organic compounds
(E)-2-Fluoro-N′-(4-nitrobenzylidene)benzohydrazide
aSchool of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, People's Republic of China
*Correspondence e-mail: hongyan_ban@163.com
In the title hydrazone compound, C14H10FN3O3, the dihedral angle between the two substituted benzene rings is 13.7 (3)°. The molecule exists in a trans configuration with respect to the central methylidene unit. In the crystal, molecules are linked through intermolecular N—H⋯O hydrogen bonds, forming chains along the a axis.
Related literature
For the biological activity of et al. (2007); Raj et al. (2007); Jimenez-Pulido et al. (2008). For related structures, see: Ban (2010); Ban & Li (2008a,b); Li & Ban (2009a,b); Yehye et al. (2008); Fun, Patil, Jebas et al. (2008); Fun, Patil, Rao et al. (2008); Yang et al. (2008); Ejsmont et al. (2008).
see: ZhongExperimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810052268/rz2538sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810052268/rz2538Isup2.hkl
The title compound was prepared by refluxing 4-nitrobenzaldehyde (1.0 mol) with 2-fluorobenzohydrazide (1.0 mol) in methanol (100 ml). Excess methanol was removed from the mixture by distillation. A colourless solid product was filtered, and washed three times with methanol. Colourless block-shaped crystals of the title compound were obtained from a methanol solution by slow evaporation in air.
Atom H3A was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å. The remaining H atoms were placed in calculated positions (C—H = 0.93 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).
Hydrazone compounds derived from the condensation of
with have been demonstrated to possess excellent biological activities (Zhong et al., 2007; Raj et al., 2007; Jimenez-Pulido et al., 2008). Due to the easy synthesis of such compounds, a large number of hydrazone compounds have been synthesized and structurally characterized (Yehye et al., 2008; Fun, Patil, Jebas et al., 2008; Fun, Patil, Rao et al., 2008; Yang et al., 2008; Ejsmont et al., 2008). Recently, we have reported a few such compounds (Ban, 2010; Ban & Li, 2008a,b; Li & Ban, 2009a,b). We report here the of the title new compound.In the title hydrazone compound, Fig. 1, the dihedral angle between the two substituted benzene rings C1—C6 and C9—C14 is 13.7 (3)°. The molecule exists in a trans configuration with respect to the central methylidene unit.
In the
molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming chains along the a axis (Fig. 2).For the biological activity of
see: Zhong et al. (2007); Raj et al. (2007); Jimenez-Pulido et al. (2008). For related structures, see: Ban (2010); Ban & Li (2008a,b); Li & Ban (2009a,b); Yehye et al. (2008); Fun, Patil, Jebas et al. (2008); Fun, Patil, Rao et al. (2008); Yang et al. (2008); Ejsmont et al. (2008).Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C14H10FN3O3 | F(000) = 592 |
Mr = 287.25 | Dx = 1.468 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 680 reflections |
a = 7.077 (2) Å | θ = 2.5–24.5° |
b = 25.718 (4) Å | µ = 0.12 mm−1 |
c = 7.6844 (17) Å | T = 298 K |
β = 111.640 (3)° | Block, colourless |
V = 1300.1 (5) Å3 | 0.17 × 0.15 × 0.15 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 2810 independent reflections |
Radiation source: fine-focus sealed tube | 1155 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.074 |
ω scans | θmax = 27.0°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −9→8 |
Tmin = 0.981, Tmax = 0.983 | k = −32→27 |
6999 measured reflections | l = −5→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.067 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.173 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.98 | w = 1/[σ2(Fo2) + (0.0571P)2] where P = (Fo2 + 2Fc2)/3 |
2810 reflections | (Δ/σ)max < 0.001 |
193 parameters | Δρmax = 0.25 e Å−3 |
1 restraint | Δρmin = −0.22 e Å−3 |
C14H10FN3O3 | V = 1300.1 (5) Å3 |
Mr = 287.25 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.077 (2) Å | µ = 0.12 mm−1 |
b = 25.718 (4) Å | T = 298 K |
c = 7.6844 (17) Å | 0.17 × 0.15 × 0.15 mm |
β = 111.640 (3)° |
Bruker SMART CCD area-detector diffractometer | 2810 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1155 reflections with I > 2σ(I) |
Tmin = 0.981, Tmax = 0.983 | Rint = 0.074 |
6999 measured reflections |
R[F2 > 2σ(F2)] = 0.067 | 1 restraint |
wR(F2) = 0.173 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.98 | Δρmax = 0.25 e Å−3 |
2810 reflections | Δρmin = −0.22 e Å−3 |
193 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
F1 | 0.2225 (4) | 0.24829 (9) | 0.4967 (3) | 0.0822 (8) | |
N1 | 0.2495 (5) | 0.48648 (15) | −0.5057 (5) | 0.0631 (10) | |
N2 | 0.2488 (4) | 0.29033 (11) | 0.0113 (4) | 0.0432 (8) | |
N3 | 0.2828 (5) | 0.25789 (11) | 0.1631 (4) | 0.0464 (8) | |
O1 | 0.2201 (5) | 0.47230 (12) | −0.6636 (4) | 0.0978 (12) | |
O2 | 0.2646 (6) | 0.53203 (12) | −0.4634 (5) | 0.1069 (13) | |
O3 | 0.0937 (4) | 0.19271 (9) | −0.0144 (3) | 0.0547 (8) | |
C1 | 0.2637 (5) | 0.44701 (14) | −0.3635 (5) | 0.0438 (9) | |
C2 | 0.2406 (6) | 0.39574 (14) | −0.4128 (5) | 0.0486 (10) | |
H2 | 0.2183 | 0.3855 | −0.5348 | 0.058* | |
C3 | 0.2511 (5) | 0.35963 (14) | −0.2776 (5) | 0.0465 (10) | |
H3 | 0.2325 | 0.3246 | −0.3094 | 0.056* | |
C4 | 0.2891 (5) | 0.37471 (13) | −0.0952 (5) | 0.0374 (8) | |
C5 | 0.3140 (5) | 0.42716 (14) | −0.0505 (5) | 0.0474 (10) | |
H5 | 0.3419 | 0.4376 | 0.0723 | 0.057* | |
C6 | 0.2981 (5) | 0.46400 (13) | −0.1853 (5) | 0.0494 (10) | |
H6 | 0.3103 | 0.4993 | −0.1564 | 0.059* | |
C7 | 0.3085 (5) | 0.33691 (14) | 0.0518 (5) | 0.0448 (10) | |
H7 | 0.3652 | 0.3470 | 0.1766 | 0.054* | |
C8 | 0.2013 (5) | 0.21010 (13) | 0.1394 (5) | 0.0404 (9) | |
C9 | 0.2475 (5) | 0.17828 (13) | 0.3115 (5) | 0.0361 (8) | |
C10 | 0.2603 (5) | 0.19735 (14) | 0.4817 (5) | 0.0484 (10) | |
C11 | 0.3020 (6) | 0.16713 (18) | 0.6393 (5) | 0.0627 (12) | |
H11 | 0.3100 | 0.1815 | 0.7529 | 0.075* | |
C12 | 0.3310 (6) | 0.11534 (18) | 0.6222 (6) | 0.0658 (12) | |
H12 | 0.3597 | 0.0940 | 0.7266 | 0.079* | |
C13 | 0.3190 (5) | 0.09383 (15) | 0.4558 (6) | 0.0595 (11) | |
H13 | 0.3399 | 0.0584 | 0.4478 | 0.071* | |
C14 | 0.2757 (5) | 0.12515 (13) | 0.2996 (6) | 0.0489 (10) | |
H14 | 0.2653 | 0.1105 | 0.1858 | 0.059* | |
H3A | 0.374 (4) | 0.2695 (13) | 0.272 (3) | 0.073* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.130 (2) | 0.0599 (16) | 0.0721 (18) | −0.0116 (15) | 0.0550 (17) | −0.0204 (13) |
N1 | 0.084 (3) | 0.055 (2) | 0.051 (2) | 0.003 (2) | 0.026 (2) | 0.009 (2) |
N2 | 0.0457 (18) | 0.0456 (19) | 0.0314 (18) | −0.0036 (15) | 0.0062 (15) | 0.0066 (15) |
N3 | 0.058 (2) | 0.0411 (19) | 0.0300 (17) | −0.0090 (16) | 0.0044 (15) | 0.0041 (16) |
O1 | 0.163 (3) | 0.085 (2) | 0.053 (2) | −0.007 (2) | 0.048 (2) | 0.0113 (18) |
O2 | 0.190 (4) | 0.051 (2) | 0.084 (3) | 0.003 (2) | 0.054 (2) | 0.0158 (19) |
O3 | 0.0665 (18) | 0.0531 (17) | 0.0306 (15) | −0.0094 (14) | 0.0017 (13) | −0.0006 (13) |
C1 | 0.049 (2) | 0.043 (2) | 0.039 (2) | 0.0089 (18) | 0.0158 (19) | 0.0104 (19) |
C2 | 0.060 (3) | 0.051 (3) | 0.032 (2) | 0.002 (2) | 0.0141 (19) | −0.0050 (19) |
C3 | 0.055 (2) | 0.041 (2) | 0.040 (2) | 0.0008 (18) | 0.014 (2) | −0.0036 (19) |
C4 | 0.035 (2) | 0.038 (2) | 0.036 (2) | 0.0016 (16) | 0.0090 (17) | 0.0017 (17) |
C5 | 0.062 (3) | 0.041 (2) | 0.036 (2) | −0.0033 (19) | 0.015 (2) | −0.0045 (18) |
C6 | 0.065 (3) | 0.034 (2) | 0.050 (3) | 0.0008 (19) | 0.023 (2) | −0.0022 (19) |
C7 | 0.045 (2) | 0.054 (2) | 0.033 (2) | −0.0012 (19) | 0.0104 (18) | −0.0002 (19) |
C8 | 0.045 (2) | 0.040 (2) | 0.033 (2) | 0.0036 (18) | 0.0109 (18) | 0.0010 (18) |
C9 | 0.037 (2) | 0.039 (2) | 0.031 (2) | −0.0037 (16) | 0.0101 (16) | −0.0021 (16) |
C10 | 0.056 (2) | 0.043 (2) | 0.047 (3) | −0.010 (2) | 0.020 (2) | −0.010 (2) |
C11 | 0.070 (3) | 0.082 (3) | 0.035 (2) | −0.023 (3) | 0.018 (2) | −0.003 (2) |
C12 | 0.058 (3) | 0.076 (3) | 0.054 (3) | −0.008 (2) | 0.009 (2) | 0.025 (3) |
C13 | 0.053 (3) | 0.053 (3) | 0.070 (3) | 0.003 (2) | 0.020 (2) | 0.015 (2) |
C14 | 0.043 (2) | 0.046 (3) | 0.056 (3) | 0.0008 (18) | 0.016 (2) | 0.004 (2) |
F1—C10 | 1.350 (4) | C4—C7 | 1.458 (5) |
N1—O2 | 1.210 (4) | C5—C6 | 1.377 (5) |
N1—O1 | 1.210 (4) | C5—H5 | 0.9300 |
N1—C1 | 1.468 (5) | C6—H6 | 0.9300 |
N2—C7 | 1.270 (4) | C7—H7 | 0.9300 |
N2—N3 | 1.381 (4) | C8—C9 | 1.485 (4) |
N3—C8 | 1.341 (4) | C9—C10 | 1.368 (4) |
N3—H3A | 0.900 (10) | C9—C14 | 1.389 (4) |
O3—C8 | 1.230 (4) | C10—C11 | 1.376 (5) |
C1—C2 | 1.365 (4) | C11—C12 | 1.361 (5) |
C1—C6 | 1.370 (4) | C11—H11 | 0.9300 |
C2—C3 | 1.375 (5) | C12—C13 | 1.367 (5) |
C2—H2 | 0.9300 | C12—H12 | 0.9300 |
C3—C4 | 1.382 (4) | C13—C14 | 1.383 (5) |
C3—H3 | 0.9300 | C13—H13 | 0.9300 |
C4—C5 | 1.387 (4) | C14—H14 | 0.9300 |
O2—N1—O1 | 121.8 (4) | N2—C7—C4 | 120.8 (3) |
O2—N1—C1 | 119.7 (4) | N2—C7—H7 | 119.6 |
O1—N1—C1 | 118.5 (4) | C4—C7—H7 | 119.6 |
C7—N2—N3 | 115.1 (3) | O3—C8—N3 | 123.1 (3) |
C8—N3—N2 | 120.4 (3) | O3—C8—C9 | 120.7 (3) |
C8—N3—H3A | 124 (2) | N3—C8—C9 | 116.2 (3) |
N2—N3—H3A | 115 (2) | C10—C9—C14 | 117.1 (3) |
C2—C1—C6 | 123.0 (3) | C10—C9—C8 | 124.7 (3) |
C2—C1—N1 | 119.6 (3) | C14—C9—C8 | 118.3 (3) |
C6—C1—N1 | 117.5 (3) | F1—C10—C9 | 118.9 (3) |
C1—C2—C3 | 118.4 (3) | F1—C10—C11 | 117.3 (4) |
C1—C2—H2 | 120.8 | C9—C10—C11 | 123.8 (4) |
C3—C2—H2 | 120.8 | C12—C11—C10 | 117.3 (4) |
C2—C3—C4 | 120.8 (3) | C12—C11—H11 | 121.3 |
C2—C3—H3 | 119.6 | C10—C11—H11 | 121.3 |
C4—C3—H3 | 119.6 | C11—C12—C13 | 121.8 (4) |
C3—C4—C5 | 118.9 (3) | C11—C12—H12 | 119.1 |
C3—C4—C7 | 121.7 (3) | C13—C12—H12 | 119.1 |
C5—C4—C7 | 119.3 (3) | C12—C13—C14 | 119.6 (4) |
C6—C5—C4 | 121.0 (3) | C12—C13—H13 | 120.2 |
C6—C5—H5 | 119.5 | C14—C13—H13 | 120.2 |
C4—C5—H5 | 119.5 | C13—C14—C9 | 120.5 (4) |
C1—C6—C5 | 117.8 (3) | C13—C14—H14 | 119.8 |
C1—C6—H6 | 121.1 | C9—C14—H14 | 119.8 |
C5—C6—H6 | 121.1 |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···O3i | 0.90 (1) | 2.04 (3) | 2.928 (3) | 168 (3) |
Symmetry code: (i) x+1/2, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C14H10FN3O3 |
Mr | 287.25 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 298 |
a, b, c (Å) | 7.077 (2), 25.718 (4), 7.6844 (17) |
β (°) | 111.640 (3) |
V (Å3) | 1300.1 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.17 × 0.15 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.981, 0.983 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6999, 2810, 1155 |
Rint | 0.074 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.067, 0.173, 0.98 |
No. of reflections | 2810 |
No. of parameters | 193 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.25, −0.22 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···O3i | 0.900 (10) | 2.04 (3) | 2.928 (3) | 168 (3) |
Symmetry code: (i) x+1/2, −y+1/2, z+1/2. |
Acknowledgements
The authors acknowledge the support of the Scientific and Technological Training Fund for undergraduates from the University of Science and Technology Liaoning.
References
Ban, H.-Y. (2010). Acta Cryst. E66, o3240. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ban, H.-Y. & Li, C.-M. (2008a). Acta Cryst. E64, o2177. Web of Science CrossRef IUCr Journals Google Scholar
Ban, H.-Y. & Li, C.-M. (2008b). Acta Cryst. E64, o2260. Web of Science CrossRef IUCr Journals Google Scholar
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ejsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594–o1595. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jimenez-Pulido, S. B., Linares-Ordonez, F. M., Martinez-Martos, J. M., Moreno-Carretero, M. N., Quiros-Olozabal, M. & Ramirez-Exposito, M. J. (2008). J. Inorg. Biochem. 102, 1677–1683. Web of Science CSD CrossRef PubMed CAS Google Scholar
Li, C.-M. & Ban, H.-Y. (2009a). Acta Cryst. E65, o876. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, C.-M. & Ban, H.-Y. (2009b). Acta Cryst. E65, o883. Web of Science CSD CrossRef IUCr Journals Google Scholar
Raj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425–429. PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yehye, W. A., Rahman, N. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o1824. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhong, X., Wei, H.-L., Liu, W.-S., Wang, D.-Q. & Wang, X. (2007). Bioorg. Med. Chem. Lett. 17, 3774–3777. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydrazone compounds derived from the condensation of aldehydes with hydrazides have been demonstrated to possess excellent biological activities (Zhong et al., 2007; Raj et al., 2007; Jimenez-Pulido et al., 2008). Due to the easy synthesis of such compounds, a large number of hydrazone compounds have been synthesized and structurally characterized (Yehye et al., 2008; Fun, Patil, Jebas et al., 2008; Fun, Patil, Rao et al., 2008; Yang et al., 2008; Ejsmont et al., 2008). Recently, we have reported a few such compounds (Ban, 2010; Ban & Li, 2008a,b; Li & Ban, 2009a,b). We report here the crystal structure of the title new compound.
In the title hydrazone compound, Fig. 1, the dihedral angle between the two substituted benzene rings C1—C6 and C9—C14 is 13.7 (3)°. The molecule exists in a trans configuration with respect to the central methylidene unit.
In the crystal structure, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming chains along the a axis (Fig. 2).