005 (3)0.018 (3)0.007 (2)
C12A0.046 (6)0.038 (6)0.035 (5)0.007 (4)0.017 (4)0.001 (4)
C13A0.053 (7)0.077 (8)0.038 (6)0.005 (6)0.016 (5)0.005 (5)
C140.042 (3)0.043 (3)0.021 (2)0.005 (3)0.000 (2)0.010 (2)
N3A0.034 (4)0.025 (5)0.026 (4)0.000 (3)0.009 (3)0.003 (3)
N4A0.030 (3)0.025 (4)0.037 (3)0.004 (3)0.007 (3)0.003 (3)
C15A0.021 (4)0.065 (6)0.109 (8)0.005 (4)0.021 (4)0.049 (6)
C16A0.022 (4)0.058 (6)0.099 (7)0.003 (4)0.006 (4)0.044 (5)
C17A0.024 (3)0.026 (4)0.041 (4)0.004 (3)0.009 (3)0.009 (4)
C18A0.038 (4)0.023 (4)0.050 (4)0.003 (3)0.001 (3)0.009 (3)
C19A0.040 (4)0.045 (5)0.053 (5)0.004 (4)0.007 (4)0.011 (4)
C20A0.107 (11)0.076 (9)0.041 (5)0.039 (8)0.016 (6)0.004 (5)
P1A0.0294 (7)0.0260 (7)0.0402 (8)0.0003 (6)0.0022 (6)0.0082 (6)
F1A0.150 (7)0.056 (3)0.067 (4)0.014 (4)0.055 (4)0.009 (3)
F2A0.031 (2)0.048 (3)0.137 (6)0.011 (2)0.007 (3)0.046 (3)
F3A0.079 (4)0.070 (3)0.056 (3)0.004 (3)0.028 (3)0.002 (3)
F4A0.034 (2)0.076 (4)0.105 (5)0.000 (2)0.015 (3)0.037 (3)
F50.084 (3)0.046 (2)0.068 (3)0.031 (2)0.008 (2)0.015 (2)
F60.0441 (19)0.0322 (18)0.058 (2)0.0076 (15)0.0021 (16)0.0128 (16)
P2A0.0319 (10)0.0293 (14)0.0350 (10)0.0034 (9)0.0153 (7)0.0049 (9)
F7A0.035 (2)0.055 (3)0.031 (2)0.010 (2)0.0088 (17)0.003 (2)
F8A0.083 (4)0.054 (4)0.113 (5)0.005 (3)0.051 (4)0.025 (4)
F9A0.104 (5)0.070 (4)0.087 (5)0.041 (4)0.067 (4)0.015 (4)
F10A0.097 (5)0.082 (4)0.039 (3)0.017 (4)0.008 (3)0.025 (3)
F11A0.057 (3)0.063 (4)0.198 (8)0.008 (3)0.082 (4)0.032 (5)
F12A0.086 (5)0.165 (8)0.095 (5)0.078 (5)0.070 (4)0.070 (6)
Geometric parameters (Å, º) top
N1—C101.335 (6)C15A—H15A0.9300
N1—C81.381 (6)C16A—H16A0.9300
N1—C71.462 (6)C17A—H17A0.9300
N2—C101.323 (6)C18A—C19A1.487 (11)
N2—C91.370 (7)C18A—H18A0.9700
N2—C111.486 (6)C18A—H18B0.9700
C1—C61.385 (7)C19A—C20A1.303 (14)
C1—C21.386 (6)C19A—H19A0.9300
C1—H1A0.9300C20A—H20A0.9300
C2—C31.383 (7)C20A—H20B0.9300
C2—C141.506 (7)N3B—C15B1.35 (5)
C3—C41.380 (8)N3B—C17B1.37 (4)
C3—H3A0.9300N4B—C17B1.30 (3)
C4—C51.379 (7)N4B—C16B1.35 (4)
C4—H4A0.9300N4B—C18B1.48 (3)
C5—C61.395 (7)C15B—C16B1.35 (4)
C5—H5A0.9300C15B—H15B0.9300
C6—C71.517 (7)C16B—H16B0.9300
C7—H7A0.9700C17B—H17B0.9300
C7—H7B0.9700C18B—C19B1.45 (3)
C8—C91.344 (8)C18B—H18C0.9700
C8—H8A0.9300C18B—H18D0.9700
C9—H9A0.9300C19B—C20B1.32 (5)
C10—H10A0.9300C19B—H19B0.9300
C11—C12B1.343 (18)C20B—H20C0.9300
C11—C12A1.570 (11)C20B—H20D0.9300
C11—H11A0.9700P1A—F3B1.52 (2)
C11—H11B0.9700P1A—F2B1.55 (2)
C11—H11C0.9600P1A—F1A1.558 (5)
C11—H11D0.9601P1A—F51.586 (4)
C12A—C13A1.294 (17)P1A—F4B1.587 (18)
C12A—H12A0.9300P1A—F61.588 (3)
C13A—H13A0.9300P1A—F2A1.592 (4)
C13A—H13B0.9300P1A—F4A1.597 (5)
C12B—C13B1.32 (3)P1A—F3A1.606 (5)
C12B—H12B0.9300P1A—F1B1.69 (2)
C13B—H13C0.9300P2A—F12A1.543 (5)
C13B—H13D0.9300P2A—F11A1.557 (6)
C14—N3A1.422 (10)P2A—F8A1.570 (6)
C14—N3B1.71 (3)P2A—F9A1.587 (5)
C14—H14A0.9700P2A—F7A1.595 (4)
C14—H14B0.9700P2A—F10A1.629 (5)
N3A—C17A1.319 (11)P2B—F10B1.543 (14)
N3A—C15A1.380 (11)P2B—F11B1.552 (17)
N4A—C17A1.332 (9)P2B—F7B1.567 (15)
N4A—C16A1.354 (10)P2B—F8B1.586 (17)
N4A—C18A1.482 (9)P2B—F12B1.620 (15)
C15A—C16A1.335 (11)P2B—F9B1.628 (19)
C10—N1—C8107.8 (4)C19A—C20A—H20A120.0
C10—N1—C7124.6 (4)C19A—C20A—H20B120.0
C8—N1—C7127.4 (4)H20A—C20A—H20B120.0
C10—N2—C9108.4 (4)C15B—N3B—C17B103 (3)
C10—N2—C11125.8 (4)C15B—N3B—C14132 (3)
C9—N2—C11125.7 (4)C17B—N3B—C14125 (3)
C6—C1—C2120.1 (4)C17B—N4B—C16B111 (2)
C6—C1—H1A120.0C17B—N4B—C18B127 (2)
C2—C1—H1A120.0C16B—N4B—C18B121 (2)
C3—C2—C1119.5 (5)C16B—C15B—N3B112 (3)
C3—C2—C14121.3 (5)C16B—C15B—H15B123.8
C1—C2—C14119.2 (5)N3B—C15B—H15B123.8
C4—C3—C2120.8 (5)C15B—C16B—N4B104 (3)
C4—C3—H3A119.6C15B—C16B—H16B128.1
C2—C3—H3A119.6N4B—C16B—H16B128.1
C5—C4—C3119.9 (5)N4B—C17B—N3B110 (2)
C5—C4—H4A120.0N4B—C17B—H17B125.0
C3—C4—H4A120.0N3B—C17B—H17B125.0
C4—C5—C6119.8 (5)C19B—C18B—N4B114 (2)
C4—C5—H5A120.1C19B—C18B—H18C108.7
C6—C5—H5A120.1N4B—C18B—H18C108.7
C1—C6—C5119.9 (4)C19B—C18B—H18D108.7
C1—C6—C7121.6 (4)N4B—C18B—H18D108.7
C5—C6—C7118.3 (5)H18C—C18B—H18D107.6
N1—C7—C6112.4 (4)C20B—C19B—C18B127 (3)
N1—C7—H7A109.1C20B—C19B—H19B116.6
C6—C7—H7A109.1C18B—C19B—H19B116.6
N1—C7—H7B109.1C19B—C20B—H20C120.0
C6—C7—H7B109.1C19B—C20B—H20D120.0
H7A—C7—H7B107.9H20C—C20B—H20D120.0
C9—C8—N1107.1 (5)F3B—P1A—F2B90.9 (13)
C9—C8—H8A126.4F3B—P1A—F1A141.7 (10)
N1—C8—H8A126.4F2B—P1A—F1A126.4 (10)
C8—C9—N2107.6 (5)F3B—P1A—F580.5 (9)
C8—C9—H9A126.2F2B—P1A—F592.6 (9)
N2—C9—H9A126.2F1A—P1A—F588.9 (3)
N2—C10—N1109.1 (4)F3B—P1A—F4B91.7 (12)
N2—C10—H10A125.5F2B—P1A—F4B176.8 (12)
N1—C10—H10A125.5F1A—P1A—F4B50.7 (7)
C12B—C11—N2114.1 (8)F5—P1A—F4B86.0 (7)
N2—C11—C12A110.2 (5)F3B—P1A—F699.3 (9)
C12B—C11—H11A82.7F2B—P1A—F687.0 (8)
N2—C11—H11A109.6F1A—P1A—F691.5 (3)
C12A—C11—H11A109.6F5—P1A—F6179.5 (2)
C12B—C11—H11B127.9F4B—P1A—F694.4 (7)
N2—C11—H11B109.6F3B—P1A—F2A122.9 (10)
C12A—C11—H11B109.6F1A—P1A—F2A93.3 (4)
H11A—C11—H11B108.1F5—P1A—F2A89.1 (2)
C12B—C11—H11C108.9F4B—P1A—F2A143.7 (8)
N2—C11—H11C108.1F6—P1A—F2A90.7 (2)
C12A—C11—H11C132.5F3B—P1A—F4A53.8 (10)
H11B—C11—H11C82.0F2B—P1A—F4A142.9 (10)
C12B—C11—H11D108.9F1A—P1A—F4A90.4 (4)
N2—C11—H11D109.0F5—P1A—F4A92.3 (3)
C12A—C11—H11D85.1F6—P1A—F4A87.9 (2)
H11A—C11—H11D130.0F2A—P1A—F4A176.0 (4)
H11C—C11—H11D107.7F2B—P1A—F3A54.9 (9)
C13A—C12A—C11124.9 (11)F1A—P1A—F3A178.6 (4)
C13A—C12A—H12A117.6F5—P1A—F3A90.7 (3)
C11—C12A—H12A117.6F4B—P1A—F3A127.9 (8)
C12A—C13A—H13A120.0F6—P1A—F3A88.9 (2)
C12A—C13A—H13B120.0F2A—P1A—F3A88.0 (3)
H13A—C13A—H13B120.0F4A—P1A—F3A88.2 (3)
C13B—C12B—C11122 (2)F3B—P1A—F1B177.8 (13)
C13B—C12B—H12B119.0F2B—P1A—F1B91.2 (12)
C11—C12B—H12B119.0F5—P1A—F1B98.6 (9)
C12B—C13B—H13C120.0F4B—P1A—F1B86.1 (11)
C12B—C13B—H13D120.0F6—P1A—F1B81.7 (9)
H13C—C13B—H13D120.0F2A—P1A—F1B59.1 (9)
N3A—C14—C2108.9 (5)F4A—P1A—F1B124.3 (9)
C2—C14—N3B114.6 (12)F3A—P1A—F1B145.4 (9)
N3A—C14—H14A109.9F12A—P2A—F11A95.2 (5)
C2—C14—H14A109.9F12A—P2A—F8A91.0 (5)
N3B—C14—H14A115.0F11A—P2A—F8A173.8 (4)
N3A—C14—H14B109.9F12A—P2A—F9A91.6 (4)
C2—C14—H14B109.9F11A—P2A—F9A89.3 (3)
N3B—C14—H14B98.2F8A—P2A—F9A91.3 (4)
H14A—C14—H14B108.3F12A—P2A—F7A90.6 (3)
C17A—N3A—C15A108.7 (7)F11A—P2A—F7A90.0 (3)
C17A—N3A—C14124.2 (7)F8A—P2A—F7A89.2 (3)
C15A—N3A—C14127.1 (8)F9A—P2A—F7A177.7 (3)
C17A—N4A—C16A108.3 (7)F12A—P2A—F10A176.9 (4)
C17A—N4A—C18A126.2 (7)F11A—P2A—F10A86.3 (4)
C16A—N4A—C18A125.3 (6)F8A—P2A—F10A87.5 (4)
C16A—C15A—N3A106.2 (7)F9A—P2A—F10A91.1 (4)
C16A—C15A—H15A126.9F7A—P2A—F10A86.7 (3)
N3A—C15A—H15A126.9F10B—P2B—F11B90.6 (9)
C15A—C16A—N4A108.4 (7)F10B—P2B—F7B90.3 (8)
C15A—C16A—H16A125.8F11B—P2B—F7B95.5 (9)
N4A—C16A—H16A125.8F10B—P2B—F8B176.6 (9)
N3A—C17A—N4A108.4 (7)F11B—P2B—F8B89.1 (8)
N3A—C17A—H17A125.8F7B—P2B—F8B93.1 (8)
N4A—C17A—H17A125.8F10B—P2B—F12B87.8 (7)
N4A—C18A—C19A111.5 (6)F11B—P2B—F12B90.6 (8)
N4A—C18A—H18A109.3F7B—P2B—F12B173.7 (9)
C19A—C18A—H18A109.3F8B—P2B—F12B88.8 (8)
N4A—C18A—H18B109.3F10B—P2B—F9B90.3 (9)
C19A—C18A—H18B109.3F11B—P2B—F9B177.1 (10)
H18A—C18A—H18B108.0F7B—P2B—F9B87.2 (9)
C20A—C19A—C18A128.4 (8)F8B—P2B—F9B89.8 (10)
C20A—C19A—H19A115.8F12B—P2B—F9B86.8 (9)
C18A—C19A—H19A115.8
C6—C1—C2—C31.3 (7)C3—C2—C14—N3B112.3 (13)
C6—C1—C2—C14179.2 (5)C1—C2—C14—N3B68.2 (14)
C1—C2—C3—C40.9 (8)C2—C14—N3A—C17A120.4 (7)
C14—C2—C3—C4179.7 (5)N3B—C14—N3A—C17A1 (6)
C2—C3—C4—C50.1 (8)C2—C14—N3A—C15A57.2 (10)
C3—C4—C5—C60.6 (8)C17A—N3A—C15A—C16A1.1 (11)
C2—C1—C6—C50.9 (7)C14—N3A—C15A—C16A179.1 (8)
C2—C1—C6—C7177.2 (5)N3A—C15A—C16A—N4A0.5 (12)
C4—C5—C6—C10.1 (7)C17A—N4A—C16A—C15A0.4 (12)
C4—C5—C6—C7176.4 (5)C18A—N4A—C16A—C15A174.9 (8)
C10—N1—C7—C6133.8 (5)C15A—N3A—C17A—N4A1.4 (9)
C8—N1—C7—C651.7 (7)C14—N3A—C17A—N4A179.4 (7)
C1—C6—C7—N145.3 (7)C16A—N4A—C17A—N3A1.1 (9)
C5—C6—C7—N1138.3 (5)C18A—N4A—C17A—N3A175.5 (7)
C10—N1—C8—C90.4 (6)C17A—N4A—C18A—C19A87.4 (10)
C7—N1—C8—C9174.8 (5)C16A—N4A—C18A—C19A86.1 (10)
N1—C8—C9—N20.2 (6)N4A—C18A—C19A—C20A3.4 (14)
C10—N2—C9—C80.7 (6)N3A—C14—N3B—C15B133 (9)
C11—N2—C9—C8178.5 (5)C2—C14—N3B—C15B164 (3)
C9—N2—C10—N11.0 (5)N3A—C14—N3B—C17B47 (6)
C11—N2—C10—N1178.7 (4)C2—C14—N3B—C17B15 (3)
C8—N1—C10—N20.9 (5)C17B—N3B—C15B—C16B2 (4)
C7—N1—C10—N2174.5 (4)C14—N3B—C15B—C16B178 (3)
C10—N2—C11—C12B6.5 (13)N3B—C15B—C16B—N4B2 (4)
C9—N2—C11—C12B170.9 (12)C17B—N4B—C16B—C15B2 (3)
C10—N2—C11—C12A23.7 (8)C18B—N4B—C16B—C15B171 (2)
C9—N2—C11—C12A159.0 (6)C16B—N4B—C17B—N3B1 (3)
C12B—C11—C12A—C13A3.5 (16)C18B—N4B—C17B—N3B169 (2)
N2—C11—C12A—C13A107.0 (9)C15B—N3B—C17B—N4B1 (3)
N2—C11—C12B—C13B99.6 (18)C14—N3B—C17B—N4B179 (2)
C12A—C11—C12B—C13B11.5 (14)C17B—N4B—C18B—C19B90 (3)
C3—C2—C14—N3A101.3 (6)C16B—N4B—C18B—C19B78 (3)
C1—C2—C14—N3A79.2 (7)N4B—C18B—C19B—C20B2 (4)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the N3A/N4A/C15A–C17A and N3B/N4B/C15B–C17B rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3A···F7Ai0.932.403.276 (6)156
C5—H5A···F5ii0.932.513.320 (6)146
C8—H8A···F11Aiii0.932.273.107 (8)150
C10—H10A···F7A0.932.253.130 (6)158
C16A—H16A···F6iii0.932.483.407 (9)172
C20A—H20A···Cg20.932.893.489 (11)123
C20B—H20C···Cg30.932.843.44 (5)124
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC20H24N42+·2PF6
Mr610.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.8748 (4), 9.9098 (3), 26.124 (1)
β (°) 101.138 (2)
V3)2508.27 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.921, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
35601, 5217, 4324
Rint0.059
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.108, 0.201, 1.14
No. of reflections5217
No. of parameters431
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.P)2 + 16.2482P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.55, 0.56

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the N3A/N4A/C15A–C17A and N3B/N4B/C15B–C17B rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3A···F7Ai0.932.403.276 (6)156
C5—H5A···F5ii0.932.513.320 (6)146
C8—H8A···F11Aiii0.932.273.107 (8)150
C10—H10A···F7A0.932.253.130 (6)158
C16A—H16A···F6iii0.932.483.407 (9)172
C20A—H20A···Cg20.932.893.489 (11)123
C20B—H20C···Cg30.932.843.44 (5)124
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z; (iii) x+1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-5525-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

RAH, MZG and HHA thank Universiti Sains Malaysia (USM) for the FRGS fund (203/PKIMIA/671115), short term grant (304/PKIMIA/639001) and RU grants (1001/PKIMIA/813023 and 1001/PKIMIA/811157). HKF and CKQ thank USM for the Research University Grant (No. 1001/PFIZIK/811160). CKQ also thanks USM for the award of a USM fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationArduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361–363.  CSD CrossRef CAS Web of Science Google Scholar
First citationBöhm, V. P. W., Gstöttmayr, C. W. K., Weskamp, T. & Herrmann, W. A. (2000). J. Organomet Chem. 595, 186–190.  Google Scholar
First citationBourissou, D., Guerret, O., Gabbaï, F. P. & Bertrand, G. (2000). Chem. Rev. 100, 39–91.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaballero, A., Dìez-Barra, E., Jalón, F. A., Merino, S. & Tejeda, J. (2001). J. Organomet. Chem. 617, 395–398.  Web of Science CrossRef Google Scholar
First citationDanopoulos, A. A., Winston, S., Gelbrich, T., Hursthouse, M. B. & Tooze, R. P. (2002). J. Chem. Soc. Chem. Commun. pp. 482–483.  CrossRef Google Scholar
First citationDias, H. V. & Jin, W. (1994). Tetrahedron Lett. 35, 1365–1366.  CrossRef CAS Web of Science Google Scholar
First citationHaque, R. A., Washeel, A., Teoh, S. G., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o2797–o2798.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHerrmann, W. A., Elison, M., Fischer, J., Köcher, C. & Artus, G. R. J. (1996). Chem. Eur. J. 2, 772–779.  CrossRef CAS Web of Science Google Scholar
First citationHerrmann, W. A., Goossen, L. J. & Spiegler, M. (1997). J. Organomet. Chem. 547, 357–366.  Web of Science CSD CrossRef CAS Google Scholar
First citationJafarpour, L. & Nolan, S. P. (2001). Adv. Organomet. Chem. 46, 181–222.  CrossRef Google Scholar
First citationMelaiye, A., Sun, Z., Hindi, K., Milsted, M., Ely, D., Reneker, D. H., Tessier, C. A. & Youngs, W. J. (2005). J. Am. Chem. Soc. 127, 2285–2291.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThompson, K. H., McNeill, J. H. & Orvig, C. (1999). Chem. Rev. 99, 2561–2572.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYang, C. & Nolan, S. P. (2001). Synlett, 10, 1539–1542.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds