organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-[(E)-(2-Hy­dr­oxy­benzyl­­idene)amino]-1H-1,3-benzimidazole-2(3H)-thione

aSchool of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Aligarh Muslim University, Aligarh U. P. 202 002, India, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 3 December 2010; accepted 9 December 2010; online 18 December 2010)

There are two mol­ecules in the asymmetric unit of the title compound, C14H11N3OS. In each, the benzimidazole ring system is essentially planar, with maximum deviations of 0.010 (2) and 0.006 (2) Å, and makes dihedral angles of 8.70 (9) and 13.75 (8)°, respectively, with the hy­droxy-substituted benzene rings. Each mol­ecule adopts an E configuration about the central C=N double bond. In the crystal, the two independent mol­ecules are connected via inter­molecular N—H⋯S hydrogen bonds, forming dimers. Furthermore, the dimers are connected by N—H⋯O hydrogen bonds into mol­ecular ribbons along the c axis. There is an intra­molecular O—H⋯N hydrogen bond in each mol­ecule, which generates an S(6) ring motif.

Related literature

For applications of benzimidazole compounds, see: Grassmann et al. (2002[Grassmann, S., Sadek, B., Ligneau, X., Elz, S., Ganellin, C. R., Arrang, J. M., Schwartz, J. C., Stark, H. & Schunack, W. (2002). Eur. J. Pharm. Sci. 15, 367-378.]); White et al. (2004[White, A. W., Curtin, N. J., Eastman, B. W., Golding, B. T., Hostomsky, Z., Kyle, S., Li, J., Maegley, K. A., Skalitzky, D. J., Webber, S. E., Yu, X.-H. & Griffin, R. J. (2004). Bioorg. Med. Chem. Lett. 14, 2433-2437]); Demirayak et al. (2002[Demirayak, S., Abu Mohsen, U. & Caqri Karaburun, A. (2002). Eur. J. Med. Chem. 37, 255-260.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11N3OS

  • Mr = 269.32

  • Monoclinic, P 21 /n

  • a = 8.2680 (2) Å

  • b = 28.1043 (6) Å

  • c = 10.5047 (2) Å

  • β = 92.234 (1)°

  • V = 2439.08 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.44 × 0.28 × 0.05 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.894, Tmax = 0.986

  • 27759 measured reflections

  • 7101 independent reflections

  • 4852 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.140

  • S = 1.06

  • 7101 reflections

  • 367 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1NA⋯S1Bi 0.86 (3) 2.61 (3) 3.4714 (19) 173 (3)
N2A—H2NA⋯O1Bii 0.86 (3) 1.99 (3) 2.781 (2) 153 (3)
N1B—H1NB⋯O1Aiii 0.87 (2) 2.16 (2) 2.936 (2) 149 (2)
N2B—H2NB⋯S1Aiv 0.84 (3) 2.45 (3) 3.2547 (19) 163 (2)
O1B—H1OB⋯N3B 0.99 (4) 1.64 (3) 2.552 (2) 152 (3)
O1A—H1OA⋯N3A 0.99 (4) 1.72 (4) 2.600 (3) 147 (3)
Symmetry codes: (i) x, y+1, z; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzimidazole and its derivatives are very important for the development of molecules of pharmaceutical and biological interest. Schiff bases play an important role in bioorganic chemistry as they exhibit remarkable antihistamine (Grassmann et al., 2002), antitumour (White et al., 2004) and potential anticancer activities (Demirayak et al., 2002). In view of their importance in the field of drug discovery, the crystal structure determination of the title compound was carried out and the results are presented here.

The asymmetric unit of title compound which contains two molecules [A & B] is shown in Fig. 1. All geometrical parameters are within normal ranges. Each molecule adopts an E configuration about the central CN double bond. For both molecules, the benzimidazole ring systems (N1A–N2A/C1A–C7A)/(N1B–N2B/C1B–C7B) are essentially planar with a maximum deviation of 0.010 (2) and 0.006 (2) Å, respectively, for atom C7A and C3B. The dihedral angles between the benzimidazole ring system ((N1A–N2A/C1A–C7A)/(N1B–N2B/C1B–C7B) with the hydroxy substituted benzene ring (C9A–C14A)/(C9B–C14B) are 8.70 (9)° and 13.75 (8)° respectively.

In the crystal structure (Fig. 2), the two independent molecules are connected via intermolecular N—H···S hydrogen bonds to form dimers (Table 1). Furthermore, the dimers are connected via N—H···O hydrogen bonds to form molecular ribbons along the c-axis. There is an intramolecular N—H···O hydrogen bond which generates an S(6) (Bernstein et al., 1995) ring motif in each molecule.

Related literature top

For applications of benzimidazole compounds, see: Grassmann et al. (2002); White et al. (2004); Demirayak et al. (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized by adding salicyaldehyde (0.122 g, 1 mmol; Alfa Aesar) to a stirred methanolic solution (20 ml) of 5-amino-2-mercaptobenzimidazole (0.165g, 1mmol; Sigma) in a 1:1 molar ratio. The reaction mixture was stirred for half an hour at room temperature. The yellow precipitate which formed was filtered off under vaccum, washed thoroughly with ice-cold methanol and dried in vacuo over anhydrous CaCl2 (yield: 73%). Single crystals suitable for X–ray diffraction analysis were obtained from recrystallisation of the Schiff Base in a mixture of DMF:ethanol (95:5 v/v). M. p, 456–458K. Anal. Calcd. for C14H11N3SO (%) C, 62.44; H, 4.11; N, 15.61, Found: C, 62.48; H, 4.12; N, 15.12. IR (KBr, cm-1) 3170 ν (N–H), 3060 ν(O–H), 2364 ν(S–H), 1608 ν(HCN), 1485 ν(C–N), 747 ν(C–S), UV-vis (νmax, nm) in DMF: 320nm; 353nm. 1H NMR (400MHz, DMSO-d6, δ, ppm): 8.96 (1H, s, HCN), 13.19 (1H, s, OH), 6.93–6.97 (2H, m, ArH), 7.17–7.40 (4H, m, ArH), 7.62–7.64 (1H, d, ArH) 3.38 (1H, s, SH), 12.62 (z1H, d, NH), 13C NMR (100MHz, DMSO–d6, δ, ppm): 169.53, 162.53, 160.73, 143.41, 133.60, 133.27, 132.90, 131.97, 119.77, 119.39, 117.36, 116.93, 110.23, 102.07, 79.67, 79.34, 79.01. MS ESI: (m/z) 270.4.

Refinement top

Atoms H1NA, H2NA, H1NB, H2NB, H1OA and H1OB were located from a difference Fourier map and refined freely [N–H = 0.84 (3)–0.87 (3) Å and O–H = 0.99 (4) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Structure description top

Benzimidazole and its derivatives are very important for the development of molecules of pharmaceutical and biological interest. Schiff bases play an important role in bioorganic chemistry as they exhibit remarkable antihistamine (Grassmann et al., 2002), antitumour (White et al., 2004) and potential anticancer activities (Demirayak et al., 2002). In view of their importance in the field of drug discovery, the crystal structure determination of the title compound was carried out and the results are presented here.

The asymmetric unit of title compound which contains two molecules [A & B] is shown in Fig. 1. All geometrical parameters are within normal ranges. Each molecule adopts an E configuration about the central CN double bond. For both molecules, the benzimidazole ring systems (N1A–N2A/C1A–C7A)/(N1B–N2B/C1B–C7B) are essentially planar with a maximum deviation of 0.010 (2) and 0.006 (2) Å, respectively, for atom C7A and C3B. The dihedral angles between the benzimidazole ring system ((N1A–N2A/C1A–C7A)/(N1B–N2B/C1B–C7B) with the hydroxy substituted benzene ring (C9A–C14A)/(C9B–C14B) are 8.70 (9)° and 13.75 (8)° respectively.

In the crystal structure (Fig. 2), the two independent molecules are connected via intermolecular N—H···S hydrogen bonds to form dimers (Table 1). Furthermore, the dimers are connected via N—H···O hydrogen bonds to form molecular ribbons along the c-axis. There is an intramolecular N—H···O hydrogen bond which generates an S(6) (Bernstein et al., 1995) ring motif in each molecule.

For applications of benzimidazole compounds, see: Grassmann et al. (2002); White et al. (2004); Demirayak et al. (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A molecular ribbon generated by N—H···O hydrogen bonds.
5-[(E)-(2-Hydroxybenzylidene)amino]-1H-1,3-benzimidazole- 2(3H)-thione top
Crystal data top
C14H11N3OSF(000) = 1120
Mr = 269.32Dx = 1.467 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5349 reflections
a = 8.2680 (2) Åθ = 2.4–29.8°
b = 28.1043 (6) ŵ = 0.26 mm1
c = 10.5047 (2) ÅT = 296 K
β = 92.234 (1)°Plate, yellow
V = 2439.08 (9) Å30.44 × 0.28 × 0.05 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7101 independent reflections
Radiation source: fine-focus sealed tube4852 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
φ and ω scansθmax = 30.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.894, Tmax = 0.986k = 3239
27759 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0568P)2 + 0.8644P]
where P = (Fo2 + 2Fc2)/3
7101 reflections(Δ/σ)max = 0.003
367 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C14H11N3OSV = 2439.08 (9) Å3
Mr = 269.32Z = 8
Monoclinic, P21/nMo Kα radiation
a = 8.2680 (2) ŵ = 0.26 mm1
b = 28.1043 (6) ÅT = 296 K
c = 10.5047 (2) Å0.44 × 0.28 × 0.05 mm
β = 92.234 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7101 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4852 reflections with I > 2σ(I)
Tmin = 0.894, Tmax = 0.986Rint = 0.064
27759 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.53 e Å3
7101 reflectionsΔρmin = 0.37 e Å3
367 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.21140 (7)1.12383 (2)0.02847 (5)0.02132 (14)
O1A0.50964 (18)0.77807 (6)0.17652 (15)0.0221 (4)
N1A0.4066 (2)1.05753 (7)0.14802 (17)0.0172 (4)
N2A0.2149 (2)1.02767 (7)0.02468 (17)0.0183 (4)
N3A0.3807 (2)0.86052 (7)0.12424 (16)0.0176 (4)
C1A0.2805 (3)1.06914 (8)0.06700 (19)0.0175 (4)
C2A0.2993 (2)0.98911 (8)0.07630 (19)0.0160 (4)
C3A0.2787 (3)0.94091 (8)0.0614 (2)0.0184 (5)
H3AA0.19660.92860.00800.022*
C4A0.3863 (2)0.91097 (8)0.12978 (19)0.0166 (4)
C5A0.5118 (2)0.93050 (8)0.2077 (2)0.0189 (5)
H5AA0.58350.91010.25090.023*
C6A0.5317 (3)0.97925 (8)0.2220 (2)0.0190 (5)
H6AA0.61500.99180.27370.023*
C7A0.4226 (2)1.00835 (8)0.15642 (19)0.0167 (4)
C8A0.2587 (2)0.83866 (8)0.07064 (19)0.0178 (5)
H8AA0.17350.85630.03490.021*
C9A0.2517 (2)0.78727 (8)0.06494 (19)0.0158 (4)
C10A0.1181 (3)0.76507 (8)0.0031 (2)0.0191 (5)
H10A0.03740.78370.03580.023*
C11A0.1047 (3)0.71658 (8)0.0008 (2)0.0221 (5)
H11A0.01670.70240.04360.027*
C12A0.2235 (3)0.68861 (8)0.0597 (2)0.0219 (5)
H12A0.21270.65570.05950.026*
C13A0.3581 (3)0.70934 (8)0.1204 (2)0.0204 (5)
H13A0.43680.69040.16060.025*
C14A0.3744 (2)0.75836 (8)0.12070 (19)0.0170 (4)
S1B0.70785 (7)0.13290 (2)0.26867 (5)0.02190 (15)
O1B0.57264 (18)0.46335 (6)0.28156 (14)0.0200 (3)
N1B0.6814 (2)0.23011 (7)0.26320 (16)0.0162 (4)
N2B0.4813 (2)0.19309 (7)0.16560 (17)0.0164 (4)
N3B0.4551 (2)0.38927 (7)0.17211 (16)0.0169 (4)
C1B0.6236 (3)0.18613 (8)0.23241 (19)0.0173 (4)
C2B0.5767 (2)0.26526 (8)0.21513 (18)0.0146 (4)
C3B0.5805 (2)0.31452 (8)0.22219 (19)0.0166 (4)
H3BA0.66480.33050.26490.020*
C4B0.4516 (2)0.33902 (8)0.16207 (19)0.0158 (4)
C5B0.3242 (2)0.31426 (8)0.0986 (2)0.0178 (5)
H5BA0.24010.33140.05920.021*
C6B0.3211 (2)0.26541 (8)0.09358 (19)0.0180 (5)
H6BA0.23640.24920.05180.022*
C7B0.4495 (2)0.24101 (8)0.15326 (19)0.0156 (4)
C8B0.3622 (3)0.41641 (8)0.10194 (19)0.0178 (4)
H8BA0.29190.40270.04120.021*
C9B0.3649 (2)0.46731 (8)0.11564 (19)0.0172 (4)
C10B0.2614 (3)0.49637 (8)0.0404 (2)0.0213 (5)
H10B0.18780.48220.01710.026*
C11B0.2659 (3)0.54507 (9)0.0494 (2)0.0244 (5)
H11B0.19620.56370.00130.029*
C12B0.3766 (3)0.56628 (9)0.1357 (2)0.0238 (5)
H12B0.38140.59930.14130.029*
C13B0.4791 (3)0.53897 (8)0.2129 (2)0.0204 (5)
H13B0.55190.55360.27020.024*
C14B0.4731 (2)0.48965 (8)0.20457 (19)0.0162 (4)
H1NA0.475 (4)1.0777 (10)0.181 (3)0.043 (9)*
H2NA0.145 (3)1.0262 (9)0.038 (3)0.033 (7)*
H1NB0.774 (3)0.2355 (9)0.302 (2)0.026 (7)*
H2NB0.424 (3)0.1704 (10)0.139 (2)0.031 (8)*
H1OB0.548 (4)0.4299 (13)0.259 (3)0.077 (12)*
H1OA0.501 (4)0.8131 (13)0.168 (3)0.075 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0222 (3)0.0178 (3)0.0236 (3)0.0002 (2)0.0030 (2)0.0006 (2)
O1A0.0183 (8)0.0214 (10)0.0261 (8)0.0010 (7)0.0065 (6)0.0010 (7)
N1A0.0165 (8)0.0158 (10)0.0191 (9)0.0018 (7)0.0002 (7)0.0006 (7)
N2A0.0205 (9)0.0166 (10)0.0176 (9)0.0005 (8)0.0022 (7)0.0003 (7)
N3A0.0190 (9)0.0185 (11)0.0153 (8)0.0003 (7)0.0023 (7)0.0005 (7)
C1A0.0178 (10)0.0195 (12)0.0154 (9)0.0011 (9)0.0035 (8)0.0015 (8)
C2A0.0169 (10)0.0176 (12)0.0137 (9)0.0002 (8)0.0025 (8)0.0006 (8)
C3A0.0169 (10)0.0208 (13)0.0173 (10)0.0014 (9)0.0007 (8)0.0001 (9)
C4A0.0172 (10)0.0169 (12)0.0161 (10)0.0002 (8)0.0049 (8)0.0009 (8)
C5A0.0158 (10)0.0222 (13)0.0185 (10)0.0023 (9)0.0003 (8)0.0003 (9)
C6A0.0161 (10)0.0232 (13)0.0177 (10)0.0006 (9)0.0001 (8)0.0007 (9)
C7A0.0177 (10)0.0162 (12)0.0165 (9)0.0028 (8)0.0037 (8)0.0007 (8)
C8A0.0152 (9)0.0225 (13)0.0158 (10)0.0029 (9)0.0023 (8)0.0012 (9)
C9A0.0150 (10)0.0178 (12)0.0148 (9)0.0013 (8)0.0033 (8)0.0011 (8)
C10A0.0147 (9)0.0202 (13)0.0222 (11)0.0007 (9)0.0001 (8)0.0008 (9)
C11A0.0162 (10)0.0242 (14)0.0259 (11)0.0037 (9)0.0006 (9)0.0013 (10)
C12A0.0215 (11)0.0163 (13)0.0282 (12)0.0008 (9)0.0042 (9)0.0015 (9)
C13A0.0182 (10)0.0230 (13)0.0200 (10)0.0057 (9)0.0002 (8)0.0036 (9)
C14A0.0157 (9)0.0205 (12)0.0149 (9)0.0010 (9)0.0027 (8)0.0010 (8)
S1B0.0239 (3)0.0184 (3)0.0230 (3)0.0036 (2)0.0042 (2)0.0003 (2)
O1B0.0208 (8)0.0181 (9)0.0208 (8)0.0001 (6)0.0044 (6)0.0007 (6)
N1B0.0153 (8)0.0170 (10)0.0162 (8)0.0002 (7)0.0014 (7)0.0006 (7)
N2B0.0165 (8)0.0146 (10)0.0180 (8)0.0011 (8)0.0001 (7)0.0020 (7)
N3B0.0171 (8)0.0161 (10)0.0176 (8)0.0002 (7)0.0028 (7)0.0003 (7)
C1B0.0181 (10)0.0197 (12)0.0143 (9)0.0007 (9)0.0030 (8)0.0013 (8)
C2B0.0135 (9)0.0185 (12)0.0118 (9)0.0003 (8)0.0019 (7)0.0009 (8)
C3B0.0152 (9)0.0198 (12)0.0149 (9)0.0025 (8)0.0010 (8)0.0026 (8)
C4B0.0177 (10)0.0150 (12)0.0152 (9)0.0005 (8)0.0047 (8)0.0001 (8)
C5B0.0149 (9)0.0189 (12)0.0197 (10)0.0011 (9)0.0006 (8)0.0016 (9)
C6B0.0154 (10)0.0202 (12)0.0182 (10)0.0028 (8)0.0007 (8)0.0010 (9)
C7B0.0162 (9)0.0164 (12)0.0142 (9)0.0007 (8)0.0030 (8)0.0013 (8)
C8B0.0200 (10)0.0181 (12)0.0154 (9)0.0016 (9)0.0021 (8)0.0020 (8)
C9B0.0187 (10)0.0183 (12)0.0148 (9)0.0006 (9)0.0027 (8)0.0000 (8)
C10B0.0237 (11)0.0217 (13)0.0183 (10)0.0011 (9)0.0016 (9)0.0003 (9)
C11B0.0299 (12)0.0220 (14)0.0213 (11)0.0075 (10)0.0003 (9)0.0042 (9)
C12B0.0313 (12)0.0182 (13)0.0221 (11)0.0024 (10)0.0053 (10)0.0012 (9)
C13B0.0219 (11)0.0199 (13)0.0194 (10)0.0016 (9)0.0020 (9)0.0028 (9)
C14B0.0164 (9)0.0168 (12)0.0156 (9)0.0012 (8)0.0044 (8)0.0006 (8)
Geometric parameters (Å, º) top
S1A—C1A1.684 (2)S1B—C1B1.688 (2)
O1A—C14A1.360 (2)O1B—C14B1.351 (2)
O1A—H1OA0.99 (4)O1B—H1OB0.99 (4)
N1A—C1A1.359 (3)N1B—C1B1.359 (3)
N1A—C7A1.391 (3)N1B—C2B1.395 (3)
N1A—H1NA0.86 (3)N1B—H1NB0.87 (2)
N2A—C1A1.353 (3)N2B—C1B1.360 (3)
N2A—C2A1.388 (3)N2B—C7B1.377 (3)
N2A—H2NA0.86 (3)N2B—H2NB0.84 (3)
N3A—C8A1.291 (3)N3B—C8B1.293 (3)
N3A—C4A1.420 (3)N3B—C4B1.416 (3)
C2A—C3A1.374 (3)C2B—C3B1.387 (3)
C2A—C7A1.405 (3)C2B—C7B1.392 (3)
C3A—C4A1.402 (3)C3B—C4B1.398 (3)
C3A—H3AA0.9300C3B—H3BA0.9300
C4A—C5A1.408 (3)C4B—C5B1.408 (3)
C5A—C6A1.387 (3)C5B—C6B1.374 (3)
C5A—H5AA0.9300C5B—H5BA0.9300
C6A—C7A1.381 (3)C6B—C7B1.392 (3)
C6A—H6AA0.9300C6B—H6BA0.9300
C8A—C9A1.447 (3)C8B—C9B1.438 (3)
C8A—H8AA0.9300C8B—H8BA0.9300
C9A—C10A1.405 (3)C9B—C10B1.404 (3)
C9A—C14A1.409 (3)C9B—C14B1.415 (3)
C10A—C11A1.368 (3)C10B—C11B1.372 (3)
C10A—H10A0.9300C10B—H10B0.9300
C11A—C12A1.393 (3)C11B—C12B1.396 (3)
C11A—H11A0.9300C11B—H11B0.9300
C12A—C13A1.388 (3)C12B—C13B1.383 (3)
C12A—H12A0.9300C12B—H12B0.9300
C13A—C14A1.384 (3)C13B—C14B1.390 (3)
C13A—H13A0.9300C13B—H13B0.9300
C14A—O1A—H1OA108 (2)C14B—O1B—H1OB105 (2)
C1A—N1A—C7A110.31 (18)C1B—N1B—C2B110.49 (17)
C1A—N1A—H1NA125 (2)C1B—N1B—H1NB124.5 (16)
C7A—N1A—H1NA125 (2)C2B—N1B—H1NB124.8 (16)
C1A—N2A—C2A110.80 (18)C1B—N2B—C7B110.32 (18)
C1A—N2A—H2NA122.8 (18)C1B—N2B—H2NB122.1 (19)
C2A—N2A—H2NA125.0 (18)C7B—N2B—H2NB127.5 (19)
C8A—N3A—C4A121.14 (18)C8B—N3B—C4B122.41 (18)
N2A—C1A—N1A106.66 (19)N1B—C1B—N2B106.32 (18)
N2A—C1A—S1A125.40 (16)N1B—C1B—S1B127.87 (16)
N1A—C1A—S1A127.91 (17)N2B—C1B—S1B125.81 (17)
C3A—C2A—N2A131.86 (19)C3B—C2B—C7B121.93 (19)
C3A—C2A—C7A122.13 (19)C3B—C2B—N1B132.46 (18)
N2A—C2A—C7A106.01 (18)C7B—C2B—N1B105.60 (19)
C2A—C3A—C4A117.38 (19)C2B—C3B—C4B116.88 (18)
C2A—C3A—H3AA121.3C2B—C3B—H3BA121.6
C4A—C3A—H3AA121.3C4B—C3B—H3BA121.6
C3A—C4A—C5A120.2 (2)C3B—C4B—C5B120.9 (2)
C3A—C4A—N3A124.00 (19)C3B—C4B—N3B116.39 (18)
C5A—C4A—N3A115.81 (18)C5B—C4B—N3B122.72 (18)
C6A—C5A—C4A122.0 (2)C6B—C5B—C4B121.63 (19)
C6A—C5A—H5AA119.0C6B—C5B—H5BA119.2
C4A—C5A—H5AA119.0C4B—C5B—H5BA119.2
C7A—C6A—C5A117.28 (19)C5B—C6B—C7B117.51 (19)
C7A—C6A—H6AA121.4C5B—C6B—H6BA121.2
C5A—C6A—H6AA121.4C7B—C6B—H6BA121.2
C6A—C7A—N1A132.74 (19)N2B—C7B—C6B131.55 (19)
C6A—C7A—C2A121.0 (2)N2B—C7B—C2B107.26 (18)
N1A—C7A—C2A106.21 (18)C6B—C7B—C2B121.2 (2)
N3A—C8A—C9A121.52 (19)N3B—C8B—C9B121.54 (19)
N3A—C8A—H8AA119.2N3B—C8B—H8BA119.2
C9A—C8A—H8AA119.2C9B—C8B—H8BA119.2
C10A—C9A—C14A118.4 (2)C10B—C9B—C14B118.0 (2)
C10A—C9A—C8A119.47 (19)C10B—C9B—C8B121.02 (19)
C14A—C9A—C8A122.10 (19)C14B—C9B—C8B120.99 (19)
C11A—C10A—C9A121.2 (2)C11B—C10B—C9B121.8 (2)
C11A—C10A—H10A119.4C11B—C10B—H10B119.1
C9A—C10A—H10A119.4C9B—C10B—H10B119.1
C10A—C11A—C12A119.6 (2)C10B—C11B—C12B119.0 (2)
C10A—C11A—H11A120.2C10B—C11B—H11B120.5
C12A—C11A—H11A120.2C12B—C11B—H11B120.5
C13A—C12A—C11A120.7 (2)C13B—C12B—C11B121.0 (2)
C13A—C12A—H12A119.6C13B—C12B—H12B119.5
C11A—C12A—H12A119.6C11B—C12B—H12B119.5
C14A—C13A—C12A119.7 (2)C12B—C13B—C14B119.8 (2)
C14A—C13A—H13A120.2C12B—C13B—H13B120.1
C12A—C13A—H13A120.2C14B—C13B—H13B120.1
O1A—C14A—C13A118.99 (19)O1B—C14B—C13B119.24 (19)
O1A—C14A—C9A120.7 (2)O1B—C14B—C9B120.5 (2)
C13A—C14A—C9A120.29 (19)C13B—C14B—C9B120.29 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···S1Bi0.86 (3)2.61 (3)3.4714 (19)173 (3)
N2A—H2NA···O1Bii0.86 (3)1.99 (3)2.781 (2)153 (3)
N1B—H1NB···O1Aiii0.87 (2)2.16 (2)2.936 (2)149 (2)
N2B—H2NB···S1Aiv0.84 (3)2.45 (3)3.2547 (19)163 (2)
O1B—H1OB···N3B0.99 (4)1.64 (3)2.552 (2)152 (3)
O1A—H1OA···N3A0.99 (4)1.72 (4)2.600 (3)147 (3)
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+3/2, z1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC14H11N3OS
Mr269.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.2680 (2), 28.1043 (6), 10.5047 (2)
β (°) 92.234 (1)
V3)2439.08 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.44 × 0.28 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.894, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
27759, 7101, 4852
Rint0.064
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.140, 1.06
No. of reflections7101
No. of parameters367
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.37

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···S1Bi0.86 (3)2.61 (3)3.4714 (19)173 (3)
N2A—H2NA···O1Bii0.86 (3)1.99 (3)2.781 (2)153 (3)
N1B—H1NB···O1Aiii0.87 (2)2.16 (2)2.936 (2)149 (2)
N2B—H2NB···S1Aiv0.84 (3)2.45 (3)3.2547 (19)163 (2)
O1B—H1OB···N3B0.99 (4)1.64 (3)2.552 (2)152 (3)
O1A—H1OA···N3A0.99 (4)1.72 (4)2.600 (3)147 (3)
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+3/2, z1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MA would like to thank the UGC New Delhi [grant No. F.No.31-100/2005 (SR)] and ZT thanks Universiti Sains Malaysia (USM) for the University Grant No. (1001/PTEKIND/8140152). HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDemirayak, S., Abu Mohsen, U. & Caqri Karaburun, A. (2002). Eur. J. Med. Chem. 37, 255–260.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGrassmann, S., Sadek, B., Ligneau, X., Elz, S., Ganellin, C. R., Arrang, J. M., Schwartz, J. C., Stark, H. & Schunack, W. (2002). Eur. J. Pharm. Sci. 15, 367–378.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWhite, A. W., Curtin, N. J., Eastman, B. W., Golding, B. T., Hostomsky, Z., Kyle, S., Li, J., Maegley, K. A., Skalitzky, D. J., Webber, S. E., Yu, X.-H. & Griffin, R. J. (2004). Bioorg. Med. Chem. Lett. 14, 2433–2437  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds