metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[tris­­(μ2-1H-benzimidazole-5-carboxyl­ato)europium(III)]

aZhongshan Polytechnic, Zhongshan, Guangdong 528404, People's Republic of China
*Correspondence e-mail: wangjun7203@126.com

(Received 25 November 2010; accepted 9 December 2010; online 15 December 2010)

In the title one-dimensional coordination polymer, [Eu(C8H5N2O2)3]n, the EuIII ion is eight-coordinated by the carboxyl­ate O atoms of six ligands in a distorted monocapped penta­gonal–bipyramidal geometry. The ligands link EuIII ions, forming helical chains parallel to the c axis, with Eu⋯Eu separations of 4.0678 (11) Å. The chains are further inter­connected by N—H⋯N hydrogen bonds into a three-dimensional supra­molecular network. The crystal studied was a racemic twin, as suggested by the Flack parameter of 0.367 (14).

Related literature

For general background to coordination polymers based on N-heterocyclic carboxyl­ates, see: Huang et al. (2009[Huang, Y.-G., Jiang, F.-L. & Hong, M.-C. (2009). Coord. Chem. Rev. 253, 2814-2834.]); Cheng et al. (2008[Cheng, J. W., Zheng, S. T., Liu, W. & Yang, G. Y. (2008). CrystEngComm, 10, 1047-1051.]); Qiu et al. (2007[Qiu, Y. C., Liu, H. G., Ling, Y., Deng, H., Zeng, R. H., Zhou, G. Y. & Zeller, M. (2007). Inorg. Chem. Commun. 10, 1399-1403.]). For related structures, see: Guo, Cao et al. (2007[Guo, Z. G., Cao, R., Li, X. J., Yuan, D. Q., Bi, W. H., Zhu, X. D. & Li, Y. F. (2007). Eur. J. Inorg. Chem. pp. 742-748.]); Guo, Li et al. (2007[Guo, Z. G., Li, X. J., Gao, S. Y., Li, Y. F. & Cao, R. (2007). J. Mol. Struct. 847, 123-127.]); Peng et al. (2010[Peng, G., Ma, L., Liu, B., Cai, J. B. & Deng, H. (2010). Inorg. Chem. Commun. 13, 599-602.]).

[Scheme 1]

Experimental

Crystal data
  • [Eu(C8H5N2O2)3]

  • Mr = 635.38

  • Monoclinic, C c

  • a = 23.211 (2) Å

  • b = 12.4312 (12) Å

  • c = 8.1329 (8) Å

  • β = 107.902 (1)°

  • V = 2233.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.87 mm−1

  • T = 293 K

  • 0.20 × 0.19 × 0.13 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.598, Tmax = 0.707

  • 5623 measured reflections

  • 3595 independent reflections

  • 3412 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.054

  • S = 1.05

  • 3595 reflections

  • 335 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 1.07 e Å−3

  • Δρmin = −0.66 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1587 Friedel pairs

  • Flack parameter: 0.367 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N2i 0.86 1.96 2.798 (6) 165
N5—H5⋯N4ii 0.86 2.04 2.839 (6) 155
N1—H1⋯N6ii 0.86 1.97 2.827 (6) 173
Symmetry codes: (i) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal coordination polymers based on N-heterocyclic carboxylates such as pyridinecarboxylates have raised intense interest for their structural diversity and their potential applications as functional materials (Huang et al., 2009; Cheng et al., 2008; Qiu et al., 2007). To date, one-, two-, and three-dimensional coordination polymers have been synthesized by the choice of appropriate metal ions and versatile benzimidazole carboxylates as ligands (Guo, Cao et al., 2007; Guo, Li et al., 2007b; Peng et al., 2010). Herein, the hydrothermal treatment of Eu2O3 with 1H-benzimidazole-5-carboxylic acid led to a the synthesis of the novel title compound, [Eu(C8H5N2O2)3]n, whose structure is reported herein.

As depicted in Fig. 1, the europium(III) ion is eight-coordinated by the O atoms of six 1H-benzimidazole-5-carboxylate ligands, adopting a distorted monocapped pentagonal-bipyramidal geometry. The 1H-benzimidazole-5-carboxylate ligands link europium ions, forming helical chains parallel to the c axis. The Eu···Eu separations within the polymer are 4.0678 (11) /%A. These chains are further interconnected by N—H···N hydrogen bonds and extend to form a three-dimensional supramolecular network (Table 1; Fig. 2).

Related literature top

For general background to coordination polymers based on N-heterocyclic carboxylates, see: Huang et al. (2009); Cheng et al. (2008); Qiu et al. (2007). For related structures, see: Guo, Cao et al. (2007); Guo, Li et al. (2007); Peng et al. (2010).

Experimental top

A mixture of Eu2O3 (0.070 g, 0.2 mmol), 1H-benzimidazole-5-carboxylic acid (0.193 g, 1.2 mmol), and H2O (10 mL) was sealed in a 20 mL Teflon-lined reactor, which was heated in an oven to 423 K for 48 h and then cooled to room temperature at a rate of 5 K h-1. Colourless crystals suitable for X-ray analysis were obtained in a yield of 76% based on Eu.

Refinement top

The crystal studied was a racemic twin, as suggested by the Flack parameter of 0.367 (14) obtained by the TWIN/BASF procedure in SHELXL (Sheldrick, 2008). All H atoms were fixed geometrically and treated as riding, with C—H = 0.93 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C, N).

Structure description top

Metal coordination polymers based on N-heterocyclic carboxylates such as pyridinecarboxylates have raised intense interest for their structural diversity and their potential applications as functional materials (Huang et al., 2009; Cheng et al., 2008; Qiu et al., 2007). To date, one-, two-, and three-dimensional coordination polymers have been synthesized by the choice of appropriate metal ions and versatile benzimidazole carboxylates as ligands (Guo, Cao et al., 2007; Guo, Li et al., 2007b; Peng et al., 2010). Herein, the hydrothermal treatment of Eu2O3 with 1H-benzimidazole-5-carboxylic acid led to a the synthesis of the novel title compound, [Eu(C8H5N2O2)3]n, whose structure is reported herein.

As depicted in Fig. 1, the europium(III) ion is eight-coordinated by the O atoms of six 1H-benzimidazole-5-carboxylate ligands, adopting a distorted monocapped pentagonal-bipyramidal geometry. The 1H-benzimidazole-5-carboxylate ligands link europium ions, forming helical chains parallel to the c axis. The Eu···Eu separations within the polymer are 4.0678 (11) /%A. These chains are further interconnected by N—H···N hydrogen bonds and extend to form a three-dimensional supramolecular network (Table 1; Fig. 2).

For general background to coordination polymers based on N-heterocyclic carboxylates, see: Huang et al. (2009); Cheng et al. (2008); Qiu et al. (2007). For related structures, see: Guo, Cao et al. (2007); Guo, Li et al. (2007); Peng et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids. Symmetry code: (i) x, -y, 0.5+z.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the c axis. Intermolecular hydrogen bonds are shown as dashed lines.
catena-Poly[tris(µ2-1H-benzimidazole-5- carboxylato)europium(III)] top
Crystal data top
[Eu(C8H5N2O2)3]F(000) = 1248
Mr = 635.38Dx = 1.890 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 2300 reflections
a = 23.211 (2) Åθ = 1.2–28.0°
b = 12.4312 (12) ŵ = 2.87 mm1
c = 8.1329 (8) ÅT = 293 K
β = 107.902 (1)°Block, colourless
V = 2233.1 (4) Å30.20 × 0.19 × 0.13 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
3595 independent reflections
Radiation source: fine-focus sealed tube3412 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
φ and ω scansθmax = 25.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 2727
Tmin = 0.598, Tmax = 0.707k = 1214
5623 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0245P)2 + 1.858P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3595 reflectionsΔρmax = 1.07 e Å3
335 parametersΔρmin = 0.66 e Å3
2 restraintsAbsolute structure: Flack (1983), 1587 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.367 (14)
Crystal data top
[Eu(C8H5N2O2)3]V = 2233.1 (4) Å3
Mr = 635.38Z = 4
Monoclinic, CcMo Kα radiation
a = 23.211 (2) ŵ = 2.87 mm1
b = 12.4312 (12) ÅT = 293 K
c = 8.1329 (8) Å0.20 × 0.19 × 0.13 mm
β = 107.902 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
3595 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
3412 reflections with I > 2σ(I)
Tmin = 0.598, Tmax = 0.707Rint = 0.019
5623 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.054Δρmax = 1.07 e Å3
S = 1.05Δρmin = 0.66 e Å3
3595 reflectionsAbsolute structure: Flack (1983), 1587 Friedel pairs
335 parametersAbsolute structure parameter: 0.367 (14)
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7810 (2)0.1030 (3)0.3121 (6)0.0246 (10)
C20.7133 (2)0.1136 (3)0.2747 (6)0.0247 (10)
C30.6748 (2)0.0808 (4)0.1122 (7)0.0320 (11)
H30.69140.05680.02850.038*
C40.6124 (2)0.0839 (4)0.0754 (7)0.0350 (12)
H40.58690.06020.03050.042*
C50.58948 (19)0.1233 (4)0.2012 (6)0.0262 (10)
C60.6284 (2)0.1580 (4)0.3601 (6)0.0266 (10)
C70.69065 (19)0.1513 (4)0.3995 (6)0.0260 (10)
H70.71610.17170.50740.031*
C80.5362 (2)0.1815 (4)0.3580 (7)0.0379 (12)
H80.50290.20070.39200.045*
C90.9849 (2)0.0888 (3)0.5739 (6)0.0250 (10)
C101.0465 (2)0.1076 (3)0.5592 (6)0.0235 (10)
C111.0547 (2)0.1516 (4)0.4114 (6)0.0268 (10)
H111.02190.16890.31610.032*
C121.1136 (2)0.1687 (4)0.4115 (6)0.0266 (10)
C131.16339 (19)0.1397 (4)0.5542 (6)0.0272 (10)
C141.1553 (2)0.0948 (4)0.7007 (7)0.0355 (12)
H141.18820.07490.79400.043*
C151.0968 (2)0.0804 (4)0.7041 (6)0.0333 (12)
H151.09020.05250.80270.040*
C161.1963 (2)0.2119 (5)0.3592 (8)0.0470 (15)
H161.22260.23910.30330.056*
C170.88812 (19)0.1921 (3)0.4501 (6)0.0238 (11)
C180.8756 (2)0.3027 (4)0.3823 (7)0.0235 (12)
C190.9090 (2)0.3881 (4)0.4713 (7)0.0248 (11)
H190.94180.37660.56970.030*
C200.8928 (5)0.4911 (4)0.411 (2)0.0215 (18)
C210.8393 (2)0.5091 (3)0.2693 (7)0.0246 (11)
C220.8063 (2)0.4221 (4)0.1781 (6)0.0289 (11)
H220.77220.43320.08340.035*
C230.8256 (2)0.3205 (4)0.2321 (6)0.0285 (11)
H230.80560.26180.16900.034*
C240.8778 (3)0.6620 (4)0.3649 (7)0.0335 (16)
H240.88340.73600.37600.040*
Eu10.88497 (4)0.004139 (14)0.65258 (9)0.01831 (7)
N10.53063 (17)0.1384 (3)0.2059 (6)0.0357 (10)
H10.49760.12290.12640.043*
N20.59260 (17)0.1958 (4)0.4594 (6)0.0347 (10)
N31.13677 (18)0.2146 (4)0.2901 (6)0.0388 (10)
H3A1.11660.23960.19040.047*
N41.21553 (18)0.1670 (3)0.5153 (6)0.0372 (10)
N50.83136 (19)0.6180 (3)0.2483 (6)0.0307 (10)
H50.80210.65080.17420.037*
N60.91641 (18)0.5911 (3)0.4667 (6)0.0296 (9)
O10.81272 (13)0.1030 (3)0.4680 (4)0.0293 (7)
O20.80206 (14)0.0948 (3)0.1870 (4)0.0340 (8)
O30.93970 (13)0.0700 (3)0.4411 (4)0.0257 (7)
O40.97779 (16)0.0890 (3)0.7212 (4)0.0416 (9)
O50.86050 (14)0.1111 (2)0.3630 (4)0.0240 (7)
O60.92350 (15)0.1775 (2)0.6017 (4)0.0302 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.025 (2)0.022 (2)0.030 (3)0.0051 (18)0.013 (2)0.0025 (18)
C20.017 (2)0.024 (2)0.031 (3)0.0055 (17)0.005 (2)0.0043 (18)
C30.032 (3)0.036 (3)0.029 (3)0.006 (2)0.012 (2)0.007 (2)
C40.034 (3)0.040 (3)0.027 (3)0.002 (2)0.003 (2)0.007 (2)
C50.016 (2)0.031 (2)0.027 (3)0.0007 (19)0.001 (2)0.0004 (19)
C60.021 (2)0.033 (3)0.027 (3)0.0007 (19)0.008 (2)0.000 (2)
C70.018 (2)0.033 (3)0.025 (3)0.0010 (18)0.004 (2)0.0056 (19)
C80.023 (3)0.049 (3)0.044 (3)0.003 (2)0.016 (2)0.007 (3)
C90.024 (2)0.025 (2)0.024 (3)0.0073 (19)0.004 (2)0.0018 (19)
C100.017 (2)0.026 (2)0.027 (3)0.0025 (18)0.005 (2)0.0010 (18)
C110.017 (2)0.032 (2)0.030 (3)0.0000 (19)0.005 (2)0.003 (2)
C120.024 (2)0.030 (2)0.025 (3)0.0008 (19)0.006 (2)0.0020 (19)
C130.014 (2)0.029 (2)0.037 (3)0.0010 (18)0.005 (2)0.000 (2)
C140.022 (3)0.041 (3)0.036 (3)0.001 (2)0.002 (2)0.013 (2)
C150.033 (3)0.035 (3)0.028 (3)0.007 (2)0.004 (2)0.011 (2)
C160.033 (3)0.065 (4)0.053 (4)0.003 (3)0.027 (3)0.007 (3)
C170.021 (2)0.028 (2)0.029 (3)0.0003 (19)0.018 (2)0.0008 (19)
C180.019 (3)0.026 (2)0.029 (3)0.002 (2)0.012 (3)0.001 (2)
C190.018 (3)0.028 (3)0.028 (3)0.000 (2)0.005 (2)0.001 (2)
C200.014 (5)0.022 (2)0.028 (3)0.003 (2)0.007 (4)0.007 (2)
C210.016 (3)0.030 (3)0.026 (3)0.0005 (17)0.005 (2)0.0037 (18)
C220.021 (2)0.036 (3)0.026 (3)0.001 (2)0.001 (2)0.004 (2)
C230.022 (2)0.034 (3)0.028 (3)0.006 (2)0.005 (2)0.006 (2)
C240.030 (4)0.024 (3)0.048 (5)0.003 (3)0.014 (4)0.007 (3)
Eu10.01663 (10)0.02304 (10)0.01675 (10)0.00095 (12)0.00732 (7)0.00014 (12)
N10.016 (2)0.048 (3)0.039 (3)0.0046 (18)0.0030 (19)0.002 (2)
N20.021 (2)0.052 (3)0.035 (3)0.0045 (19)0.0135 (19)0.002 (2)
N30.022 (2)0.064 (3)0.031 (3)0.003 (2)0.0091 (18)0.009 (2)
N40.021 (2)0.049 (3)0.044 (3)0.0021 (19)0.012 (2)0.007 (2)
N50.024 (2)0.029 (2)0.037 (3)0.0042 (18)0.005 (2)0.0062 (18)
N60.026 (2)0.022 (2)0.040 (3)0.0045 (17)0.009 (2)0.0010 (18)
O10.0202 (17)0.0360 (19)0.029 (2)0.0072 (14)0.0032 (15)0.0032 (14)
O20.0261 (18)0.043 (2)0.034 (2)0.0138 (15)0.0119 (16)0.0060 (16)
O30.0183 (17)0.0327 (18)0.0256 (18)0.0060 (13)0.0063 (14)0.0054 (14)
O40.0321 (19)0.069 (3)0.026 (2)0.0199 (18)0.0120 (16)0.0046 (17)
O50.0285 (17)0.0204 (16)0.0230 (17)0.0002 (13)0.0080 (14)0.0008 (13)
O60.0311 (18)0.0283 (17)0.0244 (19)0.0013 (14)0.0016 (15)0.0049 (14)
Geometric parameters (Å, º) top
C1—O11.255 (5)C16—H160.9300
C1—O21.261 (5)C17—O61.267 (5)
C1—C21.511 (6)C17—O51.283 (5)
C2—C71.363 (6)C17—C181.477 (6)
C2—C31.409 (7)C18—C191.381 (7)
C3—C41.385 (7)C18—C231.420 (7)
C3—H30.9300C19—C201.381 (8)
C4—C51.381 (7)C19—H190.9300
C4—H40.9300C20—N61.377 (9)
C5—N11.391 (6)C20—C211.428 (13)
C5—C61.398 (6)C21—N51.370 (6)
C6—C71.383 (6)C21—C221.399 (7)
C6—N21.406 (6)C22—C231.367 (6)
C7—H70.9300C22—H220.9300
C8—N11.317 (7)C23—H230.9300
C8—N21.327 (6)C24—N51.316 (7)
C8—H80.9300C24—N61.346 (7)
C9—O41.258 (5)C24—H240.9300
C9—O31.275 (5)Eu1—O12.300 (3)
C9—C101.491 (6)Eu1—O2i2.320 (3)
C10—C111.385 (7)Eu1—O42.357 (3)
C10—C151.421 (6)Eu1—O62.417 (3)
C11—C121.384 (6)Eu1—O5i2.429 (3)
C11—H110.9300Eu1—O3i2.441 (3)
C12—N31.384 (6)Eu1—O32.601 (3)
C12—C131.410 (6)Eu1—O52.610 (3)
C13—C141.380 (7)N1—H10.8600
C13—N41.384 (6)N3—H3A0.8600
C14—C151.376 (7)N5—H50.8600
C14—H140.9300O2—Eu1ii2.320 (3)
C15—H150.9300O3—Eu1ii2.441 (3)
C16—N31.322 (6)O5—Eu1ii2.429 (3)
C16—N41.332 (7)
O1—C1—O2124.2 (4)N5—C24—H24122.8
O1—C1—C2117.0 (4)N6—C24—H24122.8
O2—C1—C2118.8 (4)O1—Eu1—O2i83.94 (12)
C7—C2—C3121.2 (4)O1—Eu1—O4107.47 (13)
C7—C2—C1119.7 (4)O2i—Eu1—O4160.37 (12)
C3—C2—C1119.0 (4)O1—Eu1—O6129.67 (12)
C4—C3—C2121.0 (4)O2i—Eu1—O687.25 (11)
C4—C3—H3119.5O4—Eu1—O696.84 (13)
C2—C3—H3119.5O1—Eu1—O5i80.62 (11)
C5—C4—C3117.7 (5)O2i—Eu1—O5i79.58 (11)
C5—C4—H4121.1O4—Eu1—O5i86.46 (12)
C3—C4—H4121.1O6—Eu1—O5i145.61 (11)
C4—C5—N1132.4 (4)O1—Eu1—O3i151.78 (11)
C4—C5—C6120.5 (4)O2i—Eu1—O3i85.82 (12)
N1—C5—C6107.1 (4)O4—Eu1—O3i76.66 (12)
C7—C6—C5121.9 (4)O6—Eu1—O3i75.81 (11)
C7—C6—N2130.3 (5)O5i—Eu1—O3i71.68 (10)
C5—C6—N2107.8 (4)O1—Eu1—O376.68 (11)
C2—C7—C6117.6 (4)O2i—Eu1—O3147.53 (12)
C2—C7—H7121.2O4—Eu1—O352.10 (11)
C6—C7—H7121.2O6—Eu1—O385.47 (11)
N1—C8—N2115.6 (5)O5i—Eu1—O3121.64 (11)
N1—C8—H8122.2O3i—Eu1—O3122.60 (13)
N2—C8—H8122.2O1—Eu1—O578.07 (11)
O4—C9—O3119.5 (4)O2i—Eu1—O584.43 (11)
O4—C9—C10119.1 (4)O4—Eu1—O5113.16 (11)
O3—C9—C10121.4 (4)O6—Eu1—O551.75 (10)
C11—C10—C15121.1 (4)O5i—Eu1—O5154.53 (14)
C11—C10—C9121.5 (4)O3i—Eu1—O5126.96 (10)
C15—C10—C9117.4 (4)O3—Eu1—O566.35 (10)
C12—C11—C10117.3 (4)O1—Eu1—Eu1i114.44 (9)
C12—C11—H11121.3O2i—Eu1—Eu1i68.71 (9)
C10—C11—H11121.3O4—Eu1—Eu1i91.82 (9)
C11—C12—N3131.6 (4)O6—Eu1—Eu1i107.90 (8)
C11—C12—C13121.4 (4)O5i—Eu1—Eu1i37.71 (7)
N3—C12—C13107.0 (4)O3i—Eu1—Eu1i37.56 (7)
C14—C13—N4131.1 (4)O3—Eu1—Eu1i143.34 (7)
C14—C13—C12121.3 (4)O5—Eu1—Eu1i147.99 (6)
N4—C13—C12107.6 (4)O1—Eu1—Eu1ii63.70 (9)
C15—C14—C13117.8 (5)O2i—Eu1—Eu1ii112.81 (9)
C15—C14—H14121.1O4—Eu1—Eu1ii86.75 (9)
C13—C14—H14121.1O6—Eu1—Eu1ii74.80 (8)
C14—C15—C10121.1 (4)O5i—Eu1—Eu1ii139.58 (7)
C14—C15—H15119.5O3i—Eu1—Eu1ii144.06 (7)
C10—C15—H15119.5O3—Eu1—Eu1ii34.90 (7)
N3—C16—N4114.6 (5)O5—Eu1—Eu1ii34.69 (6)
N3—C16—H16122.7Eu1i—Eu1—Eu1ii177.100 (10)
N4—C16—H16122.7C8—N1—C5105.5 (4)
O6—C17—O5119.3 (4)C8—N1—H1127.3
O6—C17—C18119.4 (4)C5—N1—H1127.3
O5—C17—C18121.2 (4)C8—N2—C6104.0 (4)
C19—C18—C23120.6 (4)C16—N3—C12105.7 (4)
C19—C18—C17120.4 (5)C16—N3—H3A127.2
C23—C18—C17118.7 (4)C12—N3—H3A127.2
C20—C19—C18118.6 (7)C16—N4—C13105.1 (4)
C20—C19—H19120.7C24—N5—C21105.7 (4)
C18—C19—H19120.7C24—N5—H5127.1
N6—C20—C19133.0 (11)C21—N5—H5127.1
N6—C20—C21106.4 (5)C24—N6—C20105.5 (6)
C19—C20—C21120.4 (8)C1—O1—Eu1137.9 (3)
N5—C21—C22131.8 (5)C1—O2—Eu1ii132.7 (3)
N5—C21—C20107.9 (4)C9—O3—Eu1ii157.8 (3)
C22—C21—C20120.4 (4)C9—O3—Eu186.9 (3)
C23—C22—C21118.2 (5)Eu1ii—O3—Eu1107.53 (11)
C23—C22—H22120.9C9—O4—Eu198.7 (3)
C21—C22—H22120.9C17—O5—Eu1ii131.8 (3)
C22—C23—C18121.4 (4)C17—O5—Eu188.2 (2)
C22—C23—H23119.3Eu1ii—O5—Eu1107.59 (11)
C18—C23—H23119.3C17—O6—Eu197.5 (3)
N5—C24—N6114.5 (5)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N2iii0.861.962.798 (6)165
N5—H5···N4iv0.862.042.839 (6)155
N1—H1···N6iv0.861.972.827 (6)173
Symmetry codes: (iii) x+1/2, y1/2, z1/2; (iv) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Eu(C8H5N2O2)3]
Mr635.38
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)23.211 (2), 12.4312 (12), 8.1329 (8)
β (°) 107.902 (1)
V3)2233.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.87
Crystal size (mm)0.20 × 0.19 × 0.13
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.598, 0.707
No. of measured, independent and
observed [I > 2σ(I)] reflections
5623, 3595, 3412
Rint0.019
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.054, 1.05
No. of reflections3595
No. of parameters335
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.07, 0.66
Absolute structureFlack (1983), 1587 Friedel pairs
Absolute structure parameter0.367 (14)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N2i0.861.962.798 (6)164.6
N5—H5···N4ii0.862.042.839 (6)154.7
N1—H1···N6ii0.861.972.827 (6)172.5
Symmetry codes: (i) x+1/2, y1/2, z1/2; (ii) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge Zhongshan Polytechnic for supporting this work.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, J. W., Zheng, S. T., Liu, W. & Yang, G. Y. (2008). CrystEngComm, 10, 1047–1051.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGuo, Z. G., Cao, R., Li, X. J., Yuan, D. Q., Bi, W. H., Zhu, X. D. & Li, Y. F. (2007). Eur. J. Inorg. Chem. pp. 742–748.  Web of Science CSD CrossRef Google Scholar
First citationGuo, Z. G., Li, X. J., Gao, S. Y., Li, Y. F. & Cao, R. (2007). J. Mol. Struct. 847, 123–127.  Web of Science CSD CrossRef Google Scholar
First citationHuang, Y.-G., Jiang, F.-L. & Hong, M.-C. (2009). Coord. Chem. Rev. 253, 2814–2834.  Web of Science CrossRef CAS Google Scholar
First citationPeng, G., Ma, L., Liu, B., Cai, J. B. & Deng, H. (2010). Inorg. Chem. Commun. 13, 599–602.  Web of Science CSD CrossRef CAS Google Scholar
First citationQiu, Y. C., Liu, H. G., Ling, Y., Deng, H., Zeng, R. H., Zhou, G. Y. & Zeller, M. (2007). Inorg. Chem. Commun. 10, 1399–1403.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds