organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-({4-[Bis(2-cyano­eth­yl)amino]­phen­yl}diazen­yl)benzene­sulfonamide

aDipartimento di Chimica I,F.M. e Centro CrisDi, University of Turin, Via P. Giuria 7, 10125 Torino, Italy
*Correspondence e-mail: giuliana.gervasio@unito.it

(Received 9 December 2010; accepted 17 December 2010; online 24 December 2010)

In the title compound, C18H16N6O2S, which belongs to the family of azo dyes, the dihedral angle between the benzene rings is 26.16 (7)°. In the crystal, mol­ecules are joined by N—H⋯N and C—H⋯N hydrogen bonds into double chains parallel to the a axis.

Related literature

For the synthesis and properties of azo dyes, see: Wenker (1935[Wenker, H. (1935). Ind. Eng. Chem. Anal. 27, 40-41.]); Ledoux et al. (2000[Ledoux, I., Zyss, J., Barni, E., Barolo, C., Diulgheroff, N. & Quagliotto, P. (2000). Synth. Met. 115, 213-217.]); Viscardi et al. (2002[Viscardi, G., Quagliotto, P., Barolo, C., Diulgheroff, N., Caputo, G. & Barni, E. (2002). Dyes Pigments, 54, 131-140.]). For a related structure, see: Sasaki et al. (2004[Sasaki, C., Kitoh, S., Hayashi, H. & Kunimoto, K.-K. (2004). Anal. Sci. X-ray Struct. Anal Online, 20, x117-x118.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18N6O2S

  • Mr = 382.45

  • Triclinic, [P \overline 1]

  • a = 7.8093 (16) Å

  • b = 11.035 (2) Å

  • c = 11.776 (3) Å

  • α = 94.268 (4)°

  • β = 106.544 (4)°

  • γ = 104.568 (5)°

  • V = 929.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 295 K

  • 0.30 × 0.23 × 0.03 mm

Data collection
  • Siemens–Bruker APEX diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.93, Tmax = 1.00

  • 9271 measured reflections

  • 4100 independent reflections

  • 1577 reflections with I > 2σ(I)

  • Rint = 0.040

  • 15 standard reflections every 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.055

  • S = 0.86

  • 4100 reflections

  • 244 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯N23i 0.93 2.52 3.427 (4) 166
N10—H10B⋯N27ii 0.91 (2) 2.19 (2) 3.084 (2) 165
N10—H10A⋯N12iii 0.94 (2) 2.19 (2) 3.124 (2) 176
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x, -y, -z+1; (iii) x-1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc, Madison,Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc, Madison,Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The blood gas (CO2 or O2) measurement is often required in modern diagnosis and the indicator properties of azo dyestuff have been proved very informative in this field, as proposed in the pioneering work of Wenker (1935). The title compound, 4-diethylcyanoamino-4'-sulfonylamino-azobenzene (Fig. 1), is part of this study and has been synthesized according to a modification of a standard procedure (Ledoux et al., 2000; Viscardi et al., 2002). Bond lengths and angles agree with those of a similar compound reported by Sasaki et al. (2004). The two phenyl rings form a dihedral angle of 26.16 (7)°. In the crystal packing, double chains of molecules parallel to the a axis are generated by weak C—H···N and N—H···N hydrogen bonds, where N acceptor atoms are the azo (N12) or cyano (N27) atoms (Table 1).

Related literature top

For the synthesis and properties of azodyes, see: Wenker (1935); Ledoux et al. (2000); Viscardi et al. (20025). For a related structure, see: Sasaki et al. (2004).

Experimental top

The title compound has been obtained according to Ledoux et al. (2000) and Viscardi et al. (2002), and prepared by a modification of a standard procedure in analogy to similar compounds previously reported. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

All H atoms, except those of the NH2 group, have been placed in geometrically idealized positions and refined as riding, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2 Ueq(C). The NH2 hydrogen atoms have been located in the final Fourier map and refined freely with Uiso(H) = 1.2 Ueq(N). A small and poorly diffracting crystal has been used in the analysis.

Structure description top

The blood gas (CO2 or O2) measurement is often required in modern diagnosis and the indicator properties of azo dyestuff have been proved very informative in this field, as proposed in the pioneering work of Wenker (1935). The title compound, 4-diethylcyanoamino-4'-sulfonylamino-azobenzene (Fig. 1), is part of this study and has been synthesized according to a modification of a standard procedure (Ledoux et al., 2000; Viscardi et al., 2002). Bond lengths and angles agree with those of a similar compound reported by Sasaki et al. (2004). The two phenyl rings form a dihedral angle of 26.16 (7)°. In the crystal packing, double chains of molecules parallel to the a axis are generated by weak C—H···N and N—H···N hydrogen bonds, where N acceptor atoms are the azo (N12) or cyano (N27) atoms (Table 1).

For the synthesis and properties of azodyes, see: Wenker (1935); Ledoux et al. (2000); Viscardi et al. (20025). For a related structure, see: Sasaki et al. (2004).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering and 50% probability displacements ellipsoids.
4-({4-[Bis(2-cyanoethyl)amino]phenyl}diazenyl)benzenesulfonamide top
Crystal data top
C18H18N6O2SZ = 2
Mr = 382.45F(000) = 400
Triclinic, P1Dx = 1.359 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8093 (16) ÅCell parameters from 52 reflections
b = 11.035 (2) Åθ = 1.9–20.2°
c = 11.776 (3) ŵ = 0.20 mm1
α = 94.268 (4)°T = 295 K
β = 106.544 (4)°Plate, red
γ = 104.568 (5)°0.30 × 0.23 × 0.03 mm
V = 929.8 (3) Å3
Data collection top
Siemens–Bruker APEX
diffractometer
1577 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 28.4°, θmin = 1.8°
φ scansh = 1010
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1414
Tmin = 0.93, Tmax = 1.00l = 1415
9271 measured reflections15 standard reflections every 60 min
4100 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H atoms treated by a mixture of independent and constrained refinement
S = 0.86 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
4100 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C18H18N6O2Sγ = 104.568 (5)°
Mr = 382.45V = 929.8 (3) Å3
Triclinic, P1Z = 2
a = 7.8093 (16) ÅMo Kα radiation
b = 11.035 (2) ŵ = 0.20 mm1
c = 11.776 (3) ÅT = 295 K
α = 94.268 (4)°0.30 × 0.23 × 0.03 mm
β = 106.544 (4)°
Data collection top
Siemens–Bruker APEX
diffractometer
1577 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
Rint = 0.040
Tmin = 0.93, Tmax = 1.0015 standard reflections every 60 min
9271 measured reflections intensity decay: none
4100 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.055H atoms treated by a mixture of independent and constrained refinement
S = 0.86Δρmax = 0.40 e Å3
4100 reflectionsΔρmin = 0.48 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4369 (3)0.3324 (2)0.1462 (2)0.0329 (7)
C20.3729 (3)0.2269 (2)0.1422 (2)0.0385 (7)
H2A0.44750.15320.08960.046*
C30.1985 (3)0.2304 (2)0.2160 (2)0.0397 (7)
H3A0.15350.16030.21170.048*
C40.0912 (3)0.3396 (2)0.2967 (2)0.0338 (7)
C50.1585 (3)0.4427 (2)0.3021 (2)0.0474 (8)
H5A0.08800.51460.35820.057*
C60.3308 (3)0.4404 (2)0.2245 (2)0.0438 (8)
H6A0.37350.51180.22580.053*
S70.66133 (10)0.32583 (7)0.05031 (7)0.0441 (2)
O80.6950 (2)0.44536 (15)0.07477 (14)0.0586 (6)
O90.6729 (2)0.27865 (16)0.06983 (13)0.0548 (6)
N100.8133 (3)0.2210 (2)0.0862 (2)0.0468 (7)
H10A0.817 (3)0.243 (2)0.1638 (18)0.056*
H10B0.799 (3)0.1427 (19)0.0698 (19)0.056*
N110.0845 (3)0.34976 (19)0.38119 (16)0.0416 (6)
N120.1748 (3)0.28313 (18)0.34648 (16)0.0402 (6)
C130.3437 (3)0.2869 (2)0.4342 (2)0.0343 (7)
C140.4404 (3)0.2039 (2)0.4088 (2)0.0406 (8)
H14A0.39800.15410.33360.049*
C150.5974 (3)0.1942 (2)0.4928 (2)0.0416 (8)
H15A0.66010.13820.47370.050*
C160.6644 (3)0.2679 (2)0.6072 (2)0.0373 (7)
C170.5725 (3)0.3570 (2)0.6288 (2)0.0388 (7)
H17A0.61860.41100.70190.047*
C180.4168 (3)0.3660 (2)0.5447 (2)0.0365 (7)
H18A0.35860.42590.56140.044*
N190.8150 (3)0.2551 (2)0.69548 (18)0.0471 (7)
C200.9028 (4)0.1477 (3)0.6819 (2)0.0713 (10)
H20A0.94600.11990.75840.086*
H20B0.81260.07600.62520.086*
C211.0583 (4)0.1988 (3)0.6383 (2)0.0766 (10)
H21A1.14480.27370.69240.092*
H21B1.01450.22160.55940.092*
C221.1544 (4)0.0919 (3)0.6327 (3)0.0738 (11)
N231.2304 (4)0.0229 (2)0.6272 (2)0.0917 (10)
C240.8777 (3)0.3258 (2)0.8154 (2)0.0445 (8)
H24A0.87950.41330.80980.053*
H24B1.00460.32480.85480.053*
C250.7577 (3)0.2751 (2)0.8932 (2)0.0538 (8)
H25A0.80880.32730.97170.065*
H25B0.63270.28140.85710.065*
C260.7480 (4)0.1423 (3)0.9075 (3)0.0547 (9)
N270.7442 (3)0.0422 (2)0.9183 (2)0.0735 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0227 (18)0.0427 (19)0.0314 (16)0.0090 (15)0.0055 (14)0.0084 (14)
C20.0346 (19)0.0360 (18)0.0405 (17)0.0106 (15)0.0069 (15)0.0041 (14)
C30.040 (2)0.041 (2)0.0427 (17)0.0215 (16)0.0118 (15)0.0065 (15)
C40.030 (2)0.0396 (19)0.0351 (17)0.0149 (16)0.0098 (14)0.0099 (15)
C50.039 (2)0.045 (2)0.0466 (18)0.0112 (16)0.0015 (16)0.0058 (15)
C60.038 (2)0.041 (2)0.0496 (18)0.0204 (16)0.0025 (16)0.0011 (16)
S70.0330 (5)0.0526 (6)0.0437 (5)0.0171 (4)0.0030 (4)0.0080 (4)
O80.0472 (14)0.0501 (14)0.0769 (14)0.0306 (11)0.0030 (11)0.0080 (11)
O90.0463 (14)0.0874 (16)0.0290 (11)0.0259 (11)0.0041 (10)0.0059 (11)
N100.0328 (15)0.0556 (18)0.0497 (16)0.0109 (14)0.0127 (13)0.0012 (15)
N110.0277 (15)0.0549 (17)0.0401 (14)0.0191 (13)0.0017 (12)0.0056 (12)
N120.0299 (15)0.0549 (17)0.0363 (14)0.0157 (12)0.0074 (12)0.0094 (12)
C130.0276 (19)0.0417 (19)0.0362 (17)0.0148 (15)0.0094 (15)0.0078 (15)
C140.039 (2)0.051 (2)0.0302 (16)0.0160 (16)0.0076 (15)0.0014 (15)
C150.043 (2)0.054 (2)0.0379 (17)0.0302 (17)0.0143 (15)0.0024 (16)
C160.0285 (19)0.049 (2)0.0380 (18)0.0181 (15)0.0089 (15)0.0108 (15)
C170.0333 (19)0.0476 (19)0.0336 (17)0.0197 (15)0.0023 (14)0.0012 (14)
C180.0327 (19)0.0416 (19)0.0376 (17)0.0182 (15)0.0089 (15)0.0028 (15)
N190.0448 (17)0.0643 (18)0.0404 (15)0.0410 (15)0.0056 (13)0.0005 (13)
C200.049 (2)0.107 (3)0.044 (2)0.001 (2)0.0126 (18)0.0098 (19)
C210.078 (3)0.073 (3)0.064 (2)0.006 (2)0.013 (2)0.016 (2)
C220.078 (3)0.079 (3)0.080 (2)0.052 (2)0.024 (2)0.008 (2)
N230.113 (3)0.094 (2)0.121 (2)0.076 (2)0.069 (2)0.040 (2)
C240.043 (2)0.059 (2)0.0342 (17)0.0288 (16)0.0034 (15)0.0058 (16)
C250.064 (2)0.061 (2)0.0455 (19)0.0304 (18)0.0190 (17)0.0099 (17)
C260.051 (2)0.061 (2)0.054 (2)0.015 (2)0.0202 (17)0.005 (2)
N270.069 (2)0.055 (2)0.095 (2)0.0141 (18)0.0277 (17)0.0099 (18)
Geometric parameters (Å, º) top
C1—C61.364 (3)C15—C161.405 (3)
C1—C21.381 (3)C15—H15A0.9300
C1—S71.775 (2)C16—N191.376 (3)
C2—C31.381 (3)C16—C171.403 (3)
C2—H2A0.9300C17—C181.363 (3)
C3—C41.387 (3)C17—H17A0.9300
C3—H3A0.9300C18—H18A0.9300
C4—C51.373 (3)N19—C241.447 (3)
C4—N111.419 (3)N19—C201.530 (3)
C5—C61.388 (3)C20—C211.452 (3)
C5—H5A0.9300C20—H20A0.9700
C6—H6A0.9300C20—H20B0.9700
S7—O81.4326 (15)C21—C221.556 (3)
S7—O91.4403 (15)C21—H21A0.9700
S7—N101.610 (2)C21—H21B0.9700
N10—H10A0.939 (19)C22—N231.085 (3)
N10—H10B0.913 (19)C24—C251.527 (3)
N11—N121.259 (2)C24—H24A0.9700
N12—C131.414 (3)C24—H24B0.9700
C13—C141.390 (3)C25—C261.472 (3)
C13—C181.393 (3)C25—H25A0.9700
C14—C151.372 (3)C25—H25B0.9700
C14—H14A0.9300C26—N271.116 (3)
C6—C1—C2120.7 (2)N19—C16—C17120.6 (2)
C6—C1—S7119.93 (19)N19—C16—C15121.9 (2)
C2—C1—S7119.4 (2)C17—C16—C15117.5 (2)
C1—C2—C3120.2 (2)C18—C17—C16121.3 (2)
C1—C2—H2A119.9C18—C17—H17A119.4
C3—C2—H2A119.9C16—C17—H17A119.4
C2—C3—C4119.3 (2)C17—C18—C13121.0 (2)
C2—C3—H3A120.4C17—C18—H18A119.5
C4—C3—H3A120.4C13—C18—H18A119.5
C5—C4—C3120.0 (2)C16—N19—C24122.0 (2)
C5—C4—N11116.5 (2)C16—N19—C20122.3 (2)
C3—C4—N11123.5 (2)C24—N19—C20114.63 (19)
C4—C5—C6120.5 (2)C21—C20—N19106.4 (3)
C4—C5—H5A119.7C21—C20—H20A110.4
C6—C5—H5A119.7N19—C20—H20A110.4
C1—C6—C5119.3 (2)C21—C20—H20B110.4
C1—C6—H6A120.3N19—C20—H20B110.4
C5—C6—H6A120.3H20A—C20—H20B108.6
O8—S7—O9119.73 (10)C20—C21—C22106.0 (3)
O8—S7—N10106.68 (11)C20—C21—H21A110.5
O9—S7—N10106.08 (12)C22—C21—H21A110.5
O8—S7—C1108.04 (11)C20—C21—H21B110.5
O9—S7—C1107.70 (11)C22—C21—H21B110.5
N10—S7—C1108.15 (12)H21A—C21—H21B108.7
S7—N10—H10A112.7 (14)N23—C22—C21175.3 (4)
S7—N10—H10B109.6 (15)N19—C24—C25114.2 (2)
H10A—N10—H10B116 (2)N19—C24—H24A108.7
N12—N11—C4114.1 (2)C25—C24—H24A108.7
N11—N12—C13113.8 (2)N19—C24—H24B108.7
C14—C13—C18118.2 (2)C25—C24—H24B108.7
C14—C13—N12117.5 (2)H24A—C24—H24B107.6
C18—C13—N12124.3 (2)C26—C25—C24112.5 (2)
C15—C14—C13121.2 (2)C26—C25—H25A109.1
C15—C14—H14A119.4C24—C25—H25A109.1
C13—C14—H14A119.4C26—C25—H25B109.1
C14—C15—C16120.6 (2)C24—C25—H25B109.1
C14—C15—H15A119.7H25A—C25—H25B107.8
C16—C15—H15A119.7N27—C26—C25178.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···N23i0.932.523.427 (4)166
N10—H10B···N27ii0.91 (2)2.19 (2)3.084 (2)165
N10—H10A···N12iii0.94 (2)2.19 (2)3.124 (2)176
Symmetry codes: (i) x+2, y, z+1; (ii) x, y, z+1; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC18H18N6O2S
Mr382.45
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.8093 (16), 11.035 (2), 11.776 (3)
α, β, γ (°)94.268 (4), 106.544 (4), 104.568 (5)
V3)929.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.30 × 0.23 × 0.03
Data collection
DiffractometerSiemens–Bruker APEX
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.93, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
9271, 4100, 1577
Rint0.040
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.055, 0.86
No. of reflections4100
No. of parameters244
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.48

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···N23i0.932.523.427 (4)166
N10—H10B···N27ii0.91 (2)2.19 (2)3.084 (2)165
N10—H10A···N12iii0.94 (2)2.19 (2)3.124 (2)176
Symmetry codes: (i) x+2, y, z+1; (ii) x, y, z+1; (iii) x1, y, z.
 

Acknowledgements

We thank Dr C. Barolo for supplying crystals of the title compound.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc, Madison,Wisconsin, USA.  Google Scholar
First citationLedoux, I., Zyss, J., Barni, E., Barolo, C., Diulgheroff, N. & Quagliotto, P. (2000). Synth. Met. 115, 213–217.  Web of Science CrossRef CAS Google Scholar
First citationSasaki, C., Kitoh, S., Hayashi, H. & Kunimoto, K.-K. (2004). Anal. Sci. X-ray Struct. Anal Online, 20, x117–x118.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationViscardi, G., Quagliotto, P., Barolo, C., Diulgheroff, N., Caputo, G. & Barni, E. (2002). Dyes Pigments, 54, 131–140.  Web of Science CrossRef CAS Google Scholar
First citationWenker, H. (1935). Ind. Eng. Chem. Anal. 27, 40–41.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds